Datasets:
Commit
•
db6b423
1
Parent(s):
ee9040e
Create new file
Browse files
yalta_ai_segmonto_manuscript_dataset.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Script for reading 'Object Detection for Chess Pieces' dataset."""
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
from glob import glob
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@dataset{clerice_thibault_2022_6827706,
|
25 |
+
author = {Clérice, Thibault},
|
26 |
+
title = {YALTAi: Tabular Dataset},
|
27 |
+
month = jul,
|
28 |
+
year = 2022,
|
29 |
+
publisher = {Zenodo},
|
30 |
+
version = {1.0.0},
|
31 |
+
doi = {10.5281/zenodo.6827706},
|
32 |
+
url = {https://doi.org/10.5281/zenodo.6827706}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """Yalt AI Tabular Dataset"""
|
37 |
+
|
38 |
+
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"
|
39 |
+
|
40 |
+
_LICENSE = "Creative Commons Attribution 4.0 International"
|
41 |
+
|
42 |
+
_URL = "https://zenodo.org/record/6814770/files/yaltai-segmonto-dataset.zip?download=1"
|
43 |
+
|
44 |
+
_CATEGORIES = ['DamageZone', 'DigitizationArtefactZone', 'DropCapitalZone', 'GraphicZone', 'MainZone',
|
45 |
+
'MarginTextZone', 'MusicZone', 'NumberingZone', 'QuireMarksZone', 'RunningTitleZone', 'SealZone',
|
46 |
+
'StampZone', 'TableZone', 'TitlePageZone']
|
47 |
+
|
48 |
+
class YaltAiTabularDatasetConfig(datasets.BuilderConfig):
|
49 |
+
"""BuilderConfig for YaltAiTabularDataset."""
|
50 |
+
|
51 |
+
def __init__(self, name, **kwargs):
|
52 |
+
"""BuilderConfig for YaltAiTabularDataset."""
|
53 |
+
super(YaltAiTabularDatasetConfig, self).__init__(
|
54 |
+
version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
59 |
+
"""Object Detection for historic manuscripts"""
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
YaltAiTabularDatasetConfig("YOLO"),
|
63 |
+
YaltAiTabularDatasetConfig("COCO"),
|
64 |
+
]
|
65 |
+
|
66 |
+
def _info(self):
|
67 |
+
if self.config.name == "COCO":
|
68 |
+
features = datasets.Features(
|
69 |
+
{
|
70 |
+
"image_id": datasets.Value("int64"),
|
71 |
+
"image": datasets.Image(),
|
72 |
+
"width": datasets.Value("int32"),
|
73 |
+
"height": datasets.Value("int32"),
|
74 |
+
}
|
75 |
+
)
|
76 |
+
object_dict = {
|
77 |
+
"category_id": datasets.ClassLabel(names=_CATEGORIES),
|
78 |
+
"image_id": datasets.Value("string"),
|
79 |
+
"id": datasets.Value("int64"),
|
80 |
+
"area": datasets.Value("int64"),
|
81 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
82 |
+
"segmentation": [[datasets.Value("float32")]],
|
83 |
+
"iscrowd": datasets.Value("bool"),
|
84 |
+
}
|
85 |
+
features["objects"] = [object_dict]
|
86 |
+
if self.config.name == "YOLO":
|
87 |
+
features = datasets.Features(
|
88 |
+
{
|
89 |
+
"image": datasets.Image(),
|
90 |
+
"objects": datasets.Sequence(
|
91 |
+
{
|
92 |
+
"label": datasets.ClassLabel(names=_CATEGORIES),
|
93 |
+
"bbox": datasets.Sequence(
|
94 |
+
datasets.Value("int32"), length=4
|
95 |
+
),
|
96 |
+
}
|
97 |
+
),
|
98 |
+
}
|
99 |
+
)
|
100 |
+
return datasets.DatasetInfo(
|
101 |
+
features=features,
|
102 |
+
supervised_keys=None,
|
103 |
+
description=_DESCRIPTION,
|
104 |
+
homepage=_HOMEPAGE,
|
105 |
+
license=_LICENSE,
|
106 |
+
citation=_CITATION,
|
107 |
+
)
|
108 |
+
|
109 |
+
def _split_generators(self, dl_manager):
|
110 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
111 |
+
return [
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.TRAIN,
|
114 |
+
gen_kwargs={
|
115 |
+
"data_dir": os.path.join(data_dir, "yaltai-segmonto-dataset", "train")
|
116 |
+
},
|
117 |
+
),
|
118 |
+
datasets.SplitGenerator(
|
119 |
+
name=datasets.Split.VALIDATION,
|
120 |
+
gen_kwargs={"data_dir": os.path.join(data_dir, "yaltai-segmonto-dataset", "val")},
|
121 |
+
),
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TEST,
|
124 |
+
gen_kwargs={
|
125 |
+
"data_dir": os.path.join(data_dir, "yaltai-segmonto-dataset", "test")
|
126 |
+
},
|
127 |
+
),
|
128 |
+
]
|
129 |
+
|
130 |
+
def _generate_examples(self, data_dir):
|
131 |
+
def create_annotation_from_yolo_format(
|
132 |
+
min_x,
|
133 |
+
min_y,
|
134 |
+
width,
|
135 |
+
height,
|
136 |
+
image_id,
|
137 |
+
category_id,
|
138 |
+
annotation_id,
|
139 |
+
segmentation=False,
|
140 |
+
):
|
141 |
+
bbox = (float(min_x), float(min_y), float(width), float(height))
|
142 |
+
area = width * height
|
143 |
+
max_x = min_x + width
|
144 |
+
max_y = min_y + height
|
145 |
+
if segmentation:
|
146 |
+
seg = [[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]]
|
147 |
+
else:
|
148 |
+
seg = []
|
149 |
+
return {
|
150 |
+
"id": annotation_id,
|
151 |
+
"image_id": image_id,
|
152 |
+
"bbox": bbox,
|
153 |
+
"area": area,
|
154 |
+
"iscrowd": 0,
|
155 |
+
"category_id": category_id,
|
156 |
+
"segmentation": seg,
|
157 |
+
}
|
158 |
+
|
159 |
+
image_dir = os.path.join(data_dir, "images")
|
160 |
+
label_dir = os.path.join(data_dir, "labels")
|
161 |
+
image_paths = sorted(glob(f"{image_dir}/*.jpg"))
|
162 |
+
label_paths = sorted(glob(f"{label_dir}/*.txt"))
|
163 |
+
if self.config.name == "COCO":
|
164 |
+
for idx, (image_path, label_path) in enumerate(
|
165 |
+
zip(image_paths, label_paths)
|
166 |
+
):
|
167 |
+
image_id = idx
|
168 |
+
annotations = []
|
169 |
+
image = Image.open(image_path) # Possibly conver to RGB?
|
170 |
+
w, h = image.size
|
171 |
+
with open(label_path, "r") as f:
|
172 |
+
lines = f.readlines()
|
173 |
+
for line in lines:
|
174 |
+
line = line.strip().split()
|
175 |
+
category_id = line[0]
|
176 |
+
x_center = float(line[1])
|
177 |
+
y_center = float(line[2])
|
178 |
+
width = float(line[3])
|
179 |
+
height = float(line[4])
|
180 |
+
|
181 |
+
float_x_center = w * x_center
|
182 |
+
float_y_center = h * y_center
|
183 |
+
float_width = w * width
|
184 |
+
float_height = h * height
|
185 |
+
|
186 |
+
min_x = int(float_x_center - float_width / 2)
|
187 |
+
min_y = int(float_y_center - float_height / 2)
|
188 |
+
width = int(float_width)
|
189 |
+
height = int(float_height)
|
190 |
+
|
191 |
+
annotation = create_annotation_from_yolo_format(
|
192 |
+
min_x,
|
193 |
+
min_y,
|
194 |
+
width,
|
195 |
+
height,
|
196 |
+
image_id,
|
197 |
+
category_id,
|
198 |
+
image_id,
|
199 |
+
)
|
200 |
+
annotations.append(annotation)
|
201 |
+
|
202 |
+
example = {
|
203 |
+
"image_id": image_id,
|
204 |
+
"image": image,
|
205 |
+
"width": w,
|
206 |
+
"height": h,
|
207 |
+
"objects": annotations,
|
208 |
+
}
|
209 |
+
yield idx, example
|
210 |
+
if self.config.name == "YOLO":
|
211 |
+
for idx, (image_path, label_path) in enumerate(
|
212 |
+
zip(image_paths, label_paths)
|
213 |
+
):
|
214 |
+
im = Image.open(image_path)
|
215 |
+
width, height = im.size
|
216 |
+
image_id = idx
|
217 |
+
annotations = []
|
218 |
+
with open(label_path, "r") as f:
|
219 |
+
lines = f.readlines()
|
220 |
+
objects = []
|
221 |
+
for line in lines:
|
222 |
+
line = line.strip().split()
|
223 |
+
bbox_class = int(line[0])
|
224 |
+
bbox_xcenter = int(float(line[1]) * width)
|
225 |
+
bbox_ycenter = int(float(line[2]) * height)
|
226 |
+
bbox_width = int(float(line[3]) * width)
|
227 |
+
bbox_height = int(float(line[4]) * height)
|
228 |
+
objects.append(
|
229 |
+
{
|
230 |
+
"label": bbox_class,
|
231 |
+
"bbox": [
|
232 |
+
bbox_xcenter,
|
233 |
+
bbox_ycenter,
|
234 |
+
bbox_width,
|
235 |
+
bbox_height,
|
236 |
+
],
|
237 |
+
}
|
238 |
+
)
|
239 |
+
|
240 |
+
yield idx, {
|
241 |
+
"image": image,
|
242 |
+
"objects": objects,
|
243 |
+
}
|