|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import text2text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2010.14235, |
|
doi = {10.48550/ARXIV.2010.14235}, |
|
|
|
url = {https://arxiv.org/abs/2010.14235}, |
|
|
|
author = {Lu, Yao and Dong, Yue and Charlin, Laurent}, |
|
|
|
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
|
|
title = {Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles}, |
|
|
|
publisher = {arXiv}, |
|
|
|
year = {2020}, |
|
|
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "multi_xscience" |
|
_DISPLAYNAME = "Multi-XScience" |
|
|
|
_DESCRIPTION = """\ |
|
Multi-document summarization is a challenging task for which there exists little large-scale datasets. |
|
We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. |
|
Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section |
|
of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, |
|
a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and |
|
empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal t |
|
hat Multi-XScience is well suited for abstractive models. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/yaolu/Multi-XScience" |
|
|
|
_LICENSE = 'MIT License' |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
"https://github.com/yaolu/Multi-XScience/blob/master/data/train.json.gz?raw=true", |
|
"https://github.com/yaolu/Multi-XScience/blob/master/data/test.json.gz?raw=true", |
|
"https://github.com/yaolu/Multi-XScience/blob/master/data/val.json.gz?raw=true", |
|
], |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.PARAPHRASING, Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MultiXScience(datasets.GeneratorBasedBuilder): |
|
""" |
|
Dataset for the EMNLP 2020 paper, Multi-XScience: |
|
A Large-scale Dataset for Extreme Multi-document Summarization |
|
of Scientific Articles. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="multi_xscience_source", |
|
version=SOURCE_VERSION, |
|
description="multi_xscience source schema", |
|
schema="source", |
|
subset_id="multi_xscience", |
|
), |
|
BigBioConfig( |
|
name="multi_xscience_bigbio_t2t", |
|
version=BIGBIO_VERSION, |
|
description="multi_xscienceBigBio schema", |
|
schema="bigbio_t2t", |
|
subset_id="multi_xscience", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "multi_xscience_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"aid": datasets.Value("string"), |
|
"mid": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"ref_abstract": datasets.Sequence( |
|
{ |
|
"mid": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_t2t": |
|
features = text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir[0]).replace("\\", "/"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir[1]).replace("\\", "/"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir[2]).replace("\\", "/"), |
|
"split": "val", |
|
}, |
|
), |
|
] |
|
|
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
j_file = open(filepath, "r") |
|
j_file.seek(0) |
|
j_json = json.load(j_file) |
|
|
|
if self.config.schema == "source": |
|
for key, example in enumerate(j_json): |
|
yield key, { |
|
"aid": example["aid"], |
|
"mid": example["mid"], |
|
"abstract": example["abstract"], |
|
"ref_abstract": [ |
|
{ |
|
"mid": example["ref_abstract"][key]["mid"], |
|
"abstract": example["ref_abstract"][key]["abstract"], |
|
} |
|
for key in example["ref_abstract"].keys() |
|
], |
|
} |
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
uid = 0 |
|
|
|
for key, example in enumerate(j_json): |
|
uid += 1 |
|
yield key, { |
|
"id": str(uid), |
|
"document_id": str(key), |
|
"text_1": example["abstract"], |
|
"text_2": " ".join( |
|
[e["abstract"] for e in example["ref_abstract"].values()] |
|
), |
|
"text_1_name": "Abstract of query paper", |
|
"text_2_name": "Cite abstracts", |
|
} |
|
|
|
j_file.close() |
|
|