Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
1b7c69c
·
1 Parent(s): adc6d57

Delete scitail.py

Browse files
Files changed (1) hide show
  1. scitail.py +0 -175
scitail.py DELETED
@@ -1,175 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """
17
- The SciTail dataset is an entailment dataset created from multiple-choice science exams and
18
- web sentences. Each question and the correct answer choice are converted into an assertive
19
- statement to form the hypothesis. We use information retrieval to obtain relevant text from
20
- a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
21
- the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
22
- to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
23
- entails label and 16,925 examples with neutral label.
24
- """
25
-
26
- import os
27
-
28
- import datasets
29
- import pandas as pd
30
-
31
- from bigbio.utils import schemas
32
- from bigbio.utils.configs import BigBioConfig
33
- from bigbio.utils.constants import Lang, Tasks
34
- from bigbio.utils.license import Licenses
35
-
36
- _LANGUAGES = [Lang.EN]
37
- _PUBMED = False
38
- _LOCAL = False
39
- _CITATION = """\
40
- @inproceedings{scitail,
41
- author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
42
- booktitle = {AAAI}
43
- title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
44
- year = {2018}
45
- }
46
- """
47
-
48
- _DATASETNAME = "scitail"
49
- _DISPLAYNAME = "SciTail"
50
-
51
- _DESCRIPTION = """\
52
- The SciTail dataset is an entailment dataset created from multiple-choice science exams and
53
- web sentences. Each question and the correct answer choice are converted into an assertive
54
- statement to form the hypothesis. We use information retrieval to obtain relevant text from
55
- a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
56
- the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
57
- to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
58
- entails label and 16,925 examples with neutral label.
59
- """
60
-
61
- _HOMEPAGE = "https://allenai.org/data/scitail"
62
-
63
- _LICENSE = Licenses.APACHE_2p0
64
-
65
- _URLS = {
66
- _DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
67
- }
68
-
69
- _SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
70
-
71
- _SOURCE_VERSION = "1.1.0"
72
-
73
- _BIGBIO_VERSION = "1.0.0"
74
-
75
-
76
- LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
77
-
78
-
79
- class SciTailDataset(datasets.GeneratorBasedBuilder):
80
- """TODO: Short description of my dataset."""
81
-
82
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
83
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
84
-
85
- BUILDER_CONFIGS = [
86
- BigBioConfig(
87
- name="scitail_source",
88
- version=SOURCE_VERSION,
89
- description="SciTail source schema",
90
- schema="source",
91
- subset_id="scitail",
92
- ),
93
- BigBioConfig(
94
- name="scitail_bigbio_te",
95
- version=BIGBIO_VERSION,
96
- description="SciTail BigBio schema",
97
- schema="bigbio_te",
98
- subset_id="scitail",
99
- ),
100
- ]
101
-
102
- DEFAULT_CONFIG_NAME = "scitail_source"
103
-
104
- def _info(self):
105
-
106
- if self.config.schema == "source":
107
- features = datasets.Features(
108
- {
109
- "id": datasets.Value("string"),
110
- "premise": datasets.Value("string"),
111
- "hypothesis": datasets.Value("string"),
112
- "label": datasets.Value("string"),
113
- }
114
- )
115
-
116
- elif self.config.schema == "bigbio_te":
117
- features = schemas.entailment_features
118
-
119
- return datasets.DatasetInfo(
120
- description=_DESCRIPTION,
121
- features=features,
122
- homepage=_HOMEPAGE,
123
- license=str(_LICENSE),
124
- citation=_CITATION,
125
- )
126
-
127
- def _split_generators(self, dl_manager):
128
-
129
- urls = _URLS[_DATASETNAME]
130
- data_dir = dl_manager.download_and_extract(urls)
131
-
132
- return [
133
- datasets.SplitGenerator(
134
- name=datasets.Split.TRAIN,
135
- gen_kwargs={
136
- "filepath": os.path.join(
137
- data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
138
- ),
139
- },
140
- ),
141
- datasets.SplitGenerator(
142
- name=datasets.Split.TEST,
143
- gen_kwargs={
144
- "filepath": os.path.join(
145
- data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
146
- ),
147
- },
148
- ),
149
- datasets.SplitGenerator(
150
- name=datasets.Split.VALIDATION,
151
- gen_kwargs={
152
- "filepath": os.path.join(
153
- data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
154
- ),
155
- },
156
- ),
157
- ]
158
-
159
- def _generate_examples(self, filepath):
160
- # since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
161
- # e.g.: ... and apply specific "tools" to examples and ...
162
- data = pd.read_csv(
163
- filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
164
- )
165
- data["id"] = data.index
166
-
167
- if self.config.schema == "source":
168
- for _, row in data.iterrows():
169
- yield row["id"], row.to_dict()
170
-
171
- elif self.config.schema == "bigbio_te":
172
- # normalize labels
173
- data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
174
- for _, row in data.iterrows():
175
- yield row["id"], row.to_dict()