Commit
·
3a1ce81
1
Parent(s):
3bcd8b6
upload hubscripts/n2c2_2014_deid_hub.py to hub from bigbio repo
Browse files- n2c2_2014_deid.py +295 -0
n2c2_2014_deid.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
A dataset loader for the n2c2 2014 Deidentification & Heart Disease.
|
18 |
+
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
|
19 |
+
The dataset consists of 3 archive files,
|
20 |
+
* 2014_training-PHI-Gold-Set1.tar.gz
|
21 |
+
* training-PHI-Gold-Set2.tar.gz
|
22 |
+
* testing-PHI-Gold-fixed.tar.gz
|
23 |
+
Each tar.gz contain a set of .xml files. One .xml per clinical report.
|
24 |
+
The file names follow a consistent pattern with the first set of digits identifying the
|
25 |
+
patient and the last set of digits identifying the sequential record number
|
26 |
+
ie: XXX-YY.xml
|
27 |
+
where XXX is the patient number, and YY is the record number.
|
28 |
+
Example: 320-03.xml
|
29 |
+
This is the third (03) record for patient 320
|
30 |
+
Each file has a root level xml node which will contain a
|
31 |
+
<TEXT> node that holds the medical annotation text and a <TAGS> node containing
|
32 |
+
annotations for the document text.
|
33 |
+
The files comprising this dataset must be on the users local machine
|
34 |
+
in a single directory that is passed to `datasets.load_datset` via
|
35 |
+
the `data_dir` kwarg. This loader script will read the archive files
|
36 |
+
directly (i.e. the user should not uncompress, untar or unzip any of
|
37 |
+
the files). For example, if the following directory structure exists
|
38 |
+
on the users local machine,
|
39 |
+
n2c2_2014
|
40 |
+
├── 2014_training-PHI-Gold-Set1.tar.gz
|
41 |
+
├── training-PHI-Gold-Set2.tar.gz
|
42 |
+
├── testing-PHI-Gold-fixed.tar.gz
|
43 |
+
Data Access
|
44 |
+
from https://www.i2b2.org/NLP/DataSets/Main.php
|
45 |
+
"As always, you must register AND submit a DUA for access. If you previously
|
46 |
+
accessed the data sets here on i2b2.org, you will need to set a new password
|
47 |
+
for your account on the Data Portal, but your original DUA will be retained."
|
48 |
+
Made in collaboration with @JoaoRacedo
|
49 |
+
"""
|
50 |
+
|
51 |
+
import itertools as it
|
52 |
+
import os
|
53 |
+
import re
|
54 |
+
import tarfile
|
55 |
+
import xml.etree.ElementTree as et
|
56 |
+
from typing import Dict, List, Tuple
|
57 |
+
|
58 |
+
import datasets
|
59 |
+
|
60 |
+
from .bigbiohub import kb_features
|
61 |
+
from .bigbiohub import BigBioConfig
|
62 |
+
from .bigbiohub import Tasks
|
63 |
+
|
64 |
+
_LANGUAGES = ['English']
|
65 |
+
_PUBMED = False
|
66 |
+
_LOCAL = True
|
67 |
+
_CITATION = """\
|
68 |
+
@article{stubbs2015automated,
|
69 |
+
title = {Automated systems for the de-identification of longitudinal
|
70 |
+
clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1},
|
71 |
+
journal = {Journal of Biomedical Informatics},
|
72 |
+
volume = {58},
|
73 |
+
pages = {S11-S19},
|
74 |
+
year = {2015},
|
75 |
+
issn = {1532-0464},
|
76 |
+
doi = {https://doi.org/10.1016/j.jbi.2015.06.007},
|
77 |
+
url = {https://www.sciencedirect.com/science/article/pii/S1532046415001173},
|
78 |
+
author = {Amber Stubbs and Christopher Kotfila and Özlem Uzuner}
|
79 |
+
}
|
80 |
+
"""
|
81 |
+
|
82 |
+
_DATASETNAME = "n2c2_2014_deid"
|
83 |
+
_DISPLAYNAME = "n2c2 2014 De-identification"
|
84 |
+
|
85 |
+
_DESCRIPTION = """\
|
86 |
+
The 2014 i2b2/UTHealth Natural Language Processing (NLP) shared task featured two tracks.
|
87 |
+
The first of these was the de-identification track focused on identifying protected health
|
88 |
+
information (PHI) in longitudinal clinical narratives.
|
89 |
+
|
90 |
+
TRACK 1: NER PHI\n
|
91 |
+
HIPAA requires that patient medical records have all identifying information removed in order to
|
92 |
+
protect patient privacy. There are 18 categories of Protected Health Information (PHI) identifiers of the
|
93 |
+
patient or of relatives, employers, or household members of the patient that must be removed in order
|
94 |
+
for a file to be considered de-identified.
|
95 |
+
In order to de-identify the records, each file has PHI marked up. All PHI has an
|
96 |
+
XML tag indicating its category and type, where applicable. For the purposes of this task,
|
97 |
+
the 18 HIPAA categories have been grouped into 6 main categories and 25 sub categories
|
98 |
+
"""
|
99 |
+
|
100 |
+
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
|
101 |
+
|
102 |
+
_LICENSE = 'Data User Agreement'
|
103 |
+
|
104 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
105 |
+
|
106 |
+
_SOURCE_VERSION = "1.0.0"
|
107 |
+
_BIGBIO_VERSION = "1.0.0"
|
108 |
+
|
109 |
+
|
110 |
+
class N2C22014DeidDataset(datasets.GeneratorBasedBuilder):
|
111 |
+
"""n2c2 2014 Deidentification Challenge"""
|
112 |
+
|
113 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
114 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
115 |
+
|
116 |
+
BUILDER_CONFIGS = [
|
117 |
+
BigBioConfig(
|
118 |
+
name="n2c2_2014_source",
|
119 |
+
version=SOURCE_VERSION,
|
120 |
+
description="n2c2_2014 source schema",
|
121 |
+
schema="source",
|
122 |
+
subset_id="n2c2_2014_deid",
|
123 |
+
),
|
124 |
+
BigBioConfig(
|
125 |
+
name="n2c2_2014_bigbio_kb",
|
126 |
+
version=BIGBIO_VERSION,
|
127 |
+
description="n2c2_2014 BigBio schema",
|
128 |
+
schema="bigbio_kb",
|
129 |
+
subset_id="n2c2_2014_deid",
|
130 |
+
),
|
131 |
+
]
|
132 |
+
|
133 |
+
DEFAULT_CONFIG_NAME = "n2c2_2014_deid_source"
|
134 |
+
|
135 |
+
def _info(self) -> datasets.DatasetInfo:
|
136 |
+
|
137 |
+
if self.config.schema == "source":
|
138 |
+
features = datasets.Features(
|
139 |
+
{
|
140 |
+
"id": datasets.Value("string"),
|
141 |
+
"document_id": datasets.Value("string"),
|
142 |
+
"text": datasets.Value("string"),
|
143 |
+
"phi": [
|
144 |
+
{
|
145 |
+
"id": datasets.Value("string"),
|
146 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
147 |
+
"type": datasets.Value("string"),
|
148 |
+
"text": datasets.Value("string"),
|
149 |
+
"comment": datasets.Value("string"),
|
150 |
+
}
|
151 |
+
],
|
152 |
+
},
|
153 |
+
)
|
154 |
+
|
155 |
+
elif self.config.schema == "bigbio_kb":
|
156 |
+
features = kb_features
|
157 |
+
|
158 |
+
return datasets.DatasetInfo(
|
159 |
+
description=_DESCRIPTION,
|
160 |
+
features=features,
|
161 |
+
homepage=_HOMEPAGE,
|
162 |
+
license=str(_LICENSE),
|
163 |
+
citation=_CITATION,
|
164 |
+
)
|
165 |
+
|
166 |
+
def _split_generators(
|
167 |
+
self, dl_manager: datasets.DownloadManager
|
168 |
+
) -> List[datasets.SplitGenerator]:
|
169 |
+
"""Returns SplitGenerators."""
|
170 |
+
if self.config.data_dir is None:
|
171 |
+
raise ValueError(
|
172 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
data_dir = self.config.data_dir
|
176 |
+
return [
|
177 |
+
datasets.SplitGenerator(
|
178 |
+
name=datasets.Split.TRAIN,
|
179 |
+
gen_kwargs={
|
180 |
+
"data_dir": data_dir,
|
181 |
+
"file_names": [
|
182 |
+
("2014_training-PHI-Gold-Set1.tar.gz", "track1"),
|
183 |
+
("training-PHI-Gold-Set2.tar.gz", "track1"),
|
184 |
+
],
|
185 |
+
},
|
186 |
+
),
|
187 |
+
datasets.SplitGenerator(
|
188 |
+
name=datasets.Split.TEST,
|
189 |
+
gen_kwargs={
|
190 |
+
"data_dir": data_dir,
|
191 |
+
"file_names": [
|
192 |
+
("testing-PHI-Gold-fixed.tar.gz", "track1"),
|
193 |
+
],
|
194 |
+
},
|
195 |
+
),
|
196 |
+
]
|
197 |
+
|
198 |
+
def _generate_examples(self, data_dir, file_names: List[Tuple]) -> Tuple[int, Dict]:
|
199 |
+
"""Yields examples as (key, example) tuples."""
|
200 |
+
|
201 |
+
if self.config.schema == "source":
|
202 |
+
uid = it.count(0)
|
203 |
+
for fname, task in file_names:
|
204 |
+
full_path = os.path.join(data_dir, fname)
|
205 |
+
for x in self._read_tar_gz(full_path):
|
206 |
+
xml_flag = x["xml_flag"]
|
207 |
+
if xml_flag:
|
208 |
+
document = self._read_task1_file(
|
209 |
+
file_object=x["file_object"], file_name=x["file_name"]
|
210 |
+
)
|
211 |
+
document["id"] = next(uid)
|
212 |
+
|
213 |
+
elif self.config.schema == "bigbio_kb":
|
214 |
+
uid = it.count(0)
|
215 |
+
for fname, task in file_names:
|
216 |
+
full_path = os.path.join(data_dir, fname)
|
217 |
+
for x in self._read_tar_gz(full_path):
|
218 |
+
xml_flag = x["xml_flag"]
|
219 |
+
if xml_flag:
|
220 |
+
document = self._read_task1_file(
|
221 |
+
file_object=x["file_object"], file_name=x["file_name"]
|
222 |
+
)
|
223 |
+
document["id"] = next(uid)
|
224 |
+
entity_list = document.pop("phi")
|
225 |
+
full_text = document.pop("text")
|
226 |
+
entities_ = []
|
227 |
+
for entity in entity_list:
|
228 |
+
entities_.append(
|
229 |
+
{
|
230 |
+
"id": next(uid),
|
231 |
+
"type": entity["type"],
|
232 |
+
"text": entity["text"],
|
233 |
+
"offsets": entity["offsets"],
|
234 |
+
"normalized": entity["normalized"],
|
235 |
+
}
|
236 |
+
)
|
237 |
+
document["entities"] = entities_
|
238 |
+
|
239 |
+
document["passages"] = [
|
240 |
+
{
|
241 |
+
"id": next(uid),
|
242 |
+
"type": "full_text",
|
243 |
+
"text": [full_text],
|
244 |
+
"offsets": [[0, len(full_text)]],
|
245 |
+
},
|
246 |
+
]
|
247 |
+
|
248 |
+
# additional fields required that can be empty
|
249 |
+
document["relations"] = []
|
250 |
+
document["events"] = []
|
251 |
+
document["coreferences"] = []
|
252 |
+
yield document["document_id"], document
|
253 |
+
else:
|
254 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
255 |
+
|
256 |
+
def _read_tar_gz(self, fpath: str) -> Dict:
|
257 |
+
"""
|
258 |
+
Read .tar.gz file
|
259 |
+
"""
|
260 |
+
# Open tar file
|
261 |
+
tf = tarfile.open(fpath, "r:gz")
|
262 |
+
|
263 |
+
for tf_member in tf.getmembers():
|
264 |
+
file_object = tf.extractfile(tf_member)
|
265 |
+
name = tf_member.name
|
266 |
+
file_name = os.path.basename(name).split(".")[0]
|
267 |
+
if re.search(r"\.xml", name) is not None:
|
268 |
+
xml_flag = True
|
269 |
+
else:
|
270 |
+
xml_flag = False
|
271 |
+
yield {
|
272 |
+
"file_object": file_object,
|
273 |
+
"file_name": file_name,
|
274 |
+
"xml_flag": xml_flag,
|
275 |
+
}
|
276 |
+
|
277 |
+
def _read_task1_file(self, file_object, file_name):
|
278 |
+
xmldoc = et.parse(file_object).getroot()
|
279 |
+
entities = xmldoc.findall("TAGS")[0]
|
280 |
+
text = xmldoc.findall("TEXT")[0].text
|
281 |
+
phi = []
|
282 |
+
for entity in entities:
|
283 |
+
phi.append(
|
284 |
+
{
|
285 |
+
"id": entity.attrib["id"],
|
286 |
+
"offsets": [[entity.attrib["start"], entity.attrib["end"]]],
|
287 |
+
"type": entity.attrib["TYPE"],
|
288 |
+
"text": [entity.attrib["text"]],
|
289 |
+
"comment": entity.attrib["comment"],
|
290 |
+
"normalized": [],
|
291 |
+
}
|
292 |
+
)
|
293 |
+
|
294 |
+
document = {"document_id": file_name, "text": text, "phi": phi}
|
295 |
+
return document
|