Datasets:

Modalities:
Tabular
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
3c877a1
·
1 Parent(s): aaa3701

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,54 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
- *.model filter=lfs diff=lfs merge=lfs -text
14
- *.msgpack filter=lfs diff=lfs merge=lfs -text
15
- *.npy filter=lfs diff=lfs merge=lfs -text
16
- *.npz filter=lfs diff=lfs merge=lfs -text
17
- *.onnx filter=lfs diff=lfs merge=lfs -text
18
- *.ot filter=lfs diff=lfs merge=lfs -text
19
- *.parquet filter=lfs diff=lfs merge=lfs -text
20
- *.pb filter=lfs diff=lfs merge=lfs -text
21
- *.pickle filter=lfs diff=lfs merge=lfs -text
22
- *.pkl filter=lfs diff=lfs merge=lfs -text
23
- *.pt filter=lfs diff=lfs merge=lfs -text
24
- *.pth filter=lfs diff=lfs merge=lfs -text
25
- *.rar filter=lfs diff=lfs merge=lfs -text
26
- *.safetensors filter=lfs diff=lfs merge=lfs -text
27
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
- *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - uncompressed
37
- *.pcm filter=lfs diff=lfs merge=lfs -text
38
- *.sam filter=lfs diff=lfs merge=lfs -text
39
- *.raw filter=lfs diff=lfs merge=lfs -text
40
- # Audio files - compressed
41
- *.aac filter=lfs diff=lfs merge=lfs -text
42
- *.flac filter=lfs diff=lfs merge=lfs -text
43
- *.mp3 filter=lfs diff=lfs merge=lfs -text
44
- *.ogg filter=lfs diff=lfs merge=lfs -text
45
- *.wav filter=lfs diff=lfs merge=lfs -text
46
- # Image files - uncompressed
47
- *.bmp filter=lfs diff=lfs merge=lfs -text
48
- *.gif filter=lfs diff=lfs merge=lfs -text
49
- *.png filter=lfs diff=lfs merge=lfs -text
50
- *.tiff filter=lfs diff=lfs merge=lfs -text
51
- # Image files - compressed
52
- *.jpg filter=lfs diff=lfs merge=lfs -text
53
- *.jpeg filter=lfs diff=lfs merge=lfs -text
54
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bigbiohub.py DELETED
@@ -1,556 +0,0 @@
1
- from collections import defaultdict
2
- from dataclasses import dataclass
3
- from enum import Enum
4
- import logging
5
- from pathlib import Path
6
- from types import SimpleNamespace
7
- from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
-
9
- import datasets
10
-
11
- if TYPE_CHECKING:
12
- import bioc
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
-
19
-
20
- @dataclass
21
- class BigBioConfig(datasets.BuilderConfig):
22
- """BuilderConfig for BigBio."""
23
-
24
- name: str = None
25
- version: datasets.Version = None
26
- description: str = None
27
- schema: str = None
28
- subset_id: str = None
29
-
30
-
31
- class Tasks(Enum):
32
- NAMED_ENTITY_RECOGNITION = "NER"
33
- NAMED_ENTITY_DISAMBIGUATION = "NED"
34
- EVENT_EXTRACTION = "EE"
35
- RELATION_EXTRACTION = "RE"
36
- COREFERENCE_RESOLUTION = "COREF"
37
- QUESTION_ANSWERING = "QA"
38
- TEXTUAL_ENTAILMENT = "TE"
39
- SEMANTIC_SIMILARITY = "STS"
40
- TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
- PARAPHRASING = "PARA"
42
- TRANSLATION = "TRANSL"
43
- SUMMARIZATION = "SUM"
44
- TEXT_CLASSIFICATION = "TXTCLASS"
45
-
46
-
47
- entailment_features = datasets.Features(
48
- {
49
- "id": datasets.Value("string"),
50
- "premise": datasets.Value("string"),
51
- "hypothesis": datasets.Value("string"),
52
- "label": datasets.Value("string"),
53
- }
54
- )
55
-
56
- pairs_features = datasets.Features(
57
- {
58
- "id": datasets.Value("string"),
59
- "document_id": datasets.Value("string"),
60
- "text_1": datasets.Value("string"),
61
- "text_2": datasets.Value("string"),
62
- "label": datasets.Value("string"),
63
- }
64
- )
65
-
66
- qa_features = datasets.Features(
67
- {
68
- "id": datasets.Value("string"),
69
- "question_id": datasets.Value("string"),
70
- "document_id": datasets.Value("string"),
71
- "question": datasets.Value("string"),
72
- "type": datasets.Value("string"),
73
- "choices": [datasets.Value("string")],
74
- "context": datasets.Value("string"),
75
- "answer": datasets.Sequence(datasets.Value("string")),
76
- }
77
- )
78
-
79
- text_features = datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "document_id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- "labels": [datasets.Value("string")],
85
- }
86
- )
87
-
88
- text2text_features = datasets.Features(
89
- {
90
- "id": datasets.Value("string"),
91
- "document_id": datasets.Value("string"),
92
- "text_1": datasets.Value("string"),
93
- "text_2": datasets.Value("string"),
94
- "text_1_name": datasets.Value("string"),
95
- "text_2_name": datasets.Value("string"),
96
- }
97
- )
98
-
99
- kb_features = datasets.Features(
100
- {
101
- "id": datasets.Value("string"),
102
- "document_id": datasets.Value("string"),
103
- "passages": [
104
- {
105
- "id": datasets.Value("string"),
106
- "type": datasets.Value("string"),
107
- "text": datasets.Sequence(datasets.Value("string")),
108
- "offsets": datasets.Sequence([datasets.Value("int32")]),
109
- }
110
- ],
111
- "entities": [
112
- {
113
- "id": datasets.Value("string"),
114
- "type": datasets.Value("string"),
115
- "text": datasets.Sequence(datasets.Value("string")),
116
- "offsets": datasets.Sequence([datasets.Value("int32")]),
117
- "normalized": [
118
- {
119
- "db_name": datasets.Value("string"),
120
- "db_id": datasets.Value("string"),
121
- }
122
- ],
123
- }
124
- ],
125
- "events": [
126
- {
127
- "id": datasets.Value("string"),
128
- "type": datasets.Value("string"),
129
- # refers to the text_bound_annotation of the trigger
130
- "trigger": {
131
- "text": datasets.Sequence(datasets.Value("string")),
132
- "offsets": datasets.Sequence([datasets.Value("int32")]),
133
- },
134
- "arguments": [
135
- {
136
- "role": datasets.Value("string"),
137
- "ref_id": datasets.Value("string"),
138
- }
139
- ],
140
- }
141
- ],
142
- "coreferences": [
143
- {
144
- "id": datasets.Value("string"),
145
- "entity_ids": datasets.Sequence(datasets.Value("string")),
146
- }
147
- ],
148
- "relations": [
149
- {
150
- "id": datasets.Value("string"),
151
- "type": datasets.Value("string"),
152
- "arg1_id": datasets.Value("string"),
153
- "arg2_id": datasets.Value("string"),
154
- "normalized": [
155
- {
156
- "db_name": datasets.Value("string"),
157
- "db_id": datasets.Value("string"),
158
- }
159
- ],
160
- }
161
- ],
162
- }
163
- )
164
-
165
-
166
- def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
167
-
168
- offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
169
-
170
- text = ann.text
171
-
172
- if len(offsets) > 1:
173
- i = 0
174
- texts = []
175
- for start, end in offsets:
176
- chunk_len = end - start
177
- texts.append(text[i : chunk_len + i])
178
- i += chunk_len
179
- while i < len(text) and text[i] == " ":
180
- i += 1
181
- else:
182
- texts = [text]
183
-
184
- return offsets, texts
185
-
186
-
187
- def remove_prefix(a: str, prefix: str) -> str:
188
- if a.startswith(prefix):
189
- a = a[len(prefix) :]
190
- return a
191
-
192
-
193
- def parse_brat_file(
194
- txt_file: Path,
195
- annotation_file_suffixes: List[str] = None,
196
- parse_notes: bool = False,
197
- ) -> Dict:
198
- """
199
- Parse a brat file into the schema defined below.
200
- `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
201
- Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
202
- e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
203
- Will include annotator notes, when `parse_notes == True`.
204
- brat_features = datasets.Features(
205
- {
206
- "id": datasets.Value("string"),
207
- "document_id": datasets.Value("string"),
208
- "text": datasets.Value("string"),
209
- "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
210
- {
211
- "offsets": datasets.Sequence([datasets.Value("int32")]),
212
- "text": datasets.Sequence(datasets.Value("string")),
213
- "type": datasets.Value("string"),
214
- "id": datasets.Value("string"),
215
- }
216
- ],
217
- "events": [ # E line in brat
218
- {
219
- "trigger": datasets.Value(
220
- "string"
221
- ), # refers to the text_bound_annotation of the trigger,
222
- "id": datasets.Value("string"),
223
- "type": datasets.Value("string"),
224
- "arguments": datasets.Sequence(
225
- {
226
- "role": datasets.Value("string"),
227
- "ref_id": datasets.Value("string"),
228
- }
229
- ),
230
- }
231
- ],
232
- "relations": [ # R line in brat
233
- {
234
- "id": datasets.Value("string"),
235
- "head": {
236
- "ref_id": datasets.Value("string"),
237
- "role": datasets.Value("string"),
238
- },
239
- "tail": {
240
- "ref_id": datasets.Value("string"),
241
- "role": datasets.Value("string"),
242
- },
243
- "type": datasets.Value("string"),
244
- }
245
- ],
246
- "equivalences": [ # Equiv line in brat
247
- {
248
- "id": datasets.Value("string"),
249
- "ref_ids": datasets.Sequence(datasets.Value("string")),
250
- }
251
- ],
252
- "attributes": [ # M or A lines in brat
253
- {
254
- "id": datasets.Value("string"),
255
- "type": datasets.Value("string"),
256
- "ref_id": datasets.Value("string"),
257
- "value": datasets.Value("string"),
258
- }
259
- ],
260
- "normalizations": [ # N lines in brat
261
- {
262
- "id": datasets.Value("string"),
263
- "type": datasets.Value("string"),
264
- "ref_id": datasets.Value("string"),
265
- "resource_name": datasets.Value(
266
- "string"
267
- ), # Name of the resource, e.g. "Wikipedia"
268
- "cuid": datasets.Value(
269
- "string"
270
- ), # ID in the resource, e.g. 534366
271
- "text": datasets.Value(
272
- "string"
273
- ), # Human readable description/name of the entity, e.g. "Barack Obama"
274
- }
275
- ],
276
- ### OPTIONAL: Only included when `parse_notes == True`
277
- "notes": [ # # lines in brat
278
- {
279
- "id": datasets.Value("string"),
280
- "type": datasets.Value("string"),
281
- "ref_id": datasets.Value("string"),
282
- "text": datasets.Value("string"),
283
- }
284
- ],
285
- },
286
- )
287
- """
288
-
289
- example = {}
290
- example["document_id"] = txt_file.with_suffix("").name
291
- with txt_file.open() as f:
292
- example["text"] = f.read()
293
-
294
- # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
295
- # for event extraction
296
- if annotation_file_suffixes is None:
297
- annotation_file_suffixes = [".a1", ".a2", ".ann"]
298
-
299
- if len(annotation_file_suffixes) == 0:
300
- raise AssertionError(
301
- "At least one suffix for the to-be-read annotation files should be given!"
302
- )
303
-
304
- ann_lines = []
305
- for suffix in annotation_file_suffixes:
306
- annotation_file = txt_file.with_suffix(suffix)
307
- if annotation_file.exists():
308
- with annotation_file.open() as f:
309
- ann_lines.extend(f.readlines())
310
-
311
- example["text_bound_annotations"] = []
312
- example["events"] = []
313
- example["relations"] = []
314
- example["equivalences"] = []
315
- example["attributes"] = []
316
- example["normalizations"] = []
317
-
318
- if parse_notes:
319
- example["notes"] = []
320
-
321
- for line in ann_lines:
322
- line = line.strip()
323
- if not line:
324
- continue
325
-
326
- if line.startswith("T"): # Text bound
327
- ann = {}
328
- fields = line.split("\t")
329
-
330
- ann["id"] = fields[0]
331
- ann["type"] = fields[1].split()[0]
332
- ann["offsets"] = []
333
- span_str = remove_prefix(fields[1], (ann["type"] + " "))
334
- text = fields[2]
335
- for span in span_str.split(";"):
336
- start, end = span.split()
337
- ann["offsets"].append([int(start), int(end)])
338
-
339
- # Heuristically split text of discontiguous entities into chunks
340
- ann["text"] = []
341
- if len(ann["offsets"]) > 1:
342
- i = 0
343
- for start, end in ann["offsets"]:
344
- chunk_len = end - start
345
- ann["text"].append(text[i : chunk_len + i])
346
- i += chunk_len
347
- while i < len(text) and text[i] == " ":
348
- i += 1
349
- else:
350
- ann["text"] = [text]
351
-
352
- example["text_bound_annotations"].append(ann)
353
-
354
- elif line.startswith("E"):
355
- ann = {}
356
- fields = line.split("\t")
357
-
358
- ann["id"] = fields[0]
359
-
360
- ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
361
-
362
- ann["arguments"] = []
363
- for role_ref_id in fields[1].split()[1:]:
364
- argument = {
365
- "role": (role_ref_id.split(":"))[0],
366
- "ref_id": (role_ref_id.split(":"))[1],
367
- }
368
- ann["arguments"].append(argument)
369
-
370
- example["events"].append(ann)
371
-
372
- elif line.startswith("R"):
373
- ann = {}
374
- fields = line.split("\t")
375
-
376
- ann["id"] = fields[0]
377
- ann["type"] = fields[1].split()[0]
378
-
379
- ann["head"] = {
380
- "role": fields[1].split()[1].split(":")[0],
381
- "ref_id": fields[1].split()[1].split(":")[1],
382
- }
383
- ann["tail"] = {
384
- "role": fields[1].split()[2].split(":")[0],
385
- "ref_id": fields[1].split()[2].split(":")[1],
386
- }
387
-
388
- example["relations"].append(ann)
389
-
390
- # '*' seems to be the legacy way to mark equivalences,
391
- # but I couldn't find any info on the current way
392
- # this might have to be adapted dependent on the brat version
393
- # of the annotation
394
- elif line.startswith("*"):
395
- ann = {}
396
- fields = line.split("\t")
397
-
398
- ann["id"] = fields[0]
399
- ann["ref_ids"] = fields[1].split()[1:]
400
-
401
- example["equivalences"].append(ann)
402
-
403
- elif line.startswith("A") or line.startswith("M"):
404
- ann = {}
405
- fields = line.split("\t")
406
-
407
- ann["id"] = fields[0]
408
-
409
- info = fields[1].split()
410
- ann["type"] = info[0]
411
- ann["ref_id"] = info[1]
412
-
413
- if len(info) > 2:
414
- ann["value"] = info[2]
415
- else:
416
- ann["value"] = ""
417
-
418
- example["attributes"].append(ann)
419
-
420
- elif line.startswith("N"):
421
- ann = {}
422
- fields = line.split("\t")
423
-
424
- ann["id"] = fields[0]
425
- ann["text"] = fields[2]
426
-
427
- info = fields[1].split()
428
-
429
- ann["type"] = info[0]
430
- ann["ref_id"] = info[1]
431
- ann["resource_name"] = info[2].split(":")[0]
432
- ann["cuid"] = info[2].split(":")[1]
433
- example["normalizations"].append(ann)
434
-
435
- elif parse_notes and line.startswith("#"):
436
- ann = {}
437
- fields = line.split("\t")
438
-
439
- ann["id"] = fields[0]
440
- ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
441
-
442
- info = fields[1].split()
443
-
444
- ann["type"] = info[0]
445
- ann["ref_id"] = info[1]
446
- example["notes"].append(ann)
447
-
448
- return example
449
-
450
-
451
- def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
452
- """
453
- Transform a brat parse (conforming to the standard brat schema) obtained with
454
- `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
455
- :param brat_parse:
456
- """
457
-
458
- unified_example = {}
459
-
460
- # Prefix all ids with document id to ensure global uniqueness,
461
- # because brat ids are only unique within their document
462
- id_prefix = brat_parse["document_id"] + "_"
463
-
464
- # identical
465
- unified_example["document_id"] = brat_parse["document_id"]
466
- unified_example["passages"] = [
467
- {
468
- "id": id_prefix + "_text",
469
- "type": "abstract",
470
- "text": [brat_parse["text"]],
471
- "offsets": [[0, len(brat_parse["text"])]],
472
- }
473
- ]
474
-
475
- # get normalizations
476
- ref_id_to_normalizations = defaultdict(list)
477
- for normalization in brat_parse["normalizations"]:
478
- ref_id_to_normalizations[normalization["ref_id"]].append(
479
- {
480
- "db_name": normalization["resource_name"],
481
- "db_id": normalization["cuid"],
482
- }
483
- )
484
-
485
- # separate entities and event triggers
486
- unified_example["events"] = []
487
- non_event_ann = brat_parse["text_bound_annotations"].copy()
488
- for event in brat_parse["events"]:
489
- event = event.copy()
490
- event["id"] = id_prefix + event["id"]
491
- trigger = next(
492
- tr
493
- for tr in brat_parse["text_bound_annotations"]
494
- if tr["id"] == event["trigger"]
495
- )
496
- if trigger in non_event_ann:
497
- non_event_ann.remove(trigger)
498
- event["trigger"] = {
499
- "text": trigger["text"].copy(),
500
- "offsets": trigger["offsets"].copy(),
501
- }
502
- for argument in event["arguments"]:
503
- argument["ref_id"] = id_prefix + argument["ref_id"]
504
-
505
- unified_example["events"].append(event)
506
-
507
- unified_example["entities"] = []
508
- anno_ids = [ref_id["id"] for ref_id in non_event_ann]
509
- for ann in non_event_ann:
510
- entity_ann = ann.copy()
511
- entity_ann["id"] = id_prefix + entity_ann["id"]
512
- entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
513
- unified_example["entities"].append(entity_ann)
514
-
515
- # massage relations
516
- unified_example["relations"] = []
517
- skipped_relations = set()
518
- for ann in brat_parse["relations"]:
519
- if (
520
- ann["head"]["ref_id"] not in anno_ids
521
- or ann["tail"]["ref_id"] not in anno_ids
522
- ):
523
- skipped_relations.add(ann["id"])
524
- continue
525
- unified_example["relations"].append(
526
- {
527
- "arg1_id": id_prefix + ann["head"]["ref_id"],
528
- "arg2_id": id_prefix + ann["tail"]["ref_id"],
529
- "id": id_prefix + ann["id"],
530
- "type": ann["type"],
531
- "normalized": [],
532
- }
533
- )
534
- if len(skipped_relations) > 0:
535
- example_id = brat_parse["document_id"]
536
- logger.info(
537
- f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
538
- f" Skip (for now): "
539
- f"{list(skipped_relations)}"
540
- )
541
-
542
- # get coreferences
543
- unified_example["coreferences"] = []
544
- for i, ann in enumerate(brat_parse["equivalences"], start=1):
545
- is_entity_cluster = True
546
- for ref_id in ann["ref_ids"]:
547
- if not ref_id.startswith("T"): # not textbound -> no entity
548
- is_entity_cluster = False
549
- elif ref_id not in anno_ids: # event trigger -> no entity
550
- is_entity_cluster = False
551
- if is_entity_cluster:
552
- entity_ids = [id_prefix + i for i in ann["ref_ids"]]
553
- unified_example["coreferences"].append(
554
- {"id": id_prefix + str(i), "entity_ids": entity_ids}
555
- )
556
- return unified_example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scicite.py DELETED
@@ -1,239 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """
17
- A dataset loader for the SciCite dataset.
18
-
19
- SciCite is a dataset of 11K manually annotated citation intents based on
20
- citation context in the computer science and biomedical domains.
21
-
22
- Some of the code in this module is based on the corresponding module in the
23
- datasets library.
24
- https://github.com/huggingface/datasets/blob/master/datasets/scicite/scicite.py
25
-
26
- In the source schema, we follow the datasets implementation and replace
27
- missing values.
28
- TODO: Use standard BigBio missing values.
29
- """
30
-
31
- import json
32
- from typing import Dict, List, Tuple
33
-
34
- import datasets
35
- import numpy as np
36
-
37
- from .bigbiohub import text_features
38
- from .bigbiohub import BigBioConfig
39
- from .bigbiohub import Tasks
40
-
41
- _LANGUAGES = ['English']
42
- _PUBMED = False
43
- _LOCAL = False
44
- _CITATION = """\
45
- @inproceedings{cohan:naacl19,
46
- author = {Arman Cohan and Waleed Ammar and Madeleine van Zuylen and Field Cady},
47
- title = {Structural Scaffolds for Citation Intent Classification in Scientific Publications},
48
- booktitle = {Conference of the North American Chapter of the Association for Computational Linguistics},
49
- year = {2019},
50
- url = {https://aclanthology.org/N19-1361/},
51
- doi = {10.18653/v1/N19-1361},
52
- }
53
- """
54
-
55
- _DATASETNAME = "scicite"
56
- _DISPLAYNAME = "SciCite"
57
-
58
- _DESCRIPTION = """\
59
- SciCite is a dataset of 11K manually annotated citation intents based on
60
- citation context in the computer science and biomedical domains.
61
- """
62
-
63
- _HOMEPAGE = "https://allenai.org/data/scicite"
64
-
65
- _LICENSE = 'License information unavailable'
66
-
67
- _URLS = {
68
- _DATASETNAME: "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz",
69
- }
70
-
71
- _SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
72
-
73
- _SOURCE_VERSION = "1.0.0"
74
-
75
- _BIGBIO_VERSION = "1.0.0"
76
-
77
-
78
- class SciciteDataset(datasets.GeneratorBasedBuilder):
79
- """SciCite is a dataset of 11K manually annotated citation intents based on
80
- citation context in the computer science and biomedical domains."""
81
-
82
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
83
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
84
-
85
- # You will be able to load the "source" or "bigbio" configurations with
86
- # ds_source = datasets.load_dataset('scicite', name='source')
87
- # ds_bigbio = datasets.load_dataset('scicite', name='bigbio')
88
-
89
- BUILDER_CONFIGS = [
90
- BigBioConfig(
91
- name="scicite_source",
92
- version=SOURCE_VERSION,
93
- description="SciCite source schema",
94
- schema="source",
95
- subset_id="scicite",
96
- ),
97
- BigBioConfig(
98
- name="scicite_bigbio_text",
99
- version=BIGBIO_VERSION,
100
- description="SciCite BigBio schema",
101
- schema="bigbio_text",
102
- subset_id="scicite",
103
- ),
104
- ]
105
-
106
- DEFAULT_CONFIG_NAME = "scicite_source"
107
-
108
- def _info(self) -> datasets.DatasetInfo:
109
- if self.config.schema == "source":
110
- features = datasets.Features(
111
- {
112
- "source": datasets.Value("string"),
113
- "citeStart": datasets.Value("int64"),
114
- "sectionName": datasets.Value("string"),
115
- "string": datasets.Value("string"),
116
- "citeEnd": datasets.Value("int64"),
117
- "label": datasets.features.ClassLabel(
118
- names=["method", "background", "result"]
119
- ),
120
- "label_confidence": datasets.Value("float"),
121
- "label2": datasets.features.ClassLabel(
122
- names=["supportive", "not_supportive", "cant_determine", "none"]
123
- ),
124
- "label2_confidence": datasets.Value("float"),
125
- "citingPaperId": datasets.Value("string"),
126
- "citedPaperId": datasets.Value("string"),
127
- "isKeyCitation": datasets.Value("bool"),
128
- "id": datasets.Value("string"),
129
- "unique_id": datasets.Value("string"),
130
- "excerpt_index": datasets.Value("int64"),
131
- }
132
- )
133
- elif self.config.schema == "bigbio_text":
134
- features = text_features
135
- else:
136
- raise ValueError("Unrecognized schema: %s" % self.config.schema)
137
-
138
- return datasets.DatasetInfo(
139
- description=_DESCRIPTION,
140
- features=features,
141
- homepage=_HOMEPAGE,
142
- license=str(_LICENSE),
143
- citation=_CITATION,
144
- )
145
-
146
- def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
147
- """Returns SplitGenerators."""
148
- urls = _URLS[_DATASETNAME]
149
- data_dir = dl_manager.download(urls)
150
-
151
- return [
152
- datasets.SplitGenerator(
153
- name=datasets.Split.TRAIN,
154
- gen_kwargs={
155
- "archive": dl_manager.iter_archive(data_dir),
156
- "filepath": "scicite/train.jsonl",
157
- "split": "train",
158
- },
159
- ),
160
- datasets.SplitGenerator(
161
- name=datasets.Split.TEST,
162
- gen_kwargs={
163
- "archive": dl_manager.iter_archive(data_dir),
164
- "filepath": "scicite/test.jsonl",
165
- "split": "test",
166
- },
167
- ),
168
- datasets.SplitGenerator(
169
- name=datasets.Split.VALIDATION,
170
- gen_kwargs={
171
- "archive": dl_manager.iter_archive(data_dir),
172
- "filepath": "scicite/dev.jsonl",
173
- "split": "dev",
174
- },
175
- ),
176
- ]
177
-
178
- def _generate_examples(self, archive, filepath, split: str) -> Tuple[int, Dict]:
179
- """Yields examples as (key, example) tuples."""
180
-
181
- for path, file in archive:
182
- if path == filepath:
183
- examples = [json.loads(line) for line in file]
184
- break
185
-
186
- # Preprocesses examples
187
- keys = set()
188
- for example in examples:
189
- # Fixes duplicate keys
190
- if example["unique_id"] in keys:
191
- example["unique_id"] = example["unique_id"] + "_duplicate"
192
- else:
193
- keys.add(example["unique_id"])
194
-
195
- if self.config.schema == "source":
196
- for example in examples:
197
- yield str(example["unique_id"]), {
198
- "string": example["string"],
199
- "label": str(example["label"]),
200
- "sectionName": str(example["sectionName"]),
201
- "citingPaperId": str(example["citingPaperId"]),
202
- "citedPaperId": str(example["citedPaperId"]),
203
- "excerpt_index": int(example["excerpt_index"]),
204
- "isKeyCitation": bool(example["isKeyCitation"]),
205
- "label2": str(example.get("label2", "none")),
206
- "citeEnd": _safe_int(example["citeEnd"]),
207
- "citeStart": _safe_int(example["citeStart"]),
208
- "source": str(example["source"]),
209
- "label_confidence": float(
210
- example.get("label_confidence", np.nan)
211
- ),
212
- "label2_confidence": float(
213
- example.get("label2_confidence", np.nan)
214
- ),
215
- "id": str(example["id"]),
216
- "unique_id": str(example["unique_id"]),
217
- }
218
-
219
- elif self.config.schema == "bigbio_text":
220
- for example in examples:
221
- if "label2" in example:
222
- labels = [example["label"], example["label2"]]
223
- else:
224
- labels = [example["label"]]
225
-
226
- yield str(example["unique_id"]), {
227
- "id": example["unique_id"],
228
- "document_id": example["citingPaperId"],
229
- "text": example["string"],
230
- "labels": labels,
231
- }
232
-
233
-
234
- def _safe_int(a):
235
- try:
236
- # skip NaNs
237
- return int(a)
238
- except ValueError:
239
- return -1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scicite_bigbio_text/scicite-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67a5a011b815541c335b7a46eb1a2591e17b19f781d552df6355cc33c2ae0ca6
3
+ size 520858
scicite_bigbio_text/scicite-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb08eeb327edaea0ee54a122fcd41aa80fc8110d4879b2ac278703ff6c56cd9
3
+ size 2235169
scicite_bigbio_text/scicite-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e65bcb0ecce3f2ae8024c2fb023431d5a3ac27dbf4cda2ee79988fd4b7da9ae8
3
+ size 253483
scicite_source/scicite-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ccb28ac4043effd47e7811cdd55ac3bc358abe156bfc726edf00c0d0411978d
3
+ size 779739
scicite_source/scicite-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b665c279af5db2bfebff854d48590afa1abb8a2d84b7a99ea1e3d7e987df3e
3
+ size 3300002
scicite_source/scicite-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b339745c10ad7dbb4b0bcedcf0d8206348e43598c6b77a2a87ab9adb580a06b6
3
+ size 373135