Datasets:
Commit
•
7da8fe2
1
Parent(s):
f1f85de
upload dataset script
Browse files- illustrated_ads.py +141 -0
illustrated_ads.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Dataset of illustrated and non illustrated 19th Century newspaper ads."""
|
15 |
+
|
16 |
+
import ast
|
17 |
+
import pandas as pd
|
18 |
+
import datasets
|
19 |
+
from PIL import Image
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
# TODO: Add BibTeX citation
|
23 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
24 |
+
_CITATION = """\
|
25 |
+
@dataset{van_strien_daniel_2021_5838410,
|
26 |
+
author = {van Strien, Daniel},
|
27 |
+
title = {{19th Century United States Newspaper Advert images
|
28 |
+
with 'illustrated' or 'non illustrated' labels}},
|
29 |
+
month = oct,
|
30 |
+
year = 2021,
|
31 |
+
publisher = {Zenodo},
|
32 |
+
version = {0.0.1},
|
33 |
+
doi = {10.5281/zenodo.5838410},
|
34 |
+
url = {https://doi.org/10.5281/zenodo.5838410}}
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
The Dataset contains images derived from the Newspaper Navigator (news-navigator.labs.loc.gov/), a dataset of images drawn from the Library of Congress Chronicling America collection.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://doi.org/10.5281/zenodo.5838410"
|
43 |
+
|
44 |
+
_LICENSE = "Public Domain"
|
45 |
+
|
46 |
+
|
47 |
+
_URLS = "https://zenodo.org/record/5838410/files/images.zip?download=1"
|
48 |
+
|
49 |
+
|
50 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
51 |
+
class IllustratedAds(datasets.GeneratorBasedBuilder):
|
52 |
+
"""TODO: Short description of my dataset."""
|
53 |
+
|
54 |
+
VERSION = datasets.Version("1.1.0")
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
|
58 |
+
features = datasets.Features(
|
59 |
+
{
|
60 |
+
"file": datasets.Value("string"),
|
61 |
+
"image": datasets.Image(),
|
62 |
+
"label": datasets.ClassLabel(names=["text-only", "illustrations"]),
|
63 |
+
"pub_date": datasets.Value("timestamp[ns]"),
|
64 |
+
"page_seq_num": datasets.Value("int64"),
|
65 |
+
"edition_seq_num": datasets.Value("int64"),
|
66 |
+
"batch": datasets.Value("string"),
|
67 |
+
"lccn": datasets.Value("string"),
|
68 |
+
"box": datasets.Sequence(datasets.Value("float32")),
|
69 |
+
"score": datasets.Value("float64"),
|
70 |
+
"ocr": datasets.Value("string"),
|
71 |
+
"place_of_publication": datasets.Value("string"),
|
72 |
+
"geographic_coverage": datasets.Value("string"),
|
73 |
+
"name": datasets.Value("string"),
|
74 |
+
"publisher": datasets.Value("string"),
|
75 |
+
"url": datasets.Value("string"),
|
76 |
+
"page_url": datasets.Value("string"),
|
77 |
+
}
|
78 |
+
)
|
79 |
+
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
# This is the description that will appear on the datasets page.
|
82 |
+
description=_DESCRIPTION,
|
83 |
+
# This defines the different columns of the dataset and their types
|
84 |
+
features=features, # Here we define them above because they are different between the two configurations
|
85 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
86 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
87 |
+
# supervised_keys=("sentence", "label"),
|
88 |
+
# Homepage of the dataset for documentation
|
89 |
+
homepage=_HOMEPAGE,
|
90 |
+
# License for the dataset if available
|
91 |
+
license=_LICENSE,
|
92 |
+
# Citation for the dataset
|
93 |
+
citation=_CITATION,
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager):
|
97 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
98 |
+
return [
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.TRAIN,
|
101 |
+
gen_kwargs={
|
102 |
+
"data_dir": Path(data_dir),
|
103 |
+
},
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, data_dir):
|
108 |
+
dtypes = {
|
109 |
+
"page_seq_num": "int64",
|
110 |
+
"edition_seq_num": "int64",
|
111 |
+
"batch": "string",
|
112 |
+
"lccn": "string",
|
113 |
+
"score": "float64",
|
114 |
+
"place_of_publication": "string",
|
115 |
+
"name": "string",
|
116 |
+
"publisher": "string",
|
117 |
+
"url": "string",
|
118 |
+
"page_url": "string",
|
119 |
+
}
|
120 |
+
df_labels = pd.read_csv(
|
121 |
+
"https://zenodo.org/record/5838410/files/ads.csv?download=1", index_col=0
|
122 |
+
)
|
123 |
+
df_metadata = pd.read_csv(
|
124 |
+
"https://zenodo.org/record/5838410/files/sample.csv?download=1",
|
125 |
+
index_col=0,
|
126 |
+
dtype=dtypes,
|
127 |
+
)
|
128 |
+
df_metadata["file"] = df_metadata.filepath.str.replace("/", "_")
|
129 |
+
df_metadata = df_metadata.set_index("file", drop=True)
|
130 |
+
df = df_labels.join(df_metadata)
|
131 |
+
df = df.reset_index()
|
132 |
+
data = df.to_dict(orient="records")
|
133 |
+
for id_, row in enumerate(data):
|
134 |
+
box = ast.literal_eval(row["box"])
|
135 |
+
row["box"] = box
|
136 |
+
row.pop("filepath")
|
137 |
+
ocr = " ".join(ast.literal_eval(row["ocr"]))
|
138 |
+
row["ocr"] = ocr
|
139 |
+
image = row["file"]
|
140 |
+
row["image"] = Image.open(Path(data_dir / image))
|
141 |
+
yield id_, row
|