|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
MayoSRS consists of 101 clinical term pairs whose relatedness was determined by |
|
nine medical coders and three physicians from the Mayo Clinic. |
|
""" |
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{pedersen2007measures, |
|
title={Measures of semantic similarity and relatedness in the biomedical domain}, |
|
author={Pedersen, Ted and Pakhomov, Serguei VS and Patwardhan, Siddharth and Chute, Christopher G}, |
|
journal={Journal of biomedical informatics}, |
|
volume={40}, |
|
number={3}, |
|
pages={288--299}, |
|
year={2007}, |
|
publisher={Elsevier} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "minimayosrs" |
|
_DISPLAYNAME = "MiniMayoSRS" |
|
|
|
_DESCRIPTION = """\ |
|
MiniMayoSRS is a subset of the MayoSRS and consists of 30 term pairs on which a higher inter-annotator agreement was |
|
achieved. The average correlation between physicians is 0.68. The average correlation between medical coders is 0.78. |
|
""" |
|
|
|
_HOMEPAGE = "https://conservancy.umn.edu/handle/11299/196265" |
|
|
|
_LICENSE = 'Creative Commons Zero v1.0 Universal' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://conservancy.umn.edu/bitstream/handle/11299/196265/MiniMayoSRS.csv?sequence=2&isAllowed=y" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MinimayosrsDataset(datasets.GeneratorBasedBuilder): |
|
"""MiniMayoSRS is a subset of the MayoSRS and consists of 30 term pairs on which a higher inter-annotator agreement |
|
was achieved. The average correlation between physicians is 0.68. The average correlation between medical coders |
|
is 0.78. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="minimayosrs_source", |
|
version=SOURCE_VERSION, |
|
description="MiniMayoSRS source schema", |
|
schema="source", |
|
subset_id="minimayosrs", |
|
), |
|
BigBioConfig( |
|
name="minimayosrs_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="MiniMayoSRS BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="minimayosrs", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "minimayosrs_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"code_1": datasets.Value("string"), |
|
"code_2": datasets.Value("string"), |
|
"label_physicians": datasets.Value("float32"), |
|
"label_coders": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
filepath = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": filepath}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
data = pd.read_csv( |
|
filepath, |
|
sep=",", |
|
header=0, |
|
names=[ |
|
"label_physicians", |
|
"label_coders", |
|
"code_1", |
|
"code_2", |
|
"text_1", |
|
"text_2", |
|
], |
|
) |
|
|
|
if self.config.schema == "source": |
|
for id_, row in data.iterrows(): |
|
yield id_, row.to_dict() |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
for id_, row in data.iterrows(): |
|
yield id_, { |
|
"id": id_, |
|
"document_id": id_, |
|
"text_1": row["text_1"], |
|
"text_2": row["text_2"], |
|
"label": str((row["label_physicians"] + row["label_coders"]) / 2), |
|
} |
|
|