|
"""
|
|
This file to plot the partial and full curves for all algorithms in the same plot for all environments.
|
|
"""
|
|
|
|
import jax.numpy as jnp
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
from jax import lax
|
|
from scipy.interpolate import interp1d
|
|
|
|
import wandb
|
|
|
|
|
|
def f(name):
|
|
WINDOW_SIZE = 100
|
|
SIGMA = 100
|
|
INTERP_POINTS = 1000
|
|
NORMALIZING_FACTOR = 200
|
|
|
|
ENV_MAX_STEPS = {
|
|
"CountRecallEasy": 1e8,
|
|
"CountRecallMedium": 1e8,
|
|
"CountRecallHard": 1e8,
|
|
"BattleShipEasy": 1e8,
|
|
"BattleShipMedium": 1e8,
|
|
"BattleShipHard": 1e8,
|
|
|
|
}
|
|
AXIS_FONT = {"fontsize": 9, "labelpad": 8}
|
|
TICK_FONT = {"labelsize": 8}
|
|
|
|
api = wandb.Api()
|
|
runs = api.runs("bolt-um/Arcade-RLC-Grad")
|
|
filtered_runs = [run for run in runs if run.state == "finished"]
|
|
print(f"Total runs: {len(runs)}, Completed runs: {len(filtered_runs)}")
|
|
|
|
METRIC_MAPPING = {
|
|
"PQN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
|
|
"PQN_RNN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
|
|
"default": {"return_col": "episodic return", "time_col": "TOTAL_TIMESTEPS"},
|
|
}
|
|
|
|
def process_run(run):
|
|
"""Process individual W&B run with dynamic max steps per environment"""
|
|
try:
|
|
config = {k: v for k, v in run.config.items() if not k.startswith("_")}
|
|
env_name = config.get("ENV_NAME", "UnknownEnv")
|
|
partial_status = str(config.get("PARTIAL", False))
|
|
|
|
if env_name in ENV_MAX_STEPS:
|
|
env_max_step = ENV_MAX_STEPS[env_name]
|
|
else:
|
|
env_max_step = 1e8
|
|
|
|
alg_name = config.get("ALG_NAME", "").upper()
|
|
memory_type = "MLP"
|
|
if alg_name == "PQN_RNN":
|
|
memory_type = config.get("MEMORY_TYPE", "Unknown").capitalize()
|
|
|
|
metric_map = METRIC_MAPPING.get(alg_name, METRIC_MAPPING["default"])
|
|
|
|
history = list(
|
|
run.scan_history(
|
|
keys=[metric_map["return_col"], metric_map["time_col"]]
|
|
)
|
|
)
|
|
history = pd.DataFrame(
|
|
history, columns=[metric_map["return_col"], metric_map["time_col"]]
|
|
)
|
|
|
|
history["true_steps"] = history[metric_map["time_col"]].clip(
|
|
upper=env_max_step
|
|
)
|
|
history = history.sort_values(metric_map["time_col"]).drop_duplicates(
|
|
subset=["true_steps"]
|
|
)
|
|
|
|
if len(history) < 2:
|
|
print(f"Skipping {run.name} due to insufficient data points")
|
|
return None
|
|
|
|
|
|
first_return = history[metric_map["return_col"]].iloc[0]
|
|
last_return = history[metric_map["return_col"]].iloc[-1]
|
|
|
|
|
|
unified_steps = np.linspace(0, env_max_step, INTERP_POINTS)
|
|
unified_steps = np.round(unified_steps, decimals=5)
|
|
scale_factor = NORMALIZING_FACTOR / env_max_step
|
|
|
|
|
|
interp_func = interp1d(
|
|
history["true_steps"],
|
|
history[metric_map["return_col"]],
|
|
kind="linear",
|
|
bounds_error=False,
|
|
fill_value=(first_return, last_return),
|
|
)
|
|
interpolated_returns = interp_func(unified_steps)
|
|
|
|
smoothed_returns = (
|
|
pd.Series(interpolated_returns)
|
|
.ewm(span=100, adjust=False, min_periods=1)
|
|
.mean()
|
|
.values
|
|
)
|
|
|
|
|
|
cummax_returns = lax.cummax(jnp.array(smoothed_returns))
|
|
|
|
return pd.DataFrame(
|
|
{
|
|
"Algorithm": f"{alg_name} ({memory_type})",
|
|
"Return": interpolated_returns,
|
|
"Smoothed Return": smoothed_returns,
|
|
"Cummax Return": np.array(cummax_returns),
|
|
"True Steps": unified_steps,
|
|
"EnvName": env_name,
|
|
"Partial": partial_status,
|
|
"Seed": str(config.get("SEED", 0)),
|
|
"run_id": run.id,
|
|
"StepsNormalized": unified_steps / env_max_step,
|
|
"EnvMaxStep": env_max_step,
|
|
"ScaleFactor": scale_factor,
|
|
}
|
|
)
|
|
|
|
except Exception as e:
|
|
print(f"Error processing {run.name}: {str(e)}")
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runs_df = pd.read_pickle("rlcgrad.pkl")
|
|
|
|
def plot_comparative_curves(runs_df, name):
|
|
"""Plot comparative curves for all environments in a single plot"""
|
|
runs_df["EnvBaseName"] = runs_df["EnvName"].apply(
|
|
lambda x: x.replace("Easy", "").replace("Medium", "").replace("Hard", "")
|
|
)
|
|
|
|
envs = runs_df["EnvBaseName"].unique()
|
|
|
|
palette = sns.color_palette("husl", len(envs))
|
|
env_color_map = dict(zip(envs, palette))
|
|
|
|
partial_map = {"True": "POMDP", "False": "MDP"}
|
|
max_step = 1e8
|
|
plt.figure(figsize=(12, 7))
|
|
sns.set()
|
|
plt.text(
|
|
1,
|
|
-0.15,
|
|
f"{max_step:.0e}".replace("+", "").replace("0", ""),
|
|
transform=plt.gca().transAxes,
|
|
ha="right",
|
|
va="top",
|
|
fontsize=35,
|
|
color="#666666",
|
|
bbox=dict(facecolor="white", alpha=0.8, edgecolor="none", pad=2),
|
|
)
|
|
|
|
pomdp_handles = []
|
|
pomdp_labels = []
|
|
mdp_handles = []
|
|
mdp_labels = []
|
|
for env_base in envs:
|
|
for partial_status in ["False", "True"]:
|
|
data = runs_df[
|
|
(runs_df["EnvBaseName"] == env_base)
|
|
& (runs_df["Partial"] == partial_status)
|
|
]
|
|
if not data.empty:
|
|
color = env_color_map[env_base]
|
|
line_style = "--" if partial_status == "True" else "-"
|
|
label = f"{env_base} - {partial_map[partial_status]}"
|
|
|
|
line = plt.plot(
|
|
data["StepsNormalized"],
|
|
data["Cummax Return"],
|
|
color=color,
|
|
linewidth=2.5,
|
|
linestyle=line_style,
|
|
label=label,
|
|
)[0]
|
|
if partial_status == "True":
|
|
pomdp_handles.append(line)
|
|
pomdp_labels.append(label)
|
|
else:
|
|
mdp_handles.append(line)
|
|
mdp_labels.append(label)
|
|
|
|
plt.xlabel("Env Steps", fontsize=35)
|
|
plt.ylabel("Episodic Return", fontsize=35)
|
|
plt.tick_params(axis="both", which="major", labelsize=35)
|
|
plt.grid(True, alpha=0.5)
|
|
|
|
handles = mdp_handles + pomdp_handles
|
|
labels = mdp_labels + pomdp_labels
|
|
plt.legend(handles, labels, loc="best", fontsize=22, ncol=2)
|
|
|
|
plt.title("LRU", fontsize=35, pad=12, fontweight="semibold")
|
|
plt.tight_layout()
|
|
plt.savefig(
|
|
"{}.pdf".format(name), dpi=300, bbox_inches="tight", facecolor="white"
|
|
)
|
|
plt.close()
|
|
|
|
plot_comparative_curves(runs_df, name)
|
|
|
|
|
|
for i in range(1):
|
|
f(f"rlcgrad{i}")
|
|
|