|
import cv2 |
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
from segment_anything import SamPredictor, sam_model_registry |
|
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
def segment_image_from_url(image_url): |
|
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth") |
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
response = requests.get(image_url) |
|
img = Image.open(BytesIO(response.content)) |
|
image = np.array(img) |
|
|
|
masks = mask_generator.generate(image) |
|
|
|
plt.figure(figsize=(20,20)) |
|
plt.imshow(image) |
|
show_anns(masks) |
|
plt.axis('off') |
|
output_file = 'segmented_image.png' |
|
plt.savefig(output_file) |
|
plt.close() |
|
return output_file |
|
|
|
def show_anns(anns): |
|
if len(anns) == 0: |
|
return |
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) |
|
ax = plt.gca() |
|
ax.set_autoscale_on(False) |
|
polygons = [] |
|
color = [] |
|
for ann in sorted_anns: |
|
m = ann['segmentation'] |
|
img = np.ones((m.shape[0], m.shape[1], 3)) |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
for i in range(3): |
|
img[:,:,i] = color_mask[i] |
|
ax.imshow(np.dstack((img, m*0.35))) |
|
|
|
|
|
|
|
|
|
|