just use strings for license and language, unit test in bigbio repo can check correctness
5241e61
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
The SciTail dataset is an entailment dataset created from multiple-choice science exams and | |
web sentences. Each question and the correct answer choice are converted into an assertive | |
statement to form the hypothesis. We use information retrieval to obtain relevant text from | |
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource | |
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order | |
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with | |
entails label and 16,925 examples with neutral label. | |
""" | |
import os | |
import datasets | |
import pandas as pd | |
from .bigbiohub import entailment_features | |
from .bigbiohub import BigBioConfig | |
from .bigbiohub import Tasks | |
_LANGUAGES = ["English"] | |
_PUBMED = False | |
_LOCAL = False | |
_CITATION = """\ | |
@inproceedings{scitail, | |
author = {Tushar Khot and Ashish Sabharwal and Peter Clark}, | |
booktitle = {AAAI} | |
title = {SciTail: A Textual Entailment Dataset from Science Question Answering}, | |
year = {2018} | |
} | |
""" | |
_DATASETNAME = "scitail" | |
_DISPLAYNAME = "SciTail" | |
_DESCRIPTION = """\ | |
The SciTail dataset is an entailment dataset created from multiple-choice science exams and | |
web sentences. Each question and the correct answer choice are converted into an assertive | |
statement to form the hypothesis. We use information retrieval to obtain relevant text from | |
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource | |
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order | |
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with | |
entails label and 16,925 examples with neutral label. | |
""" | |
_HOMEPAGE = "https://allenai.org/data/scitail" | |
_LICENSE = "APACHE_2p0" | |
_URLS = { | |
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip", | |
} | |
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT] | |
_SOURCE_VERSION = "1.1.0" | |
_BIGBIO_VERSION = "1.0.0" | |
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"} | |
class SciTailDataset(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) | |
BUILDER_CONFIGS = [ | |
BigBioConfig( | |
name="scitail_source", | |
version=SOURCE_VERSION, | |
description="SciTail source schema", | |
schema="source", | |
subset_id="scitail", | |
), | |
BigBioConfig( | |
name="scitail_bigbio_te", | |
version=BIGBIO_VERSION, | |
description="SciTail BigBio schema", | |
schema="bigbio_te", | |
subset_id="scitail", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "scitail_source" | |
def _info(self): | |
if self.config.schema == "source": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
} | |
) | |
elif self.config.schema == "bigbio_te": | |
features = entailment_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=str(_LICENSE), | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls = _URLS[_DATASETNAME] | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv" | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv" | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv" | |
), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
# since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv | |
# e.g.: ... and apply specific "tools" to examples and ... | |
data = pd.read_csv( | |
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3 | |
) | |
data["id"] = data.index | |
if self.config.schema == "source": | |
for _, row in data.iterrows(): | |
yield row["id"], row.to_dict() | |
elif self.config.schema == "bigbio_te": | |
# normalize labels | |
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x]) | |
for _, row in data.iterrows(): | |
yield row["id"], row.to_dict() | |