Datasets:

Modalities:
Image
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
parquet-converter commited on
Commit
9c2aa1a
1 Parent(s): 65d7baf

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,41 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.npy filter=lfs diff=lfs merge=lfs -text
13
- *.npz filter=lfs diff=lfs merge=lfs -text
14
- *.onnx filter=lfs diff=lfs merge=lfs -text
15
- *.ot filter=lfs diff=lfs merge=lfs -text
16
- *.parquet filter=lfs diff=lfs merge=lfs -text
17
- *.pb filter=lfs diff=lfs merge=lfs -text
18
- *.pickle filter=lfs diff=lfs merge=lfs -text
19
- *.pkl filter=lfs diff=lfs merge=lfs -text
20
- *.pt filter=lfs diff=lfs merge=lfs -text
21
- *.pth filter=lfs diff=lfs merge=lfs -text
22
- *.rar filter=lfs diff=lfs merge=lfs -text
23
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
- *.tar.* filter=lfs diff=lfs merge=lfs -text
25
- *.tflite filter=lfs diff=lfs merge=lfs -text
26
- *.tgz filter=lfs diff=lfs merge=lfs -text
27
- *.wasm filter=lfs diff=lfs merge=lfs -text
28
- *.xz filter=lfs diff=lfs merge=lfs -text
29
- *.zip filter=lfs diff=lfs merge=lfs -text
30
- *.zstandard filter=lfs diff=lfs merge=lfs -text
31
- *tfevents* filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - uncompressed
33
- *.pcm filter=lfs diff=lfs merge=lfs -text
34
- *.sam filter=lfs diff=lfs merge=lfs -text
35
- *.raw filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - compressed
37
- *.aac filter=lfs diff=lfs merge=lfs -text
38
- *.flac filter=lfs diff=lfs merge=lfs -text
39
- *.mp3 filter=lfs diff=lfs merge=lfs -text
40
- *.ogg filter=lfs diff=lfs merge=lfs -text
41
- *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COCO/yalta_ai_tabular_dataset-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0643334a8c58e7fd4d48a405243f25639027c6b448c2e7fda3a9f2bb0ecb7665
3
+ size 59596060
COCO/yalta_ai_tabular_dataset-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b35b473d5e9cb0e3731373626930496d4f979b05a7841c782d6e03d4b7f3cc19
3
+ size 281121320
COCO/yalta_ai_tabular_dataset-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e53e21bb53ab575331949cfcbf953d00c05715731ccfb129d6975880740e4945
3
+ size 37182479
README.md DELETED
@@ -1,327 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language: []
5
- language_creators:
6
- - expert-generated
7
- license:
8
- - cc-by-4.0
9
- multilinguality: []
10
- pretty_name: YALTAi Tabular Dataset
11
- size_categories:
12
- - n<1K
13
- source_datasets: []
14
- tags:
15
- - manuscripts
16
- - LAM
17
- task_categories:
18
- - object-detection
19
- task_ids: []
20
- ---
21
-
22
- # YALTAi Tabular Dataset
23
-
24
- ## Table of Contents
25
- - [YALTAi Tabular Dataset](#YALTAi-Tabular-Dataset)
26
- - [Table of Contents](#table-of-contents)
27
- - [Dataset Description](#dataset-description)
28
- - [Dataset Summary](#dataset-summary)
29
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
- - [Dataset Structure](#dataset-structure)
31
- - [Data Instances](#data-instances)
32
- - [Data Fields](#data-fields)
33
- - [Data Splits](#data-splits)
34
- - [Dataset Creation](#dataset-creation)
35
- - [Curation Rationale](#curation-rationale)
36
- - [Source Data](#source-data)
37
- - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
38
- - [Who are the source language producers?](#who-are-the-source-language-producers)
39
- - [Annotations](#annotations)
40
- - [Annotation process](#annotation-process)
41
- - [Who are the annotators?](#who-are-the-annotators)
42
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
43
- - [Considerations for Using the Data](#considerations-for-using-the-data)
44
- - [Social Impact of Dataset](#social-impact-of-dataset)
45
- - [Discussion of Biases](#discussion-of-biases)
46
- - [Other Known Limitations](#other-known-limitations)
47
- - [Additional Information](#additional-information)
48
- - [Dataset Curators](#dataset-curators)
49
- - [Licensing Information](#licensing-information)
50
- - [Citation Information](#citation-information)
51
- - [Contributions](#contributions)
52
-
53
- ## Dataset Description
54
-
55
- - **Homepage:** [https://doi.org/10.5281/zenodo.6827706](https://doi.org/10.5281/zenodo.6827706)
56
- - **Paper:** [https://arxiv.org/abs/2207.11230](https://arxiv.org/abs/2207.11230)
57
-
58
- ### Dataset Summary
59
-
60
- This dataset contains a subset of data used in the paper [You Actually Look Twice At it (YALTAi): using an object detectionapproach instead of region segmentation within the Kraken engine](https://arxiv.org/abs/2207.11230). This paper proposes treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). This dataset covers pages with tabular information with the following objects "Header", "Col", "Marginal", "text".
61
-
62
- ### Supported Tasks and Leaderboards
63
-
64
- - `object-detection`: This dataset can be used to train a model for object-detection on historic document images.
65
-
66
-
67
- ## Dataset Structure
68
-
69
- This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to integrate the data with existing processing pipelines.
70
-
71
- - The first configuration, `YOLO`, uses the data's original format.
72
- - The second configuration converts the YOLO format into a format which is closer to the `COCO` annotation format. This is done to make it easier to work with the `feature_extractor`s from the `Transformers` models for object detection, which expect data to be in a COCO style format.
73
-
74
- ### Data Instances
75
-
76
- An example instance from the COCO config:
77
-
78
- ```
79
- {'height': 2944,
80
- 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FA413CDA210>,
81
- 'image_id': 0,
82
- 'objects': [{'area': 435956,
83
- 'bbox': [0.0, 244.0, 1493.0, 292.0],
84
- 'category_id': 0,
85
- 'id': 0,
86
- 'image_id': '0',
87
- 'iscrowd': False,
88
- 'segmentation': []},
89
- {'area': 88234,
90
- 'bbox': [305.0, 127.0, 562.0, 157.0],
91
- 'category_id': 2,
92
- 'id': 0,
93
- 'image_id': '0',
94
- 'iscrowd': False,
95
- 'segmentation': []},
96
- {'area': 5244,
97
- 'bbox': [1416.0, 196.0, 92.0, 57.0],
98
- 'category_id': 2,
99
- 'id': 0,
100
- 'image_id': '0',
101
- 'iscrowd': False,
102
- 'segmentation': []},
103
- {'area': 5720,
104
- 'bbox': [1681.0, 182.0, 88.0, 65.0],
105
- 'category_id': 2,
106
- 'id': 0,
107
- 'image_id': '0',
108
- 'iscrowd': False,
109
- 'segmentation': []},
110
- {'area': 374085,
111
- 'bbox': [0.0, 540.0, 163.0, 2295.0],
112
- 'category_id': 1,
113
- 'id': 0,
114
- 'image_id': '0',
115
- 'iscrowd': False,
116
- 'segmentation': []},
117
- {'area': 577599,
118
- 'bbox': [104.0, 537.0, 253.0, 2283.0],
119
- 'category_id': 1,
120
- 'id': 0,
121
- 'image_id': '0',
122
- 'iscrowd': False,
123
- 'segmentation': []},
124
- {'area': 598670,
125
- 'bbox': [304.0, 533.0, 262.0, 2285.0],
126
- 'category_id': 1,
127
- 'id': 0,
128
- 'image_id': '0',
129
- 'iscrowd': False,
130
- 'segmentation': []},
131
- {'area': 56,
132
- 'bbox': [284.0, 539.0, 8.0, 7.0],
133
- 'category_id': 1,
134
- 'id': 0,
135
- 'image_id': '0',
136
- 'iscrowd': False,
137
- 'segmentation': []},
138
- {'area': 1868412,
139
- 'bbox': [498.0, 513.0, 812.0, 2301.0],
140
- 'category_id': 1,
141
- 'id': 0,
142
- 'image_id': '0',
143
- 'iscrowd': False,
144
- 'segmentation': []},
145
- {'area': 307800,
146
- 'bbox': [1250.0, 512.0, 135.0, 2280.0],
147
- 'category_id': 1,
148
- 'id': 0,
149
- 'image_id': '0',
150
- 'iscrowd': False,
151
- 'segmentation': []},
152
- {'area': 494109,
153
- 'bbox': [1330.0, 503.0, 217.0, 2277.0],
154
- 'category_id': 1,
155
- 'id': 0,
156
- 'image_id': '0',
157
- 'iscrowd': False,
158
- 'segmentation': []},
159
- {'area': 52,
160
- 'bbox': [1734.0, 1013.0, 4.0, 13.0],
161
- 'category_id': 1,
162
- 'id': 0,
163
- 'image_id': '0',
164
- 'iscrowd': False,
165
- 'segmentation': []},
166
- {'area': 90666,
167
- 'bbox': [0.0, 1151.0, 54.0, 1679.0],
168
- 'category_id': 1,
169
- 'id': 0,
170
- 'image_id': '0',
171
- 'iscrowd': False,
172
- 'segmentation': []}],
173
- 'width': 2064}
174
- ```
175
-
176
- An example instance from the YOLO config:
177
-
178
- ``` python
179
- {'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FAA140F2450>,
180
- 'objects': {'bbox': [[747, 390, 1493, 292],
181
- [586, 206, 562, 157],
182
- [1463, 225, 92, 57],
183
- [1725, 215, 88, 65],
184
- [80, 1688, 163, 2295],
185
- [231, 1678, 253, 2283],
186
- [435, 1675, 262, 2285],
187
- [288, 543, 8, 7],
188
- [905, 1663, 812, 2301],
189
- [1318, 1653, 135, 2280],
190
- [1439, 1642, 217, 2277],
191
- [1737, 1019, 4, 13],
192
- [26, 1991, 54, 1679]],
193
- 'label': [0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]}}
194
- ```
195
-
196
-
197
-
198
- ### Data Fields
199
-
200
- The fields for the YOLO config:
201
-
202
- - `image`: the image
203
- - `objects`: the annotations which consist of:
204
- - `bbox`: a list of bounding boxes for the image
205
- - `label`: a list of labels for this image
206
-
207
- The fields for the COCO config:
208
-
209
- - `height`: height of the image
210
- - `width`: width of the image
211
- - `image`: image
212
- - `image_id`: id for the image
213
- - `objects`: annotations in COCO format, consisting of a list containing dictionaries with the following keys:
214
- - `bbox`: bounding boxes for the images
215
- - `category_id`: a label for the image
216
- - `image_id`: id for the image
217
- - `iscrowd`: COCO `iscrowd` flag
218
- - `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)
219
-
220
-
221
-
222
- ### Data Splits
223
-
224
- The dataset contains a train, validation and test split with the following numbers per split:
225
-
226
-
227
- | | train | validation | test |
228
- |----------|-------|------------|------|
229
- | examples | 196 | 22 | 135 |
230
-
231
-
232
- ## Dataset Creation
233
-
234
- > [this] dataset was produced using a single source, the Lectaurep Repertoires dataset [Rostaing et al., 2021], which served as a basis for only the training and development split. The testset is composed of original data, from various documents, from the 17th century up to the early 20th with a single soldier war report. The test set is voluntarily very different and out of domain with column borders that are not drawn nor printed in certain cases, layout in some kind of masonry layout. p.8
235
- .
236
- ### Curation Rationale
237
-
238
- This dataset was created to produce a simplified version of the [Lectaurep Repertoires dataset](https://github.com/HTR-United/lectaurep-repertoires), which was found to contain:
239
-
240
- > around 16 different ways to describe columns, from Col1 to Col7, the case-different col1-col7 and finally ColPair and ColOdd, which we all reduced to Col p.8
241
-
242
-
243
-
244
- ### Source Data
245
-
246
- #### Initial Data Collection and Normalization
247
-
248
- The LECTAUREP (LECTure Automatique de REPertoires) project, which began in 2018, is a joint initiative of the Minutier central des notaires de Paris, the National Archives and the
249
- Minutier central des notaires de Paris of the National Archives, the [ALMAnaCH (Automatic Language Modeling and Analysis & Computational Humanities)](https://www.inria.fr/en/almanach) team at Inria and the EPHE (Ecole Pratique des Hautes Etudes), in partnership with the Ministry of Culture.
250
-
251
- > The lectaurep-bronod corpus brings together 100 pages from the repertoire of Maître Louis Bronod (1719-1765), notary in Paris from December 13, 1719 to July 23, 1765. The pages concerned were written during the years 1742 to 1745.
252
-
253
- #### Who are the source language producers?
254
-
255
- [More information needed]
256
-
257
- ### Annotations
258
-
259
- | | Train | Dev | Test | Total | Average area | Median area |
260
- |----------|-------|-----|------|-------|--------------|-------------|
261
- | Col | 724 | 105 | 829 | 1658 | 9.32 | 6.33 |
262
- | Header | 103 | 15 | 42 | 160 | 6.78 | 7.10 |
263
- | Marginal | 60 | 8 | 0 | 68 | 0.70 | 0.71 |
264
- | Text | 13 | 5 | 0 | 18 | 0.01 | 0.00 |
265
- | | | | - | | | |
266
-
267
-
268
- #### Annotation process
269
-
270
- [More information needed]
271
-
272
- #### Who are the annotators?
273
-
274
- [More information needed]
275
-
276
- ### Personal and Sensitive Information
277
-
278
- This data does not contain information relating to living individuals.
279
-
280
- ## Considerations for Using the Data
281
-
282
- ### Social Impact of Dataset
283
-
284
- A growing number of datasets are related to page layout for historical documents. This dataset offers a different approach to annotating these datasets (focusing on object detection rather than pixel-level annotations). Improving document layout recognition can have a positive impact on downstream tasks, in particular Optical Character Recognition.
285
-
286
- ### Discussion of Biases
287
-
288
- Historical documents contain a wide variety of page layouts. This means that the ability of models trained on this dataset to transfer to documents with very different layouts is not guaranteed.
289
-
290
- ### Other Known Limitations
291
-
292
- [More information needed]
293
-
294
-
295
- ## Additional Information
296
-
297
- ### Dataset Curators
298
-
299
-
300
- ### Licensing Information
301
-
302
- [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
303
-
304
- ### Citation Information
305
-
306
- ```
307
- @dataset{clerice_thibault_2022_6827706,
308
- author = {Clérice, Thibault},
309
- title = {YALTAi: Tabular Dataset},
310
- month = jul,
311
- year = 2022,
312
- publisher = {Zenodo},
313
- version = {1.0.0},
314
- doi = {10.5281/zenodo.6827706},
315
- url = {https://doi.org/10.5281/zenodo.6827706}
316
- }
317
- ```
318
-
319
-
320
-
321
- [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6827706.svg)](https://doi.org/10.5281/zenodo.6827706)
322
-
323
-
324
-
325
- ### Contributions
326
-
327
- Thanks to [@davanstrien](https://github.com/davanstrien) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
YOLO/yalta_ai_tabular_dataset-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e7452949675136b0ca870da37baf651dd0ef060fd54c713c0871323c5bb753
3
+ size 59584052
YOLO/yalta_ai_tabular_dataset-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be47a99a2a345ef9d32a7981a6b15a35a36b14ea07f2feb208f311462dd55bca
3
+ size 281109368
YOLO/yalta_ai_tabular_dataset-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16335e2329430bde39ad3a19dd89841dbc49224bbe2ac9025c8e9177f0b7eed1
3
+ size 37177320
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "TODO", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}, "YOLO": {"description": "Yalt AI Tabular Dataset", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "YOLO", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}, "COCO": {"description": "Yalt AI Tabular Dataset", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image_id": {"dtype": "int64", "id": null, "_type": "Value"}, "image": {"decode": true, "id": null, "_type": "Image"}, "width": {"dtype": "int32", "id": null, "_type": "Value"}, "height": {"dtype": "int32", "id": null, "_type": "Value"}, "objects": [{"category_id": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "image_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int64", "id": null, "_type": "Value"}, "area": {"dtype": "int64", "id": null, "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}, "segmentation": [[{"dtype": "float32", "id": null, "_type": "Value"}]], "iscrowd": {"dtype": "bool", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "COCO", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 87171, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 11225, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 71491, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 169887, "size_in_bytes": 376359951}}
 
 
yalta_ai_tabular_dataset.py DELETED
@@ -1,242 +0,0 @@
1
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """Script for reading 'You Actually Look Twice At it (YALTAi)' dataset."""
15
-
16
-
17
- import os
18
- from glob import glob
19
-
20
- import datasets
21
- from PIL import Image
22
-
23
- _CITATION = """\
24
- @dataset{clerice_thibault_2022_6827706,
25
- author = {Clérice, Thibault},
26
- title = {YALTAi: Tabular Dataset},
27
- month = jul,
28
- year = 2022,
29
- publisher = {Zenodo},
30
- version = {1.0.0},
31
- doi = {10.5281/zenodo.6827706},
32
- url = {https://doi.org/10.5281/zenodo.6827706}
33
- }
34
- """
35
-
36
- _DESCRIPTION = """Yalt AI Tabular Dataset"""
37
-
38
- _HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"
39
-
40
- _LICENSE = "Creative Commons Attribution 4.0 International"
41
-
42
- _URL = "https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1"
43
-
44
- _CATEGORIES = ["Header", "Col", "Marginal", "text"]
45
-
46
-
47
- class YaltAiTabularDatasetConfig(datasets.BuilderConfig):
48
- """BuilderConfig for YaltAiTabularDataset."""
49
-
50
- def __init__(self, name, **kwargs):
51
- """BuilderConfig for YaltAiTabularDataset."""
52
- super(YaltAiTabularDatasetConfig, self).__init__(
53
- version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
54
- )
55
-
56
-
57
- class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
58
- """Object Detection for historic manuscripts"""
59
-
60
- BUILDER_CONFIGS = [
61
- YaltAiTabularDatasetConfig("YOLO"),
62
- YaltAiTabularDatasetConfig("COCO"),
63
- ]
64
-
65
- def _info(self):
66
- if self.config.name == "COCO":
67
- features = datasets.Features(
68
- {
69
- "image_id": datasets.Value("int64"),
70
- "image": datasets.Image(),
71
- "width": datasets.Value("int32"),
72
- "height": datasets.Value("int32"),
73
- }
74
- )
75
- object_dict = {
76
- "category_id": datasets.ClassLabel(names=_CATEGORIES),
77
- "image_id": datasets.Value("string"),
78
- "id": datasets.Value("int64"),
79
- "area": datasets.Value("int64"),
80
- "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
81
- "segmentation": [[datasets.Value("float32")]],
82
- "iscrowd": datasets.Value("bool"),
83
- }
84
- features["objects"] = [object_dict]
85
- if self.config.name == "YOLO":
86
- features = datasets.Features(
87
- {
88
- "image": datasets.Image(),
89
- "objects": datasets.Sequence(
90
- {
91
- "label": datasets.ClassLabel(names=_CATEGORIES),
92
- "bbox": datasets.Sequence(
93
- datasets.Value("int32"), length=4
94
- ),
95
- }
96
- ),
97
- }
98
- )
99
- return datasets.DatasetInfo(
100
- features=features,
101
- supervised_keys=None,
102
- description=_DESCRIPTION,
103
- homepage=_HOMEPAGE,
104
- license=_LICENSE,
105
- citation=_CITATION,
106
- )
107
-
108
- def _split_generators(self, dl_manager):
109
- data_dir = dl_manager.download_and_extract(_URL)
110
- return [
111
- datasets.SplitGenerator(
112
- name=datasets.Split.TRAIN,
113
- gen_kwargs={
114
- "data_dir": os.path.join(data_dir, "yaltai-table/", "train")
115
- },
116
- ),
117
- datasets.SplitGenerator(
118
- name=datasets.Split.VALIDATION,
119
- gen_kwargs={"data_dir": os.path.join(data_dir, "yaltai-table/", "val")},
120
- ),
121
- datasets.SplitGenerator(
122
- name=datasets.Split.TEST,
123
- gen_kwargs={
124
- "data_dir": os.path.join(data_dir, "yaltai-table/", "test")
125
- },
126
- ),
127
- ]
128
-
129
- def _generate_examples(self, data_dir):
130
- def create_annotation_from_yolo_format(
131
- min_x,
132
- min_y,
133
- width,
134
- height,
135
- image_id,
136
- category_id,
137
- annotation_id,
138
- segmentation=False,
139
- ):
140
- bbox = (float(min_x), float(min_y), float(width), float(height))
141
- area = width * height
142
- max_x = min_x + width
143
- max_y = min_y + height
144
- if segmentation:
145
- seg = [[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]]
146
- else:
147
- seg = []
148
- return {
149
- "id": annotation_id,
150
- "image_id": image_id,
151
- "bbox": bbox,
152
- "area": area,
153
- "iscrowd": 0,
154
- "category_id": category_id,
155
- "segmentation": seg,
156
- }
157
-
158
- image_dir = os.path.join(data_dir, "images")
159
- label_dir = os.path.join(data_dir, "labels")
160
- image_paths = sorted(glob(f"{image_dir}/*.jpg"))
161
- label_paths = sorted(glob(f"{label_dir}/*.txt"))
162
- if self.config.name == "COCO":
163
- for idx, (image_path, label_path) in enumerate(
164
- zip(image_paths, label_paths)
165
- ):
166
- image_id = idx
167
- annotations = []
168
- image = Image.open(image_path) # Possibly conver to RGB?
169
- w, h = image.size
170
- with open(label_path, "r") as f:
171
- lines = f.readlines()
172
- for line in lines:
173
- line = line.strip().split()
174
- category_id = line[0]
175
- x_center = float(line[1])
176
- y_center = float(line[2])
177
- width = float(line[3])
178
- height = float(line[4])
179
-
180
- float_x_center = w * x_center
181
- float_y_center = h * y_center
182
- float_width = w * width
183
- float_height = h * height
184
-
185
- min_x = int(float_x_center - float_width / 2)
186
- min_y = int(float_y_center - float_height / 2)
187
- width = int(float_width)
188
- height = int(float_height)
189
-
190
- annotation = create_annotation_from_yolo_format(
191
- min_x,
192
- min_y,
193
- width,
194
- height,
195
- image_id,
196
- category_id,
197
- image_id,
198
- )
199
- annotations.append(annotation)
200
-
201
- example = {
202
- "image_id": image_id,
203
- "image": image,
204
- "width": w,
205
- "height": h,
206
- "objects": annotations,
207
- }
208
- yield idx, example
209
- if self.config.name == "YOLO":
210
- for idx, (image_path, label_path) in enumerate(
211
- zip(image_paths, label_paths)
212
- ):
213
- im = Image.open(image_path)
214
- width, height = im.size
215
- image_id = idx
216
- annotations = []
217
- with open(label_path, "r") as f:
218
- lines = f.readlines()
219
- objects = []
220
- for line in lines:
221
- line = line.strip().split()
222
- bbox_class = int(line[0])
223
- bbox_xcenter = int(float(line[1]) * width)
224
- bbox_ycenter = int(float(line[2]) * height)
225
- bbox_width = int(float(line[3]) * width)
226
- bbox_height = int(float(line[4]) * height)
227
- objects.append(
228
- {
229
- "label": bbox_class,
230
- "bbox": [
231
- bbox_xcenter,
232
- bbox_ycenter,
233
- bbox_width,
234
- bbox_height,
235
- ],
236
- }
237
- )
238
-
239
- yield idx, {
240
- "image": image_path,
241
- "objects": objects,
242
- }