figs
Browse files- figs/CatBoostRegressor_BoW_0.01_0.99_False.png +0 -0
- figs/CatBoostRegressor_BoW_0.01_0.99_True.png +0 -0
- figs/CatBoostRegressor_TF-IDF_0.01_0.99_False.png +0 -0
- figs/CatBoostRegressor_TF-IDF_0.01_0.99_True.png +0 -0
- figs/Lasso_BoW_0.01_0.99_False.png +0 -0
- figs/Lasso_BoW_0.01_0.99_True.png +0 -0
- figs/Lasso_BoW_0.15_0.85_False.png +0 -0
- figs/Lasso_BoW_0.2_0.8_False.png +0 -0
- figs/Lasso_TF-IDF_0.01_0.99_False.png +0 -0
- figs/Lasso_TF-IDF_0.01_0.99_True.png +0 -0
- figs/Lasso_TF-IDF_0.15_0.85_False.png +0 -0
- figs/Lasso_TF-IDF_0.2_0.8_False.png +0 -0
- figs/Linear regression_BoW_0.01_0.99_False.png +0 -0
- figs/Linear regression_BoW_0.01_0.99_True.png +0 -0
- figs/Linear regression_TF-IDF_0.01_0.99_False.png +0 -0
- figs/Linear regression_TF-IDF_0.01_0.99_True.png +0 -0
- figs/SGD Regressor_BoW_0.01_0.99_False.png +0 -0
- figs/SGD Regressor_BoW_0.01_0.99_True.png +0 -0
- figs/SGD Regressor_TF-IDF_0.01_0.99_False.png +0 -0
- figs/SGD Regressor_TF-IDF_0.01_0.99_True.png +0 -0
- oversampled_True_catboost_reg_0.01_0.99.txt +0 -0
- plots.py +107 -0
figs/CatBoostRegressor_BoW_0.01_0.99_False.png
ADDED
figs/CatBoostRegressor_BoW_0.01_0.99_True.png
ADDED
figs/CatBoostRegressor_TF-IDF_0.01_0.99_False.png
ADDED
figs/CatBoostRegressor_TF-IDF_0.01_0.99_True.png
ADDED
figs/Lasso_BoW_0.01_0.99_False.png
ADDED
figs/Lasso_BoW_0.01_0.99_True.png
ADDED
figs/Lasso_BoW_0.15_0.85_False.png
ADDED
figs/Lasso_BoW_0.2_0.8_False.png
ADDED
figs/Lasso_TF-IDF_0.01_0.99_False.png
ADDED
figs/Lasso_TF-IDF_0.01_0.99_True.png
ADDED
figs/Lasso_TF-IDF_0.15_0.85_False.png
ADDED
figs/Lasso_TF-IDF_0.2_0.8_False.png
ADDED
figs/Linear regression_BoW_0.01_0.99_False.png
ADDED
figs/Linear regression_BoW_0.01_0.99_True.png
ADDED
figs/Linear regression_TF-IDF_0.01_0.99_False.png
ADDED
figs/Linear regression_TF-IDF_0.01_0.99_True.png
ADDED
figs/SGD Regressor_BoW_0.01_0.99_False.png
ADDED
figs/SGD Regressor_BoW_0.01_0.99_True.png
ADDED
figs/SGD Regressor_TF-IDF_0.01_0.99_False.png
ADDED
figs/SGD Regressor_TF-IDF_0.01_0.99_True.png
ADDED
oversampled_True_catboost_reg_0.01_0.99.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
plots.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import pandas as pd
|
4 |
+
import seaborn as sns
|
5 |
+
|
6 |
+
sns.set_theme()
|
7 |
+
|
8 |
+
def read_results(filename):
|
9 |
+
with open(filename, "r") as f:
|
10 |
+
lines = f.readlines()
|
11 |
+
|
12 |
+
preds_values = []
|
13 |
+
actual_values = []
|
14 |
+
mae_values = []
|
15 |
+
|
16 |
+
for line in lines:
|
17 |
+
if line.startswith("Preds:"):
|
18 |
+
preds = line.replace("[", "")
|
19 |
+
preds = preds.replace("]", "")
|
20 |
+
preds = preds.strip("Preds:")
|
21 |
+
preds = preds.strip()
|
22 |
+
preds = preds.split(",")
|
23 |
+
preds = [p.strip() for p in preds]
|
24 |
+
preds = np.asarray([float(p) for p in preds])
|
25 |
+
preds_values.append(preds)
|
26 |
+
|
27 |
+
if line.startswith("Actual:"):
|
28 |
+
actual = line.replace("[", "")
|
29 |
+
actual = actual.replace("]", "")
|
30 |
+
actual = actual.strip("Actual values:")
|
31 |
+
actual = actual.strip()
|
32 |
+
actual = actual.split(",")
|
33 |
+
actual = [a.strip() for a in actual]
|
34 |
+
actual = np.asarray([float(a) for a in actual])
|
35 |
+
actual_values.append(actual)
|
36 |
+
|
37 |
+
if line.startswith("MAE"):
|
38 |
+
mae = float(line.split()[-1])
|
39 |
+
mae_values.append(mae)
|
40 |
+
return preds_values, actual_values, mae_values
|
41 |
+
|
42 |
+
|
43 |
+
def plot_distribution(preds_values, actual_values, mae_values, model_name, threshold, oversampled):
|
44 |
+
for i in range(2):
|
45 |
+
if i == 0:
|
46 |
+
input_type = "BoW"
|
47 |
+
else:
|
48 |
+
input_type = "TF-IDF"
|
49 |
+
preds = preds_values[i]
|
50 |
+
actual = actual_values[i]
|
51 |
+
mae = mae_values[i]
|
52 |
+
|
53 |
+
res = pd.DataFrame()
|
54 |
+
res["Prediction"] = preds
|
55 |
+
res["Actual"] = actual
|
56 |
+
|
57 |
+
sns.displot(res, kind="kde")
|
58 |
+
plt.xlabel("Home standard score")
|
59 |
+
plt.title(f"Model: {model_name}, Input type: {input_type}, MAE: {mae}, Threshold:{threshold}",
|
60 |
+
fontsize = 10)
|
61 |
+
plt.ylim(-0.03, 2.5)
|
62 |
+
plt.tight_layout()
|
63 |
+
plt.savefig(f"figs/{model_name}_{input_type}_{threshold[0]}_{threshold[1]}_{oversampled}.png")
|
64 |
+
plt.close()
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
preds_values, actual_values, mae_values = read_results("linear_models/lasso_0.01_0.99.txt")
|
69 |
+
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], False)
|
70 |
+
|
71 |
+
preds_values, actual_values, mae_values = read_results("linear_models/lin_reg_0.01_0.99.txt")
|
72 |
+
plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], False)
|
73 |
+
|
74 |
+
preds_values, actual_values, mae_values = read_results("linear_models/sgd_reg_0.01_0.99.txt")
|
75 |
+
plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], False)
|
76 |
+
|
77 |
+
preds_values, actual_values, mae_values = read_results("oversampled_False_catboost_reg_0.01_0.99.txt")
|
78 |
+
plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], False)
|
79 |
+
|
80 |
+
preds_values, actual_values, mae_values = read_results("linear_models/lasso_0.2_0.8.txt")
|
81 |
+
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.2, 0.8], False)
|
82 |
+
|
83 |
+
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lin_reg_0.01_0.99.txt")
|
84 |
+
plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], True)
|
85 |
+
|
86 |
+
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lasso_0.01_0.99.txt")
|
87 |
+
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], True)
|
88 |
+
|
89 |
+
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_sgd_reg_0.01_0.99.txt")
|
90 |
+
plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], True)
|
91 |
+
|
92 |
+
preds_values, actual_values, mae_values = read_results("oversampled_True_catboost_reg_0.01_0.99.txt")
|
93 |
+
plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], True)
|
94 |
+
|
95 |
+
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lasso_0.15_0.85.txt")
|
96 |
+
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.15, 0.85], False)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|