Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
multi_xscience / multi_xscience.py
gabrielaltay's picture
upload hubscripts/multi_xscience_hub.py to hub from bigbio repo
1b0f43f
raw
history blame
7.12 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import List
import datasets
from .bigbiohub import text2text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2010.14235,
doi = {10.48550/ARXIV.2010.14235},
url = {https://arxiv.org/abs/2010.14235},
author = {Lu, Yao and Dong, Yue and Charlin, Laurent},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},
publisher = {arXiv},
year = {2020},
copyright = {arXiv.org perpetual, non-exclusive license}
}
"""
_DATASETNAME = "multi_xscience"
_DISPLAYNAME = "Multi-XScience"
_DESCRIPTION = """\
Multi-document summarization is a challenging task for which there exists little large-scale datasets.
We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles.
Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section
of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization,
a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and
empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal t
hat Multi-XScience is well suited for abstractive models.
"""
_HOMEPAGE = "https://github.com/yaolu/Multi-XScience"
_LICENSE = 'MIT License'
_URLS = {
_DATASETNAME: [
"https://github.com/yaolu/Multi-XScience/blob/master/data/train.json.gz?raw=true",
"https://github.com/yaolu/Multi-XScience/blob/master/data/test.json.gz?raw=true",
"https://github.com/yaolu/Multi-XScience/blob/master/data/val.json.gz?raw=true",
],
}
_SUPPORTED_TASKS = [Tasks.PARAPHRASING, Tasks.SUMMARIZATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MultiXScience(datasets.GeneratorBasedBuilder):
"""
Dataset for the EMNLP 2020 paper, Multi-XScience:
A Large-scale Dataset for Extreme Multi-document Summarization
of Scientific Articles.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="multi_xscience_source",
version=SOURCE_VERSION,
description="multi_xscience source schema",
schema="source",
subset_id="multi_xscience",
),
BigBioConfig(
name="multi_xscience_bigbio_t2t",
version=BIGBIO_VERSION,
description="multi_xscienceBigBio schema",
schema="bigbio_t2t",
subset_id="multi_xscience",
),
]
DEFAULT_CONFIG_NAME = "multi_xscience_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"aid": datasets.Value("string"),
"mid": datasets.Value("string"),
"abstract": datasets.Value("string"),
"ref_abstract": datasets.Sequence(
{
"mid": datasets.Value("string"),
"abstract": datasets.Value("string"),
}
),
}
)
elif self.config.schema == "bigbio_t2t":
features = text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir[0]).replace("\\", "/"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir[1]).replace("\\", "/"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir[2]).replace("\\", "/"),
"split": "val",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
j_file = open(filepath, "r")
j_file.seek(0)
j_json = json.load(j_file)
if self.config.schema == "source":
for key, example in enumerate(j_json):
yield key, {
"aid": example["aid"],
"mid": example["mid"],
"abstract": example["abstract"],
"ref_abstract": [
{
"mid": example["ref_abstract"][key]["mid"],
"abstract": example["ref_abstract"][key]["abstract"],
}
for key in example["ref_abstract"].keys()
],
}
elif self.config.schema == "bigbio_t2t":
uid = 0
for key, example in enumerate(j_json):
uid += 1
yield key, {
"id": str(uid),
"document_id": str(key),
"text_1": example["abstract"],
"text_2": " ".join(
[e["abstract"] for e in example["ref_abstract"].values()]
),
"text_1_name": "Abstract of query paper",
"text_2_name": "Cite abstracts",
}
j_file.close()