oas-paired-sequence-data / oas-paired-sequence-data.py
EC2 Default User
remove src
0c215e1
raw
history blame
5.08 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT-0
"""Paired sequences from the Observed Antibody Space database"""
import datasets
import os
import csv
_CITATION = """\
@article{Olsen_Boyles_Deane_2022,
title={Observed Antibody Space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences},
volume={31}, rights={© 2021 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.},
ISSN={1469-896X}, DOI={10.1002/pro.4205},
number={1}, journal={Protein Science}, author={Olsen, Tobias H. and Boyles, Fergus and Deane, Charlotte M.},
year={2022}, pages={141–146}, language={en} }
"""
_DESCRIPTION = """\
Paired heavy and light chain antibody sequences for multiple species.
"""
_HOMEPAGE = "https://opig.stats.ox.ac.uk/webapps/oas/"
_LICENSE = "cc-by-4.0"
_BASE_URL = "https://aws-hcls-ml.s3.amazonaws.com/oas-paired-sequence-data/raw/"
# _URLS = {
# "human": _BASE_URL + "human.tar.gz",
# "rat_SD": _BASE_URL + "rat_SD.tar.gz",
# "mouse_BALB_c": _BASE_URL + "mouse_BALB_c.tar.gz",
# "mouse_C57BL_6": _BASE_URL + "mouse_C57BL_6.tar.gz",
# }
_FEATURES = datasets.Features(
{
"sequence_alignment_aa_heavy": datasets.Value("string"),
"cdr1_aa_heavy": datasets.Value("string"),
"cdr2_aa_heavy": datasets.Value("string"),
"cdr3_aa_heavy": datasets.Value("string"),
"sequence_alignment_aa_light": datasets.Value("string"),
"cdr1_aa_light": datasets.Value("string"),
"cdr2_aa_light": datasets.Value("string"),
"cdr3_aa_light": datasets.Value("string"),
}
)
class OasPairedSequenceData(datasets.GeneratorBasedBuilder):
"""OAS paired sequence data."""
VERSION = datasets.Version("1.2.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="human", version=VERSION, description="human"),
datasets.BuilderConfig(name="rat_SD", version=VERSION, description="rat_SD"),
datasets.BuilderConfig(
name="mouse_BALB_c", version=VERSION, description="mouse_BALB_c"
),
datasets.BuilderConfig(
name="mouse_C57BL_6", version=VERSION, description="mouse_C57BL_6"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_FEATURES,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
# def _split_generators(self, dl_manager):
# urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "filepath": os.path.join(data_dir),
# "split": "train",
# },
# ),
# ]
# def _generate_examples(self, filepath, split):
# table = pd.read_parquet(filepath)
# for key, row in enumerate(table.itertuples()):
# if key == 0:
# continue
# yield key, {
# "sequence_alignment_aa_heavy": row[1],
# "cdr1_aa_heavy": row[2],
# "cdr2_aa_heavy": row[3],
# "cdr3_aa_heavy": row[4],
# "sequence_alignment_aa_light": row[5],
# "cdr1_aa_light": row[6],
# "cdr2_aa_light": row[7],
# "cdr3_aa_light": row[8],
# }
def _split_generators(self, dl_manager):
data_unit_file = os.path.join(
os.getcwd(), "data_units", self.config.name + ".txt"
)
with open(data_unit_file, "r") as f:
urls = [
os.path.join(_BASE_URL, self.config.name, line.strip()) for line in f
]
data_files = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files,
"split": "train",
},
),
]
def _generate_examples(self, filepaths):
for filepath in filepaths:
with open(filepath, "r") as f:
reader = csv.reader(f, delimiter=",")
for key, row in enumerate(reader):
if key < 2:
continue
else:
yield key - 2, {
"sequence_alignment_aa_heavy": row[10],
"cdr1_aa_heavy": row[35],
"cdr2_aa_heavy": row[39],
"cdr3_aa_heavy": row[43],
"sequence_alignment_aa_light": row[100],
"cdr1_aa_light": row[123],
"cdr2_aa_light": row[127],
"cdr3_aa_light": row[131],
}