|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires |
|
to perform a multi-label classification that labels for eight diseases/symptoms must |
|
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n |
|
labels for eight diseases/symptoms. The achievements of this task can almost be |
|
directly applied to a fundamental engine for actual applications. |
|
|
|
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus, |
|
covering three languages (Japanese, English, and Chinese), and annotated with eight |
|
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache, |
|
fever, runny nose, and cold. |
|
|
|
The dataset consists of a single archive file: |
|
- ntcir13_MedWeb_taskdata.zip |
|
|
|
which can be obtained after filling out a form to provide information about the |
|
usage context under this URL: http://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html |
|
|
|
The zip archive contains a folder with name 'MedWeb_TestCollection'. |
|
Inside this folder, there are the following individual data files: |
|
βββ NTCIR-13_MedWeb_en_test.xlsx |
|
βββ NTCIR-13_MedWeb_en_training.xlsx |
|
βββ NTCIR-13_MedWeb_ja_test.xlsx |
|
βββ NTCIR-13_MedWeb_ja_training.xlsx |
|
βββ NTCIR-13_MedWeb_zh_test.xlsx |
|
βββ NTCIR-13_MedWeb_zh_training.xlsx |
|
|
|
The excel sheets contain a training and test split for each of the languages |
|
('en' stands for 'english', 'ja' stands for 'japanese' and 'zh' stands for |
|
(simplified) chinese). |
|
|
|
The archive file containing this dataset must be on the users local machine |
|
in a single directory that is passed to `datasets.load_dataset` via |
|
the `data_dir` kwarg. This loader script will read this archive file |
|
directly (i.e. the user should not uncompress, untar or unzip any of |
|
the files). |
|
|
|
For more information on this dataset, see: |
|
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html |
|
""" |
|
|
|
import re |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English', 'Chinese', 'Japanese'] |
|
_PUBMED = False |
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{wakamiya2017overview, |
|
author = {Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano, Tomoko Ohkuma and Eiji Aramaki}, |
|
title = {Overview of the NTCIR-13 MedWeb Task}, |
|
journal = {Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-13)}, |
|
year = {2017}, |
|
url = { |
|
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-MEDWEB-WakamiyaS.pdf |
|
}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ntcir_13_medweb" |
|
_DISPLAYNAME = "NTCIR-13 MedWeb" |
|
|
|
_DESCRIPTION = """\ |
|
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires |
|
to perform a multi-label classification that labels for eight diseases/symptoms must |
|
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n |
|
labels for eight diseases/symptoms. The achievements of this task can almost be |
|
directly applied to a fundamental engine for actual applications. |
|
|
|
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus, |
|
covering three languages (Japanese, English, and Chinese), and annotated with eight |
|
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache, |
|
fever, runny nose, and cold. |
|
|
|
For more information, see: |
|
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html |
|
|
|
As this dataset also provides a parallel corpus of pseudo-tweets for english, |
|
japanese and chinese it can also be used to train translation models between |
|
these three languages. |
|
""" |
|
|
|
_HOMEPAGE = "http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: "ntcir13_MedWeb_taskdata.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.TRANSLATION, |
|
Tasks.TEXT_CLASSIFICATION, |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class NTCIR13MedWebDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires |
|
to perform a multi-label classification that labels for eight diseases/symptoms must |
|
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n |
|
labels for eight diseases/symptoms. The achievements of this task can almost be |
|
directly applied to a fundamental engine for actual applications. |
|
|
|
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus, |
|
covering three languages (Japanese, English, and Chinese), and annotated with eight |
|
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache, |
|
fever, runny nose, and cold. |
|
|
|
For more information, see: |
|
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html |
|
|
|
As this dataset also provides a parallel corpus of pseudo-tweets for english, |
|
japanese and chinese it can also be used to train translation models between |
|
these three languages. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
BigBioConfig( |
|
name="ntcir_13_medweb_source", |
|
version=SOURCE_VERSION, |
|
description="NTCIR 13 MedWeb source schema", |
|
schema="source", |
|
subset_id="ntcir_13_medweb_source", |
|
) |
|
] |
|
for language_name, language_code in ( |
|
("Japanese", "ja"), |
|
("English", "en"), |
|
("Chinese", "zh"), |
|
): |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
BigBioConfig( |
|
name=f"ntcir_13_medweb_classification_{language_code}_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description=f"NTCIR 13 MedWeb BigBio {language_name} Classification schema", |
|
schema="bigbio_text", |
|
subset_id=f"ntcir_13_medweb_classification_{language_code}_bigbio_text", |
|
), |
|
) |
|
|
|
for target_language_name, target_language_code in ( |
|
("Japanese", "ja"), |
|
("English", "en"), |
|
("Chinese", "zh"), |
|
): |
|
|
|
|
|
if language_name != target_language_name: |
|
BUILDER_CONFIGS.append( |
|
BigBioConfig( |
|
name=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t", |
|
version=BIGBIO_VERSION, |
|
description=( |
|
f"NTCIR 13 MedWeb BigBio {language_name} -> {target_language_name} translation schema", |
|
), |
|
schema="bigbio_t2t", |
|
subset_id=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t", |
|
), |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "ntcir_13_medweb_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"ID": datasets.Value("string"), |
|
"Language": datasets.Value("string"), |
|
"Tweet": datasets.Value("string"), |
|
"Influenza": datasets.Value("string"), |
|
"Diarrhea": datasets.Value("string"), |
|
"Hayfever": datasets.Value("string"), |
|
"Cough": datasets.Value("string"), |
|
"Headache": datasets.Value("string"), |
|
"Fever": datasets.Value("string"), |
|
"Runnynose": datasets.Value("string"), |
|
"Cold": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
elif self.config.schema == "bigbio_t2t": |
|
features = text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError( |
|
"This is a local dataset. Please pass the data_dir kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
raw_data_dir = dl_manager.download_and_extract( |
|
str(Path(data_dir) / _URLS[_DATASETNAME]) |
|
) |
|
|
|
data_dir = Path(raw_data_dir) / "MedWeb_TestCollection" |
|
|
|
if self.config.schema == "source": |
|
filepaths = { |
|
datasets.Split.TRAIN: sorted(Path(data_dir).glob("*_training.xlsx")), |
|
datasets.Split.TEST: sorted(Path(data_dir).glob("*_test.xlsx")), |
|
} |
|
elif self.config.schema == "bigbio_text": |
|
|
|
pattern = r"ntcir_13_medweb_classification_(?P<language_code>ja|en|zh)_bigbio_text" |
|
match = re.search(pattern=pattern, string=self.config.subset_id) |
|
|
|
if not match: |
|
raise ValueError( |
|
"Unable to parse language code for text classification from dataset subset id: " |
|
f"'{self.config.subset_id}'. Attempted to parse using this regex pattern: " |
|
f"'{pattern}' but failed to get a match." |
|
) |
|
|
|
language_code = match.group("language_code") |
|
|
|
filepaths = { |
|
datasets.Split.TRAIN: ( |
|
Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_training.xlsx", |
|
), |
|
datasets.Split.TEST: ( |
|
Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_test.xlsx", |
|
), |
|
} |
|
elif self.config.schema == "bigbio_t2t": |
|
pattern = r"ntcir_13_medweb_translation_(?P<source_language_code>ja|en|zh)_(?P<target_language_code>ja|en|zh)_bigbio_t2t" |
|
match = re.search(pattern=pattern, string=self.config.subset_id) |
|
|
|
if not match: |
|
raise ValueError( |
|
"Unable to parse source and target language codes for translation " |
|
f"from dataset subset id: '{self.config.subset_id}'. Attempted to parse " |
|
f"using this regex pattern: '{pattern}' but failed to get a match." |
|
) |
|
|
|
source_language_code = match.group("source_language_code") |
|
target_language_code = match.group("target_language_code") |
|
|
|
filepaths = { |
|
datasets.Split.TRAIN: ( |
|
Path(data_dir) |
|
/ f"NTCIR-13_MedWeb_{source_language_code}_training.xlsx", |
|
Path(data_dir) |
|
/ f"NTCIR-13_MedWeb_{target_language_code}_training.xlsx", |
|
), |
|
datasets.Split.TEST: ( |
|
Path(data_dir) |
|
/ f"NTCIR-13_MedWeb_{source_language_code}_test.xlsx", |
|
Path(data_dir) |
|
/ f"NTCIR-13_MedWeb_{target_language_code}_test.xlsx", |
|
), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split_name, |
|
gen_kwargs={ |
|
"filepaths": filepaths[split_name], |
|
"split": split_name, |
|
}, |
|
) |
|
for split_name in (datasets.Split.TRAIN, datasets.Split.TEST) |
|
] |
|
|
|
def _language_from_filepath(self, filepath: Path): |
|
pattern = r"NTCIR-13_MedWeb_(?P<language_code>ja|en|zh)_(training|test).xlsx" |
|
match = re.search(pattern=pattern, string=filepath.name) |
|
|
|
if not match: |
|
raise ValueError( |
|
"Unable to parse language code from filename. " |
|
f"Filename was: '{filepath.name}' and tried to parse using this " |
|
f"regex pattern: '{pattern}' but failed to get a match." |
|
) |
|
|
|
return match.group("language_code") |
|
|
|
def _generate_examples( |
|
self, filepaths: Tuple[Path], split: str |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
dataframes = [] |
|
|
|
for filepath in filepaths: |
|
language_code = self._language_from_filepath(filepath) |
|
df = pd.read_excel(filepath, sheet_name=f"{language_code}_{split}") |
|
df["Language"] = language_code |
|
dataframes.append(df) |
|
|
|
df = pd.concat(dataframes) |
|
|
|
for row_index, row in enumerate(df.itertuples(index=False)): |
|
yield row_index, row._asdict() |
|
|
|
elif self.config.schema == "bigbio_text": |
|
(filepath,) = filepaths |
|
language_code = self._language_from_filepath(filepath) |
|
|
|
df = pd.read_excel( |
|
filepath, |
|
sheet_name=f"{language_code}_{split}", |
|
) |
|
|
|
label_column_names = [ |
|
column_name |
|
for column_name in df.columns |
|
if column_name not in ("ID", "Tweet") |
|
] |
|
labels = ( |
|
df[label_column_names] |
|
.apply(lambda row: row[row == "p"].index.tolist(), axis=1) |
|
.values |
|
) |
|
|
|
ids = df["ID"] |
|
tweets = df["Tweet"] |
|
|
|
for row_index, (record_labels, record_id, tweet) in enumerate( |
|
zip(labels, ids, tweets) |
|
): |
|
yield row_index, { |
|
"id": record_id, |
|
"text": tweets, |
|
"document_id": filepath.stem, |
|
"labels": record_labels, |
|
} |
|
elif self.config.schema == "bigbio_t2t": |
|
source_filepath, target_filepath = filepaths |
|
|
|
source_language_code = self._language_from_filepath(source_filepath) |
|
target_language_code = self._language_from_filepath(target_filepath) |
|
|
|
source_df = pd.read_excel( |
|
source_filepath, |
|
sheet_name=f"{source_language_code}_{split}", |
|
)[["ID", "Tweet"]] |
|
source_df["id_int"] = source_df["ID"].str.extract(r"(\d+)").astype(int) |
|
|
|
target_df = pd.read_excel( |
|
target_filepath, |
|
sheet_name=f"{target_language_code}_{split}", |
|
)[["ID", "Tweet"]] |
|
target_df["id_int"] = target_df["ID"].str.extract(r"(\d+)").astype(int) |
|
|
|
df_combined = source_df.merge( |
|
target_df, on="id_int", suffixes=("_source", "_target") |
|
)[["id_int", "Tweet_source", "Tweet_target"]] |
|
|
|
for row_index, record in enumerate(df_combined.itertuples(index=False)): |
|
row = record._asdict() |
|
yield row_index, { |
|
"id": f"{row['id_int']}_{source_language_code}_{target_language_code}", |
|
"document_id": f"t2t_{source_language_code}_{target_language_code}", |
|
"text_1": row["Tweet_source"], |
|
"text_2": row["Tweet_target"], |
|
"text_1_name": source_language_code, |
|
"text_2_name": target_language_code, |
|
} |
|
|