|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset of 11,832 claims for fact- checking, which are related a range of health topics |
|
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy |
|
(e.g., abortion, mental health, women’s health), and other public health-related stories |
|
""" |
|
|
|
import csv |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{kotonya2020explainable, |
|
title={Explainable automated fact-checking for public health claims}, |
|
author={Kotonya, Neema and Toni, Francesca}, |
|
journal={arXiv preprint arXiv:2010.09926}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pubhealth" |
|
_DISPLAYNAME = "PUBHEALTH" |
|
|
|
_DESCRIPTION = """\ |
|
A dataset of 11,832 claims for fact- checking, which are related a range of health topics |
|
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy |
|
(e.g., abortion, mental health, women’s health), and other public health-related stories |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/neemakot/Health-Fact-Checking/tree/master/data" |
|
|
|
_LICENSE = 'MIT License' |
|
|
|
_URLs = { |
|
_DATASETNAME: "https://drive.google.com/uc?export=download&id=1eTtRs5cUlBP5dXsx-FTAlmXuB6JQi2qj" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_CLASSES = ["true", "false", "unproven", "mixture"] |
|
|
|
|
|
class PUBHEALTHDataset(datasets.GeneratorBasedBuilder): |
|
"""Pubhealth text classification dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pubhealth_source", |
|
version=SOURCE_VERSION, |
|
description="PUBHEALTH source schema", |
|
schema="source", |
|
subset_id="pubhealth", |
|
), |
|
BigBioConfig( |
|
name="pubhealth_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="PUBHEALTH BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="pubhealth", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pubhealth_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"claim_id": datasets.Value("string"), |
|
"claim": datasets.Value("string"), |
|
"date_published": datasets.Value("string"), |
|
"explanation": datasets.Value("string"), |
|
"fact_checkers": datasets.Value("string"), |
|
"main_text": datasets.Value("string"), |
|
"sources": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=_CLASSES), |
|
"subjects": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls = _URLs[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "PUBHEALTH/train.tsv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "PUBHEALTH/test.tsv"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "PUBHEALTH/dev.tsv"), |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
quotechar='"', |
|
delimiter="\t", |
|
quoting=csv.QUOTE_NONE, |
|
skipinitialspace=True, |
|
) |
|
next(csv_reader, None) |
|
for id_, row in enumerate(csv_reader): |
|
|
|
|
|
|
|
if len(row) < 9: |
|
logger.info("Line %s is malformed", id_) |
|
continue |
|
( |
|
claim_id, |
|
claim, |
|
date_published, |
|
explanation, |
|
fact_checkers, |
|
main_text, |
|
sources, |
|
label, |
|
subjects, |
|
) = row[ |
|
-9: |
|
] |
|
|
|
if label not in _CLASSES: |
|
logger.info("Line %s is missing label", id_) |
|
continue |
|
|
|
if self.config.schema == "source": |
|
yield id_, { |
|
"claim_id": claim_id, |
|
"claim": claim, |
|
"date_published": date_published, |
|
"explanation": explanation, |
|
"fact_checkers": fact_checkers, |
|
"main_text": main_text, |
|
"sources": sources, |
|
"label": label, |
|
"subjects": subjects, |
|
} |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
yield id_, { |
|
"id": id_, |
|
"document_id": claim_id, |
|
"text_1": claim, |
|
"text_2": explanation, |
|
"label": label, |
|
} |
|
|