Commit
·
ca6c0f7
1
Parent(s):
7e73244
Update parquet files
Browse files- bigbiohub.py +0 -556
- meqsum.py +0 -161
- meqsum_source/meqsum-train.parquet +3 -0
bigbiohub.py
DELETED
@@ -1,556 +0,0 @@
|
|
1 |
-
from collections import defaultdict
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from enum import Enum
|
4 |
-
import logging
|
5 |
-
from pathlib import Path
|
6 |
-
from types import SimpleNamespace
|
7 |
-
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
if TYPE_CHECKING:
|
12 |
-
import bioc
|
13 |
-
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
|
17 |
-
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
18 |
-
|
19 |
-
|
20 |
-
@dataclass
|
21 |
-
class BigBioConfig(datasets.BuilderConfig):
|
22 |
-
"""BuilderConfig for BigBio."""
|
23 |
-
|
24 |
-
name: str = None
|
25 |
-
version: datasets.Version = None
|
26 |
-
description: str = None
|
27 |
-
schema: str = None
|
28 |
-
subset_id: str = None
|
29 |
-
|
30 |
-
|
31 |
-
class Tasks(Enum):
|
32 |
-
NAMED_ENTITY_RECOGNITION = "NER"
|
33 |
-
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
34 |
-
EVENT_EXTRACTION = "EE"
|
35 |
-
RELATION_EXTRACTION = "RE"
|
36 |
-
COREFERENCE_RESOLUTION = "COREF"
|
37 |
-
QUESTION_ANSWERING = "QA"
|
38 |
-
TEXTUAL_ENTAILMENT = "TE"
|
39 |
-
SEMANTIC_SIMILARITY = "STS"
|
40 |
-
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
41 |
-
PARAPHRASING = "PARA"
|
42 |
-
TRANSLATION = "TRANSL"
|
43 |
-
SUMMARIZATION = "SUM"
|
44 |
-
TEXT_CLASSIFICATION = "TXTCLASS"
|
45 |
-
|
46 |
-
|
47 |
-
entailment_features = datasets.Features(
|
48 |
-
{
|
49 |
-
"id": datasets.Value("string"),
|
50 |
-
"premise": datasets.Value("string"),
|
51 |
-
"hypothesis": datasets.Value("string"),
|
52 |
-
"label": datasets.Value("string"),
|
53 |
-
}
|
54 |
-
)
|
55 |
-
|
56 |
-
pairs_features = datasets.Features(
|
57 |
-
{
|
58 |
-
"id": datasets.Value("string"),
|
59 |
-
"document_id": datasets.Value("string"),
|
60 |
-
"text_1": datasets.Value("string"),
|
61 |
-
"text_2": datasets.Value("string"),
|
62 |
-
"label": datasets.Value("string"),
|
63 |
-
}
|
64 |
-
)
|
65 |
-
|
66 |
-
qa_features = datasets.Features(
|
67 |
-
{
|
68 |
-
"id": datasets.Value("string"),
|
69 |
-
"question_id": datasets.Value("string"),
|
70 |
-
"document_id": datasets.Value("string"),
|
71 |
-
"question": datasets.Value("string"),
|
72 |
-
"type": datasets.Value("string"),
|
73 |
-
"choices": [datasets.Value("string")],
|
74 |
-
"context": datasets.Value("string"),
|
75 |
-
"answer": datasets.Sequence(datasets.Value("string")),
|
76 |
-
}
|
77 |
-
)
|
78 |
-
|
79 |
-
text_features = datasets.Features(
|
80 |
-
{
|
81 |
-
"id": datasets.Value("string"),
|
82 |
-
"document_id": datasets.Value("string"),
|
83 |
-
"text": datasets.Value("string"),
|
84 |
-
"labels": [datasets.Value("string")],
|
85 |
-
}
|
86 |
-
)
|
87 |
-
|
88 |
-
text2text_features = datasets.Features(
|
89 |
-
{
|
90 |
-
"id": datasets.Value("string"),
|
91 |
-
"document_id": datasets.Value("string"),
|
92 |
-
"text_1": datasets.Value("string"),
|
93 |
-
"text_2": datasets.Value("string"),
|
94 |
-
"text_1_name": datasets.Value("string"),
|
95 |
-
"text_2_name": datasets.Value("string"),
|
96 |
-
}
|
97 |
-
)
|
98 |
-
|
99 |
-
kb_features = datasets.Features(
|
100 |
-
{
|
101 |
-
"id": datasets.Value("string"),
|
102 |
-
"document_id": datasets.Value("string"),
|
103 |
-
"passages": [
|
104 |
-
{
|
105 |
-
"id": datasets.Value("string"),
|
106 |
-
"type": datasets.Value("string"),
|
107 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
108 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
109 |
-
}
|
110 |
-
],
|
111 |
-
"entities": [
|
112 |
-
{
|
113 |
-
"id": datasets.Value("string"),
|
114 |
-
"type": datasets.Value("string"),
|
115 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
116 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
117 |
-
"normalized": [
|
118 |
-
{
|
119 |
-
"db_name": datasets.Value("string"),
|
120 |
-
"db_id": datasets.Value("string"),
|
121 |
-
}
|
122 |
-
],
|
123 |
-
}
|
124 |
-
],
|
125 |
-
"events": [
|
126 |
-
{
|
127 |
-
"id": datasets.Value("string"),
|
128 |
-
"type": datasets.Value("string"),
|
129 |
-
# refers to the text_bound_annotation of the trigger
|
130 |
-
"trigger": {
|
131 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
132 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
133 |
-
},
|
134 |
-
"arguments": [
|
135 |
-
{
|
136 |
-
"role": datasets.Value("string"),
|
137 |
-
"ref_id": datasets.Value("string"),
|
138 |
-
}
|
139 |
-
],
|
140 |
-
}
|
141 |
-
],
|
142 |
-
"coreferences": [
|
143 |
-
{
|
144 |
-
"id": datasets.Value("string"),
|
145 |
-
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"relations": [
|
149 |
-
{
|
150 |
-
"id": datasets.Value("string"),
|
151 |
-
"type": datasets.Value("string"),
|
152 |
-
"arg1_id": datasets.Value("string"),
|
153 |
-
"arg2_id": datasets.Value("string"),
|
154 |
-
"normalized": [
|
155 |
-
{
|
156 |
-
"db_name": datasets.Value("string"),
|
157 |
-
"db_id": datasets.Value("string"),
|
158 |
-
}
|
159 |
-
],
|
160 |
-
}
|
161 |
-
],
|
162 |
-
}
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
|
167 |
-
|
168 |
-
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
169 |
-
|
170 |
-
text = ann.text
|
171 |
-
|
172 |
-
if len(offsets) > 1:
|
173 |
-
i = 0
|
174 |
-
texts = []
|
175 |
-
for start, end in offsets:
|
176 |
-
chunk_len = end - start
|
177 |
-
texts.append(text[i : chunk_len + i])
|
178 |
-
i += chunk_len
|
179 |
-
while i < len(text) and text[i] == " ":
|
180 |
-
i += 1
|
181 |
-
else:
|
182 |
-
texts = [text]
|
183 |
-
|
184 |
-
return offsets, texts
|
185 |
-
|
186 |
-
|
187 |
-
def remove_prefix(a: str, prefix: str) -> str:
|
188 |
-
if a.startswith(prefix):
|
189 |
-
a = a[len(prefix) :]
|
190 |
-
return a
|
191 |
-
|
192 |
-
|
193 |
-
def parse_brat_file(
|
194 |
-
txt_file: Path,
|
195 |
-
annotation_file_suffixes: List[str] = None,
|
196 |
-
parse_notes: bool = False,
|
197 |
-
) -> Dict:
|
198 |
-
"""
|
199 |
-
Parse a brat file into the schema defined below.
|
200 |
-
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
201 |
-
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
202 |
-
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
203 |
-
Will include annotator notes, when `parse_notes == True`.
|
204 |
-
brat_features = datasets.Features(
|
205 |
-
{
|
206 |
-
"id": datasets.Value("string"),
|
207 |
-
"document_id": datasets.Value("string"),
|
208 |
-
"text": datasets.Value("string"),
|
209 |
-
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
210 |
-
{
|
211 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
212 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
213 |
-
"type": datasets.Value("string"),
|
214 |
-
"id": datasets.Value("string"),
|
215 |
-
}
|
216 |
-
],
|
217 |
-
"events": [ # E line in brat
|
218 |
-
{
|
219 |
-
"trigger": datasets.Value(
|
220 |
-
"string"
|
221 |
-
), # refers to the text_bound_annotation of the trigger,
|
222 |
-
"id": datasets.Value("string"),
|
223 |
-
"type": datasets.Value("string"),
|
224 |
-
"arguments": datasets.Sequence(
|
225 |
-
{
|
226 |
-
"role": datasets.Value("string"),
|
227 |
-
"ref_id": datasets.Value("string"),
|
228 |
-
}
|
229 |
-
),
|
230 |
-
}
|
231 |
-
],
|
232 |
-
"relations": [ # R line in brat
|
233 |
-
{
|
234 |
-
"id": datasets.Value("string"),
|
235 |
-
"head": {
|
236 |
-
"ref_id": datasets.Value("string"),
|
237 |
-
"role": datasets.Value("string"),
|
238 |
-
},
|
239 |
-
"tail": {
|
240 |
-
"ref_id": datasets.Value("string"),
|
241 |
-
"role": datasets.Value("string"),
|
242 |
-
},
|
243 |
-
"type": datasets.Value("string"),
|
244 |
-
}
|
245 |
-
],
|
246 |
-
"equivalences": [ # Equiv line in brat
|
247 |
-
{
|
248 |
-
"id": datasets.Value("string"),
|
249 |
-
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
250 |
-
}
|
251 |
-
],
|
252 |
-
"attributes": [ # M or A lines in brat
|
253 |
-
{
|
254 |
-
"id": datasets.Value("string"),
|
255 |
-
"type": datasets.Value("string"),
|
256 |
-
"ref_id": datasets.Value("string"),
|
257 |
-
"value": datasets.Value("string"),
|
258 |
-
}
|
259 |
-
],
|
260 |
-
"normalizations": [ # N lines in brat
|
261 |
-
{
|
262 |
-
"id": datasets.Value("string"),
|
263 |
-
"type": datasets.Value("string"),
|
264 |
-
"ref_id": datasets.Value("string"),
|
265 |
-
"resource_name": datasets.Value(
|
266 |
-
"string"
|
267 |
-
), # Name of the resource, e.g. "Wikipedia"
|
268 |
-
"cuid": datasets.Value(
|
269 |
-
"string"
|
270 |
-
), # ID in the resource, e.g. 534366
|
271 |
-
"text": datasets.Value(
|
272 |
-
"string"
|
273 |
-
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
274 |
-
}
|
275 |
-
],
|
276 |
-
### OPTIONAL: Only included when `parse_notes == True`
|
277 |
-
"notes": [ # # lines in brat
|
278 |
-
{
|
279 |
-
"id": datasets.Value("string"),
|
280 |
-
"type": datasets.Value("string"),
|
281 |
-
"ref_id": datasets.Value("string"),
|
282 |
-
"text": datasets.Value("string"),
|
283 |
-
}
|
284 |
-
],
|
285 |
-
},
|
286 |
-
)
|
287 |
-
"""
|
288 |
-
|
289 |
-
example = {}
|
290 |
-
example["document_id"] = txt_file.with_suffix("").name
|
291 |
-
with txt_file.open() as f:
|
292 |
-
example["text"] = f.read()
|
293 |
-
|
294 |
-
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
295 |
-
# for event extraction
|
296 |
-
if annotation_file_suffixes is None:
|
297 |
-
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
298 |
-
|
299 |
-
if len(annotation_file_suffixes) == 0:
|
300 |
-
raise AssertionError(
|
301 |
-
"At least one suffix for the to-be-read annotation files should be given!"
|
302 |
-
)
|
303 |
-
|
304 |
-
ann_lines = []
|
305 |
-
for suffix in annotation_file_suffixes:
|
306 |
-
annotation_file = txt_file.with_suffix(suffix)
|
307 |
-
if annotation_file.exists():
|
308 |
-
with annotation_file.open() as f:
|
309 |
-
ann_lines.extend(f.readlines())
|
310 |
-
|
311 |
-
example["text_bound_annotations"] = []
|
312 |
-
example["events"] = []
|
313 |
-
example["relations"] = []
|
314 |
-
example["equivalences"] = []
|
315 |
-
example["attributes"] = []
|
316 |
-
example["normalizations"] = []
|
317 |
-
|
318 |
-
if parse_notes:
|
319 |
-
example["notes"] = []
|
320 |
-
|
321 |
-
for line in ann_lines:
|
322 |
-
line = line.strip()
|
323 |
-
if not line:
|
324 |
-
continue
|
325 |
-
|
326 |
-
if line.startswith("T"): # Text bound
|
327 |
-
ann = {}
|
328 |
-
fields = line.split("\t")
|
329 |
-
|
330 |
-
ann["id"] = fields[0]
|
331 |
-
ann["type"] = fields[1].split()[0]
|
332 |
-
ann["offsets"] = []
|
333 |
-
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
334 |
-
text = fields[2]
|
335 |
-
for span in span_str.split(";"):
|
336 |
-
start, end = span.split()
|
337 |
-
ann["offsets"].append([int(start), int(end)])
|
338 |
-
|
339 |
-
# Heuristically split text of discontiguous entities into chunks
|
340 |
-
ann["text"] = []
|
341 |
-
if len(ann["offsets"]) > 1:
|
342 |
-
i = 0
|
343 |
-
for start, end in ann["offsets"]:
|
344 |
-
chunk_len = end - start
|
345 |
-
ann["text"].append(text[i : chunk_len + i])
|
346 |
-
i += chunk_len
|
347 |
-
while i < len(text) and text[i] == " ":
|
348 |
-
i += 1
|
349 |
-
else:
|
350 |
-
ann["text"] = [text]
|
351 |
-
|
352 |
-
example["text_bound_annotations"].append(ann)
|
353 |
-
|
354 |
-
elif line.startswith("E"):
|
355 |
-
ann = {}
|
356 |
-
fields = line.split("\t")
|
357 |
-
|
358 |
-
ann["id"] = fields[0]
|
359 |
-
|
360 |
-
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
361 |
-
|
362 |
-
ann["arguments"] = []
|
363 |
-
for role_ref_id in fields[1].split()[1:]:
|
364 |
-
argument = {
|
365 |
-
"role": (role_ref_id.split(":"))[0],
|
366 |
-
"ref_id": (role_ref_id.split(":"))[1],
|
367 |
-
}
|
368 |
-
ann["arguments"].append(argument)
|
369 |
-
|
370 |
-
example["events"].append(ann)
|
371 |
-
|
372 |
-
elif line.startswith("R"):
|
373 |
-
ann = {}
|
374 |
-
fields = line.split("\t")
|
375 |
-
|
376 |
-
ann["id"] = fields[0]
|
377 |
-
ann["type"] = fields[1].split()[0]
|
378 |
-
|
379 |
-
ann["head"] = {
|
380 |
-
"role": fields[1].split()[1].split(":")[0],
|
381 |
-
"ref_id": fields[1].split()[1].split(":")[1],
|
382 |
-
}
|
383 |
-
ann["tail"] = {
|
384 |
-
"role": fields[1].split()[2].split(":")[0],
|
385 |
-
"ref_id": fields[1].split()[2].split(":")[1],
|
386 |
-
}
|
387 |
-
|
388 |
-
example["relations"].append(ann)
|
389 |
-
|
390 |
-
# '*' seems to be the legacy way to mark equivalences,
|
391 |
-
# but I couldn't find any info on the current way
|
392 |
-
# this might have to be adapted dependent on the brat version
|
393 |
-
# of the annotation
|
394 |
-
elif line.startswith("*"):
|
395 |
-
ann = {}
|
396 |
-
fields = line.split("\t")
|
397 |
-
|
398 |
-
ann["id"] = fields[0]
|
399 |
-
ann["ref_ids"] = fields[1].split()[1:]
|
400 |
-
|
401 |
-
example["equivalences"].append(ann)
|
402 |
-
|
403 |
-
elif line.startswith("A") or line.startswith("M"):
|
404 |
-
ann = {}
|
405 |
-
fields = line.split("\t")
|
406 |
-
|
407 |
-
ann["id"] = fields[0]
|
408 |
-
|
409 |
-
info = fields[1].split()
|
410 |
-
ann["type"] = info[0]
|
411 |
-
ann["ref_id"] = info[1]
|
412 |
-
|
413 |
-
if len(info) > 2:
|
414 |
-
ann["value"] = info[2]
|
415 |
-
else:
|
416 |
-
ann["value"] = ""
|
417 |
-
|
418 |
-
example["attributes"].append(ann)
|
419 |
-
|
420 |
-
elif line.startswith("N"):
|
421 |
-
ann = {}
|
422 |
-
fields = line.split("\t")
|
423 |
-
|
424 |
-
ann["id"] = fields[0]
|
425 |
-
ann["text"] = fields[2]
|
426 |
-
|
427 |
-
info = fields[1].split()
|
428 |
-
|
429 |
-
ann["type"] = info[0]
|
430 |
-
ann["ref_id"] = info[1]
|
431 |
-
ann["resource_name"] = info[2].split(":")[0]
|
432 |
-
ann["cuid"] = info[2].split(":")[1]
|
433 |
-
example["normalizations"].append(ann)
|
434 |
-
|
435 |
-
elif parse_notes and line.startswith("#"):
|
436 |
-
ann = {}
|
437 |
-
fields = line.split("\t")
|
438 |
-
|
439 |
-
ann["id"] = fields[0]
|
440 |
-
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
441 |
-
|
442 |
-
info = fields[1].split()
|
443 |
-
|
444 |
-
ann["type"] = info[0]
|
445 |
-
ann["ref_id"] = info[1]
|
446 |
-
example["notes"].append(ann)
|
447 |
-
|
448 |
-
return example
|
449 |
-
|
450 |
-
|
451 |
-
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
452 |
-
"""
|
453 |
-
Transform a brat parse (conforming to the standard brat schema) obtained with
|
454 |
-
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
455 |
-
:param brat_parse:
|
456 |
-
"""
|
457 |
-
|
458 |
-
unified_example = {}
|
459 |
-
|
460 |
-
# Prefix all ids with document id to ensure global uniqueness,
|
461 |
-
# because brat ids are only unique within their document
|
462 |
-
id_prefix = brat_parse["document_id"] + "_"
|
463 |
-
|
464 |
-
# identical
|
465 |
-
unified_example["document_id"] = brat_parse["document_id"]
|
466 |
-
unified_example["passages"] = [
|
467 |
-
{
|
468 |
-
"id": id_prefix + "_text",
|
469 |
-
"type": "abstract",
|
470 |
-
"text": [brat_parse["text"]],
|
471 |
-
"offsets": [[0, len(brat_parse["text"])]],
|
472 |
-
}
|
473 |
-
]
|
474 |
-
|
475 |
-
# get normalizations
|
476 |
-
ref_id_to_normalizations = defaultdict(list)
|
477 |
-
for normalization in brat_parse["normalizations"]:
|
478 |
-
ref_id_to_normalizations[normalization["ref_id"]].append(
|
479 |
-
{
|
480 |
-
"db_name": normalization["resource_name"],
|
481 |
-
"db_id": normalization["cuid"],
|
482 |
-
}
|
483 |
-
)
|
484 |
-
|
485 |
-
# separate entities and event triggers
|
486 |
-
unified_example["events"] = []
|
487 |
-
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
488 |
-
for event in brat_parse["events"]:
|
489 |
-
event = event.copy()
|
490 |
-
event["id"] = id_prefix + event["id"]
|
491 |
-
trigger = next(
|
492 |
-
tr
|
493 |
-
for tr in brat_parse["text_bound_annotations"]
|
494 |
-
if tr["id"] == event["trigger"]
|
495 |
-
)
|
496 |
-
if trigger in non_event_ann:
|
497 |
-
non_event_ann.remove(trigger)
|
498 |
-
event["trigger"] = {
|
499 |
-
"text": trigger["text"].copy(),
|
500 |
-
"offsets": trigger["offsets"].copy(),
|
501 |
-
}
|
502 |
-
for argument in event["arguments"]:
|
503 |
-
argument["ref_id"] = id_prefix + argument["ref_id"]
|
504 |
-
|
505 |
-
unified_example["events"].append(event)
|
506 |
-
|
507 |
-
unified_example["entities"] = []
|
508 |
-
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
509 |
-
for ann in non_event_ann:
|
510 |
-
entity_ann = ann.copy()
|
511 |
-
entity_ann["id"] = id_prefix + entity_ann["id"]
|
512 |
-
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
513 |
-
unified_example["entities"].append(entity_ann)
|
514 |
-
|
515 |
-
# massage relations
|
516 |
-
unified_example["relations"] = []
|
517 |
-
skipped_relations = set()
|
518 |
-
for ann in brat_parse["relations"]:
|
519 |
-
if (
|
520 |
-
ann["head"]["ref_id"] not in anno_ids
|
521 |
-
or ann["tail"]["ref_id"] not in anno_ids
|
522 |
-
):
|
523 |
-
skipped_relations.add(ann["id"])
|
524 |
-
continue
|
525 |
-
unified_example["relations"].append(
|
526 |
-
{
|
527 |
-
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
528 |
-
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
529 |
-
"id": id_prefix + ann["id"],
|
530 |
-
"type": ann["type"],
|
531 |
-
"normalized": [],
|
532 |
-
}
|
533 |
-
)
|
534 |
-
if len(skipped_relations) > 0:
|
535 |
-
example_id = brat_parse["document_id"]
|
536 |
-
logger.info(
|
537 |
-
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
538 |
-
f" Skip (for now): "
|
539 |
-
f"{list(skipped_relations)}"
|
540 |
-
)
|
541 |
-
|
542 |
-
# get coreferences
|
543 |
-
unified_example["coreferences"] = []
|
544 |
-
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
545 |
-
is_entity_cluster = True
|
546 |
-
for ref_id in ann["ref_ids"]:
|
547 |
-
if not ref_id.startswith("T"): # not textbound -> no entity
|
548 |
-
is_entity_cluster = False
|
549 |
-
elif ref_id not in anno_ids: # event trigger -> no entity
|
550 |
-
is_entity_cluster = False
|
551 |
-
if is_entity_cluster:
|
552 |
-
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
553 |
-
unified_example["coreferences"].append(
|
554 |
-
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
555 |
-
)
|
556 |
-
return unified_example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meqsum.py
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
"""
|
17 |
-
Dataset for medical question summarization introduced in the ACL 2019 paper "On the Summarization of Consumer Health
|
18 |
-
Questions". Question understanding is one of the main challenges in question answering. In real world applications,
|
19 |
-
users often submit natural language questions that are longer than needed and include peripheral information that
|
20 |
-
increases the complexity of the question, leading to substantially more false positives in answer retrieval. In this
|
21 |
-
paper, we study neural abstractive models for medical question summarization. We introduce the MeQSum corpus of 1,000
|
22 |
-
summarized consumer health questions.
|
23 |
-
"""
|
24 |
-
|
25 |
-
import os
|
26 |
-
from typing import Dict, List, Tuple
|
27 |
-
|
28 |
-
import datasets
|
29 |
-
import pandas as pd
|
30 |
-
|
31 |
-
from .bigbiohub import text2text_features
|
32 |
-
from .bigbiohub import BigBioConfig
|
33 |
-
from .bigbiohub import Tasks
|
34 |
-
|
35 |
-
_LANGUAGES = ['English']
|
36 |
-
_PUBMED = False
|
37 |
-
_LOCAL = False
|
38 |
-
_CITATION = """\
|
39 |
-
@inproceedings{ben-abacha-demner-fushman-2019-summarization,
|
40 |
-
title = "On the Summarization of Consumer Health Questions",
|
41 |
-
author = "Ben Abacha, Asma and
|
42 |
-
Demner-Fushman, Dina",
|
43 |
-
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
44 |
-
month = jul,
|
45 |
-
year = "2019",
|
46 |
-
address = "Florence, Italy",
|
47 |
-
publisher = "Association for Computational Linguistics",
|
48 |
-
url = "https://aclanthology.org/P19-1215",
|
49 |
-
doi = "10.18653/v1/P19-1215",
|
50 |
-
pages = "2228--2234",
|
51 |
-
abstract = "Question understanding is one of the main challenges in question answering. In real world applications, users often submit natural language questions that are longer than needed and include peripheral information that increases the complexity of the question, leading to substantially more false positives in answer retrieval. In this paper, we study neural abstractive models for medical question summarization. We introduce the MeQSum corpus of 1,000 summarized consumer health questions. We explore data augmentation methods and evaluate state-of-the-art neural abstractive models on this new task. In particular, we show that semantic augmentation from question datasets improves the overall performance, and that pointer-generator networks outperform sequence-to-sequence attentional models on this task, with a ROUGE-1 score of 44.16{\%}. We also present a detailed error analysis and discuss directions for improvement that are specific to question summarization.",
|
52 |
-
}
|
53 |
-
"""
|
54 |
-
|
55 |
-
_DATASETNAME = "meqsum"
|
56 |
-
_DISPLAYNAME = "MeQSum"
|
57 |
-
|
58 |
-
_DESCRIPTION = """\
|
59 |
-
Dataset for medical question summarization introduced in the ACL 2019 paper "On the Summarization of Consumer Health
|
60 |
-
Questions". Question understanding is one of the main challenges in question answering. In real world applications,
|
61 |
-
users often submit natural language questions that are longer than needed and include peripheral information that
|
62 |
-
increases the complexity of the question, leading to substantially more false positives in answer retrieval. In this
|
63 |
-
paper, we study neural abstractive models for medical question summarization. We introduce the MeQSum corpus of 1,000
|
64 |
-
summarized consumer health questions.
|
65 |
-
"""
|
66 |
-
|
67 |
-
_HOMEPAGE = "https://github.com/abachaa/MeQSum"
|
68 |
-
|
69 |
-
_LICENSE = 'License information unavailable'
|
70 |
-
|
71 |
-
_URLS = {
|
72 |
-
_DATASETNAME: "https://github.com/abachaa/MeQSum/raw/master/MeQSum_ACL2019_BenAbacha_Demner-Fushman.xlsx",
|
73 |
-
}
|
74 |
-
|
75 |
-
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
|
76 |
-
|
77 |
-
_SOURCE_VERSION = "1.0.0"
|
78 |
-
|
79 |
-
_BIGBIO_VERSION = "1.0.0"
|
80 |
-
|
81 |
-
|
82 |
-
class MeQSumDataset(datasets.GeneratorBasedBuilder):
|
83 |
-
"""Dataset containing 1000 summarized consumer health questions."""
|
84 |
-
|
85 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
86 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
87 |
-
|
88 |
-
BUILDER_CONFIGS = [
|
89 |
-
BigBioConfig(
|
90 |
-
name="meqsum_source",
|
91 |
-
version=SOURCE_VERSION,
|
92 |
-
description="MeQSum source schema",
|
93 |
-
schema="source",
|
94 |
-
subset_id="meqsum",
|
95 |
-
),
|
96 |
-
BigBioConfig(
|
97 |
-
name="meqsum_bigbio_t2t",
|
98 |
-
version=BIGBIO_VERSION,
|
99 |
-
description="MeQSum BigBio schema",
|
100 |
-
schema="bigbio_t2t",
|
101 |
-
subset_id="meqsum",
|
102 |
-
),
|
103 |
-
]
|
104 |
-
|
105 |
-
DEFAULT_CONFIG_NAME = "meqsum_source"
|
106 |
-
|
107 |
-
def _info(self) -> datasets.DatasetInfo:
|
108 |
-
|
109 |
-
if self.config.schema == "source":
|
110 |
-
features = datasets.Features(
|
111 |
-
{
|
112 |
-
"File": datasets.Value("string"),
|
113 |
-
"CHQ": datasets.Value("string"),
|
114 |
-
"Summary": datasets.Value("string"),
|
115 |
-
}
|
116 |
-
)
|
117 |
-
elif self.config.schema == "bigbio_t2t":
|
118 |
-
features = text2text_features
|
119 |
-
|
120 |
-
return datasets.DatasetInfo(
|
121 |
-
description=_DESCRIPTION,
|
122 |
-
features=features,
|
123 |
-
homepage=_HOMEPAGE,
|
124 |
-
license=str(_LICENSE),
|
125 |
-
citation=_CITATION,
|
126 |
-
)
|
127 |
-
|
128 |
-
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
129 |
-
"""Returns SplitGenerators."""
|
130 |
-
|
131 |
-
urls = _URLS[_DATASETNAME]
|
132 |
-
file_path = dl_manager.download(urls)
|
133 |
-
|
134 |
-
return [
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.TRAIN,
|
137 |
-
gen_kwargs={
|
138 |
-
"filepath": os.path.join(file_path),
|
139 |
-
},
|
140 |
-
),
|
141 |
-
]
|
142 |
-
|
143 |
-
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
|
144 |
-
"""Yields examples as (key, example) tuples."""
|
145 |
-
|
146 |
-
corpus = pd.read_excel(filepath)
|
147 |
-
|
148 |
-
if self.config.schema == "source":
|
149 |
-
for idx, example in corpus.iterrows():
|
150 |
-
yield idx, example.to_dict()
|
151 |
-
|
152 |
-
elif self.config.schema == "bigbio_t2t":
|
153 |
-
corpus["id"] = corpus.index
|
154 |
-
corpus.rename(
|
155 |
-
columns={"File": "document_id", "CHQ": "text_1", "Summary": "text_2"},
|
156 |
-
inplace=True,
|
157 |
-
)
|
158 |
-
corpus["text_1_name"] = ""
|
159 |
-
corpus["text_2_name"] = ""
|
160 |
-
for idx, example in corpus.iterrows():
|
161 |
-
yield example["id"], example.to_dict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meqsum_source/meqsum-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3b2354877082438411990825008819ec4054208d26dceaa0ed718ef587dbbab
|
3 |
+
size 262329
|