lovodkin93
commited on
Commit
•
d533c09
1
Parent(s):
7e98ad1
update the dataset loading script
Browse files- controlled_text_reduction.py +204 -0
controlled_text_reduction.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""A Dataset loading script for the Controlled Text Reduction dataset."""
|
16 |
+
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import List, Tuple
|
22 |
+
import pandas as pd
|
23 |
+
import json
|
24 |
+
import gzip
|
25 |
+
import itertools
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """"""
|
29 |
+
# _CITATION = """\
|
30 |
+
# @inproceedings{roit2020controlled,
|
31 |
+
# title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
|
32 |
+
# author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
|
33 |
+
# booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
34 |
+
# pages={7008--7013},
|
35 |
+
# year={2020}
|
36 |
+
# }
|
37 |
+
# """
|
38 |
+
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
|
42 |
+
The evaluation and test datasets were constructed via controlled crowdsourcing.
|
43 |
+
The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
|
44 |
+
"""
|
45 |
+
|
46 |
+
_HOMEPAGE = "https://huggingface.co/datasets/lovodkin93/Controlled-Text-Reduction-dataset"
|
47 |
+
|
48 |
+
_LICENSE = """MIT License
|
49 |
+
Copyright (c) 2022 lovodkin93
|
50 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
51 |
+
of this software and associated documentation files (the "Software"), to deal
|
52 |
+
in the Software without restriction, including without limitation the rights
|
53 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
54 |
+
copies of the Software, and to permit persons to whom the Software is
|
55 |
+
furnished to do so, subject to the following conditions:
|
56 |
+
The above copyright notice and this permission notice shall be included in all
|
57 |
+
copies or substantial portions of the Software.
|
58 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
59 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
60 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
61 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
62 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
63 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
64 |
+
SOFTWARE."""
|
65 |
+
|
66 |
+
|
67 |
+
# _URLs = {
|
68 |
+
# "csv": {
|
69 |
+
# "sentences": {
|
70 |
+
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
|
71 |
+
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
|
72 |
+
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
|
73 |
+
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
|
74 |
+
# },
|
75 |
+
# "qasrl-annotations": {
|
76 |
+
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
|
77 |
+
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
|
78 |
+
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
|
79 |
+
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
|
80 |
+
# },
|
81 |
+
# },
|
82 |
+
# "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
|
83 |
+
# }
|
84 |
+
|
85 |
+
_URLs = {
|
86 |
+
"DUC-2001-2002": {
|
87 |
+
"dev": "https://huggingface.co/datasets/lovodkin93/Controlled-Text-Reduction-dataset/blob/main/data/dev_DUC-2001-2002.csv",
|
88 |
+
"test": "https://huggingface.co/datasets/lovodkin93/Controlled-Text-Reduction-dataset/blob/main/data/test_DUC-2001-2002.csv",
|
89 |
+
"train": "https://huggingface.co/datasets/lovodkin93/Controlled-Text-Reduction-dataset/blob/main/data/train_DUC-2001-2002.csv"
|
90 |
+
},
|
91 |
+
"CNN-DM": {
|
92 |
+
"train": "https://huggingface.co/datasets/lovodkin93/Controlled-Text-Reduction-dataset/blob/main/data/train_CNNDM.csv"
|
93 |
+
},
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
class ControlledTextReduction(datasets.GeneratorBasedBuilder):
|
102 |
+
"""Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
|
103 |
+
Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
|
104 |
+
|
105 |
+
|
106 |
+
VERSION = datasets.Version("1.0.0")
|
107 |
+
|
108 |
+
BUILDER_CONFIGS = [
|
109 |
+
datasets.BuilderConfig(
|
110 |
+
name="DUC-2001-2002",
|
111 |
+
version=VERSION,
|
112 |
+
description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark"
|
113 |
+
),
|
114 |
+
datasets.BuilderConfig(
|
115 |
+
name="CNN-DM",
|
116 |
+
version=VERSION,
|
117 |
+
description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)"
|
118 |
+
)
|
119 |
+
]
|
120 |
+
|
121 |
+
DEFAULT_CONFIG_NAME = (
|
122 |
+
"default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
123 |
+
)
|
124 |
+
|
125 |
+
def _info(self):
|
126 |
+
features = datasets.Features(
|
127 |
+
{
|
128 |
+
"doc_text": datasets.Value("string"),
|
129 |
+
"summary_text": datasets.Value("string"),
|
130 |
+
"highlight_spans": datasets.Value("string")
|
131 |
+
}
|
132 |
+
)
|
133 |
+
return datasets.DatasetInfo(
|
134 |
+
# This is the description that will appear on the datasets page.
|
135 |
+
description=_DESCRIPTION,
|
136 |
+
# This defines the different columns of the dataset and their types
|
137 |
+
features=features, # Here we define them above because they are different between the two configurations
|
138 |
+
# If there's a common (input, target) tuple from the features,
|
139 |
+
# specify them here. They'll be used if as_supervised=True in
|
140 |
+
# builder.as_dataset.
|
141 |
+
supervised_keys=None,
|
142 |
+
# Homepage of the dataset for documentation
|
143 |
+
homepage=_HOMEPAGE,
|
144 |
+
# License for the dataset if available
|
145 |
+
license=_LICENSE,
|
146 |
+
# Citation for the dataset
|
147 |
+
citation=_CITATION,
|
148 |
+
)
|
149 |
+
|
150 |
+
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
151 |
+
"""Returns SplitGenerators."""
|
152 |
+
|
153 |
+
URLs = _URLs[self.config.name]
|
154 |
+
# Download and prepare all files - keep same structure as URLs
|
155 |
+
corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
|
156 |
+
for section in URLs}
|
157 |
+
|
158 |
+
if self.config.name=="CNN-DM":
|
159 |
+
return [
|
160 |
+
datasets.SplitGenerator(
|
161 |
+
name=datasets.Split.TRAIN,
|
162 |
+
# These kwargs will be passed to _generate_examples
|
163 |
+
gen_kwargs={
|
164 |
+
"filepath": corpora["train"]
|
165 |
+
},
|
166 |
+
),
|
167 |
+
]
|
168 |
+
|
169 |
+
else:
|
170 |
+
return [
|
171 |
+
datasets.SplitGenerator(
|
172 |
+
name=datasets.Split.TRAIN,
|
173 |
+
# These kwargs will be passed to _generate_examples
|
174 |
+
gen_kwargs={
|
175 |
+
"filepath": corpora["train"]
|
176 |
+
},
|
177 |
+
),
|
178 |
+
datasets.SplitGenerator(
|
179 |
+
name=datasets.Split.VALIDATION,
|
180 |
+
# These kwargs will be passed to _generate_examples
|
181 |
+
gen_kwargs={
|
182 |
+
"filepath": corpora["dev"]
|
183 |
+
},
|
184 |
+
),
|
185 |
+
datasets.SplitGenerator(
|
186 |
+
name=datasets.Split.TEST,
|
187 |
+
# These kwargs will be passed to _generate_examples
|
188 |
+
gen_kwargs={
|
189 |
+
"filepath": corpora["test"]
|
190 |
+
},
|
191 |
+
),
|
192 |
+
]
|
193 |
+
|
194 |
+
def _generate_examples(self, filepath: List[str]):
|
195 |
+
|
196 |
+
""" Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
|
197 |
+
|
198 |
+
# merge annotations from sections
|
199 |
+
df = pd.read_csv(filepath, index_col=False)
|
200 |
+
for counter, dic in enumerate(df.to_dict('records')):
|
201 |
+
columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
|
202 |
+
for key in columns_to_load_into_object:
|
203 |
+
dic[key] = eval(dic[key])
|
204 |
+
yield counter, dic
|