|
import json |
|
from collections import defaultdict |
|
from enum import Enum |
|
from types import SimpleNamespace |
|
|
|
from dataclasses import dataclass |
|
import datasets |
|
|
|
from licenses import License |
|
from licenses import Licenses |
|
|
|
|
|
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>") |
|
|
|
|
|
@dataclass |
|
class BigBioConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for BigBio.""" |
|
|
|
name: str = None |
|
version: datasets.Version = None |
|
description: str = None |
|
schema: str = None |
|
subset_id: str = None |
|
|
|
|
|
|
|
|
|
langs_json = json.load(open("languages.json", "r")) |
|
langs_dict = {k.replace("-", "_").upper(): v for k, v in langs_json.items()} |
|
Lang = Enum("Lang", langs_dict) |
|
|
|
|
|
METADATA: dict = { |
|
"_LOCAL": bool, |
|
"_LANGUAGES": Lang, |
|
"_PUBMED": bool, |
|
"_LICENSE": License, |
|
"_DISPLAYNAME": str, |
|
} |
|
|
|
|
|
class Tasks(Enum): |
|
NAMED_ENTITY_RECOGNITION = "NER" |
|
NAMED_ENTITY_DISAMBIGUATION = "NED" |
|
EVENT_EXTRACTION = "EE" |
|
RELATION_EXTRACTION = "RE" |
|
COREFERENCE_RESOLUTION = "COREF" |
|
QUESTION_ANSWERING = "QA" |
|
TEXTUAL_ENTAILMENT = "TE" |
|
SEMANTIC_SIMILARITY = "STS" |
|
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" |
|
PARAPHRASING = "PARA" |
|
TRANSLATION = "TRANSL" |
|
SUMMARIZATION = "SUM" |
|
TEXT_CLASSIFICATION = "TXTCLASS" |
|
|
|
|
|
TASK_TO_SCHEMA = { |
|
Tasks.NAMED_ENTITY_RECOGNITION: "KB", |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION: "KB", |
|
Tasks.EVENT_EXTRACTION: "KB", |
|
Tasks.RELATION_EXTRACTION: "KB", |
|
Tasks.COREFERENCE_RESOLUTION: "KB", |
|
Tasks.QUESTION_ANSWERING: "QA", |
|
Tasks.TEXTUAL_ENTAILMENT: "TE", |
|
Tasks.SEMANTIC_SIMILARITY: "PAIRS", |
|
Tasks.TEXT_PAIRS_CLASSIFICATION: "PAIRS", |
|
Tasks.PARAPHRASING: "T2T", |
|
Tasks.TRANSLATION: "T2T", |
|
Tasks.SUMMARIZATION: "T2T", |
|
Tasks.TEXT_CLASSIFICATION: "TEXT", |
|
} |
|
|
|
SCHEMA_TO_TASKS = defaultdict(set) |
|
for task, schema in TASK_TO_SCHEMA.items(): |
|
SCHEMA_TO_TASKS[schema].add(task) |
|
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) |
|
|
|
VALID_TASKS = set(TASK_TO_SCHEMA.keys()) |
|
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) |
|
|
|
|
|
entailment_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
pairs_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
qa_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question_id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"choices": [datasets.Value("string")], |
|
"context": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
text_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"labels": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
text2text_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"text_1_name": datasets.Value("string"), |
|
"text_2_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
kb_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
|
|
"trigger": { |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
}, |
|
"arguments": [ |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"coreferences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"entity_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
SCHEMA_TO_FEATURES = { |
|
"KB": kb_features, |
|
"QA": qa_features, |
|
"TE": entailment_features, |
|
"T2T": text2text_features, |
|
"TEXT": text_features, |
|
"PAIRS": pairs_features, |
|
} |
|
|