|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import glob |
|
import os |
|
import re |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_DATASETNAME = "twadrl" |
|
_DISPLAYNAME = "TwADR-L" |
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """ |
|
@inproceedings{limsopatham-collier-2016-normalising, |
|
title = "Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation", |
|
author = "Limsopatham, Nut and |
|
Collier, Nigel", |
|
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = aug, |
|
year = "2016", |
|
address = "Berlin, Germany", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P16-1096", |
|
doi = "10.18653/v1/P16-1096", |
|
pages = "1014--1023", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The TwADR-L dataset contains medical concepts written on social media (Twitter) \ |
|
mapped to how they are formally written in medical ontologies (SIDER 4). \ |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/55013" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLs = "https://zenodo.org/record/55013/files/datasets.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class TwADRL(datasets.GeneratorBasedBuilder): |
|
"""TwADR-L: Dataset for Normalising Medical Concepts on Twitter.""" |
|
|
|
DEFAULT_CONFIG_NAME = "twadrl_source" |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="twadrl_source", |
|
version=SOURCE_VERSION, |
|
description="TwADR-L source schema", |
|
schema="source", |
|
subset_id="twadrl", |
|
), |
|
BigBioConfig( |
|
name="twadrl_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="TwADR-L simplified BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="twadrl", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"cui": datasets.Value("string"), |
|
"medical_concept": datasets.Value("string"), |
|
"social_media_text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
dataset_dir = os.path.join(dl_dir, "datasets", "TwADR-L") |
|
|
|
splits = [] |
|
for split_name in [ |
|
datasets.Split.TRAIN, |
|
datasets.Split.VALIDATION, |
|
datasets.Split.TEST, |
|
]: |
|
for fold_filepath in glob.glob( |
|
os.path.join(dataset_dir, f"TwADR-L.fold-*.{split_name}.txt") |
|
): |
|
fold_id = re.search("TwADR-L\.fold-(\d)\.", fold_filepath).group(1) |
|
split_id = f"{split_name}_{fold_id}" |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=split_id, |
|
gen_kwargs={"filepath": fold_filepath, "split_id": split_id}, |
|
) |
|
) |
|
return splits |
|
|
|
def _generate_examples(self, filepath, split_id): |
|
with open(filepath, "r", encoding="latin-1") as f: |
|
for i, line in enumerate(f): |
|
id = f"{split_id}_{i}" |
|
cui, medical_concept, social_media_text = line.strip().split("\t") |
|
if self.config.schema == "source": |
|
yield id, { |
|
"cui": cui, |
|
"medical_concept": medical_concept, |
|
"social_media_text": social_media_text, |
|
} |
|
elif self.config.schema == "bigbio_kb": |
|
text_type = "social_media_text" |
|
offset = (0, len(social_media_text)) |
|
yield id, { |
|
"id": id, |
|
"document_id": id, |
|
"passages": [ |
|
{ |
|
"id": f"{id}_passage", |
|
"type": text_type, |
|
"text": [social_media_text], |
|
"offsets": [offset], |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": f"{id}_entity", |
|
"type": text_type, |
|
"text": [social_media_text], |
|
"offsets": [offset], |
|
"normalized": [{"db_name": "SIDER 4", "db_id": cui}], |
|
} |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|