gabrielaltay
commited on
Commit
·
cc0c03a
1
Parent(s):
fb40aa1
initial commit
Browse files- README.md +40 -0
- bigbiohub.py +153 -0
- mednli.py +201 -0
README.md
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
---
|
|
|
2 |
license: other
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: other
|
4 |
+
multilinguality: monolingual
|
5 |
+
pretty_name: MedNLI
|
6 |
+
paperswithcode_id: mednli
|
7 |
---
|
8 |
+
|
9 |
+
|
10 |
+
# Dataset Card for MedNLI
|
11 |
+
|
12 |
+
## Dataset Description
|
13 |
+
|
14 |
+
- **Homepage:** https://physionet.org/content/mednli/1.0.0/
|
15 |
+
- **Pubmed:** False
|
16 |
+
- **Public:** False
|
17 |
+
- **Tasks:** Textual Entailment
|
18 |
+
|
19 |
+
|
20 |
+
State of the art models using deep neural networks have become very good in learning an accurate
|
21 |
+
mapping from inputs to outputs. However, they still lack generalization capabilities in conditions
|
22 |
+
that differ from the ones encountered during training. This is even more challenging in specialized,
|
23 |
+
and knowledge intensive domains, where training data is limited. To address this gap, we introduce
|
24 |
+
MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI),
|
25 |
+
grounded in the medical history of patients. As the source of premise sentences, we used the
|
26 |
+
MIMIC-III. More specifically, to minimize the risks to patient privacy, we worked with clinical
|
27 |
+
notes corresponding to the deceased patients. The clinicians in our team suggested the Past Medical
|
28 |
+
History to be the most informative section of a clinical note, from which useful inferences can be
|
29 |
+
drawn about the patient.
|
30 |
+
|
31 |
+
|
32 |
+
## Citation Information
|
33 |
+
|
34 |
+
```
|
35 |
+
@misc{https://doi.org/10.13026/c2rs98,
|
36 |
+
title = {MedNLI — A Natural Language Inference Dataset For The Clinical Domain},
|
37 |
+
author = {Shivade, Chaitanya},
|
38 |
+
year = 2017,
|
39 |
+
publisher = {physionet.org},
|
40 |
+
doi = {10.13026/C2RS98},
|
41 |
+
url = {https://physionet.org/content/mednli/}
|
42 |
+
}
|
43 |
+
```
|
bigbiohub.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
import datasets
|
4 |
+
from types import SimpleNamespace
|
5 |
+
|
6 |
+
|
7 |
+
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class BigBioConfig(datasets.BuilderConfig):
|
12 |
+
"""BuilderConfig for BigBio."""
|
13 |
+
|
14 |
+
name: str = None
|
15 |
+
version: datasets.Version = None
|
16 |
+
description: str = None
|
17 |
+
schema: str = None
|
18 |
+
subset_id: str = None
|
19 |
+
|
20 |
+
|
21 |
+
class Tasks(Enum):
|
22 |
+
NAMED_ENTITY_RECOGNITION = "NER"
|
23 |
+
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
24 |
+
EVENT_EXTRACTION = "EE"
|
25 |
+
RELATION_EXTRACTION = "RE"
|
26 |
+
COREFERENCE_RESOLUTION = "COREF"
|
27 |
+
QUESTION_ANSWERING = "QA"
|
28 |
+
TEXTUAL_ENTAILMENT = "TE"
|
29 |
+
SEMANTIC_SIMILARITY = "STS"
|
30 |
+
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
31 |
+
PARAPHRASING = "PARA"
|
32 |
+
TRANSLATION = "TRANSL"
|
33 |
+
SUMMARIZATION = "SUM"
|
34 |
+
TEXT_CLASSIFICATION = "TXTCLASS"
|
35 |
+
|
36 |
+
|
37 |
+
entailment_features = datasets.Features(
|
38 |
+
{
|
39 |
+
"id": datasets.Value("string"),
|
40 |
+
"premise": datasets.Value("string"),
|
41 |
+
"hypothesis": datasets.Value("string"),
|
42 |
+
"label": datasets.Value("string"),
|
43 |
+
}
|
44 |
+
)
|
45 |
+
|
46 |
+
pairs_features = datasets.Features(
|
47 |
+
{
|
48 |
+
"id": datasets.Value("string"),
|
49 |
+
"document_id": datasets.Value("string"),
|
50 |
+
"text_1": datasets.Value("string"),
|
51 |
+
"text_2": datasets.Value("string"),
|
52 |
+
"label": datasets.Value("string"),
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
qa_features = datasets.Features(
|
57 |
+
{
|
58 |
+
"id": datasets.Value("string"),
|
59 |
+
"question_id": datasets.Value("string"),
|
60 |
+
"document_id": datasets.Value("string"),
|
61 |
+
"question": datasets.Value("string"),
|
62 |
+
"type": datasets.Value("string"),
|
63 |
+
"choices": [datasets.Value("string")],
|
64 |
+
"context": datasets.Value("string"),
|
65 |
+
"answer": datasets.Sequence(datasets.Value("string")),
|
66 |
+
}
|
67 |
+
)
|
68 |
+
|
69 |
+
text_features = datasets.Features(
|
70 |
+
{
|
71 |
+
"id": datasets.Value("string"),
|
72 |
+
"document_id": datasets.Value("string"),
|
73 |
+
"text": datasets.Value("string"),
|
74 |
+
"labels": [datasets.Value("string")],
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
text2text_features = datasets.Features(
|
79 |
+
{
|
80 |
+
"id": datasets.Value("string"),
|
81 |
+
"document_id": datasets.Value("string"),
|
82 |
+
"text_1": datasets.Value("string"),
|
83 |
+
"text_2": datasets.Value("string"),
|
84 |
+
"text_1_name": datasets.Value("string"),
|
85 |
+
"text_2_name": datasets.Value("string"),
|
86 |
+
}
|
87 |
+
)
|
88 |
+
|
89 |
+
kb_features = datasets.Features(
|
90 |
+
{
|
91 |
+
"id": datasets.Value("string"),
|
92 |
+
"document_id": datasets.Value("string"),
|
93 |
+
"passages": [
|
94 |
+
{
|
95 |
+
"id": datasets.Value("string"),
|
96 |
+
"type": datasets.Value("string"),
|
97 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
98 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"entities": [
|
102 |
+
{
|
103 |
+
"id": datasets.Value("string"),
|
104 |
+
"type": datasets.Value("string"),
|
105 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
106 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
107 |
+
"normalized": [
|
108 |
+
{
|
109 |
+
"db_name": datasets.Value("string"),
|
110 |
+
"db_id": datasets.Value("string"),
|
111 |
+
}
|
112 |
+
],
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"events": [
|
116 |
+
{
|
117 |
+
"id": datasets.Value("string"),
|
118 |
+
"type": datasets.Value("string"),
|
119 |
+
# refers to the text_bound_annotation of the trigger
|
120 |
+
"trigger": {
|
121 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
122 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
123 |
+
},
|
124 |
+
"arguments": [
|
125 |
+
{
|
126 |
+
"role": datasets.Value("string"),
|
127 |
+
"ref_id": datasets.Value("string"),
|
128 |
+
}
|
129 |
+
],
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"coreferences": [
|
133 |
+
{
|
134 |
+
"id": datasets.Value("string"),
|
135 |
+
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"relations": [
|
139 |
+
{
|
140 |
+
"id": datasets.Value("string"),
|
141 |
+
"type": datasets.Value("string"),
|
142 |
+
"arg1_id": datasets.Value("string"),
|
143 |
+
"arg2_id": datasets.Value("string"),
|
144 |
+
"normalized": [
|
145 |
+
{
|
146 |
+
"db_name": datasets.Value("string"),
|
147 |
+
"db_id": datasets.Value("string"),
|
148 |
+
}
|
149 |
+
],
|
150 |
+
}
|
151 |
+
],
|
152 |
+
}
|
153 |
+
)
|
mednli.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
State of the art models using deep neural networks have become very good in learning an accurate
|
18 |
+
mapping from inputs to outputs. However, they still lack generalization capabilities in conditions
|
19 |
+
that differ from the ones encountered during training. This is even more challenging in specialized,
|
20 |
+
and knowledge intensive domains, where training data is limited. To address this gap, we introduce
|
21 |
+
MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI),
|
22 |
+
grounded in the medical history of patients. As the source of premise sentences, we used the
|
23 |
+
MIMIC-III. More specifically, to minimize the risks to patient privacy, we worked with clinical
|
24 |
+
notes corresponding to the deceased patients. The clinicians in our team suggested the Past Medical
|
25 |
+
History to be the most informative section of a clinical note, from which useful inferences can be
|
26 |
+
drawn about the patient.
|
27 |
+
|
28 |
+
The files comprising this dataset must be on the users local machine in a single directory that is
|
29 |
+
passed to `datasets.load_datset` via the `data_dir` kwarg. This loader script will read the archive
|
30 |
+
files directly (i.e. the user should not uncompress, untar or unzip any of the files). For example,
|
31 |
+
if `data_dir` is `"mednli"` it should contain the following files:
|
32 |
+
|
33 |
+
mednli
|
34 |
+
├── mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip
|
35 |
+
"""
|
36 |
+
|
37 |
+
import json
|
38 |
+
import os
|
39 |
+
from typing import Dict, List, Tuple
|
40 |
+
|
41 |
+
import datasets
|
42 |
+
|
43 |
+
from .bigbiohub import entailment_features
|
44 |
+
from .bigbiohub import BigBioConfig
|
45 |
+
from .bigbiohub import Tasks
|
46 |
+
|
47 |
+
|
48 |
+
_LANGUAGES = ["English"]
|
49 |
+
_PUBMED = False
|
50 |
+
_LOCAL = True
|
51 |
+
_CITATION = """\
|
52 |
+
@misc{https://doi.org/10.13026/c2rs98,
|
53 |
+
title = {MedNLI — A Natural Language Inference Dataset For The Clinical Domain},
|
54 |
+
author = {Shivade, Chaitanya},
|
55 |
+
year = 2017,
|
56 |
+
publisher = {physionet.org},
|
57 |
+
doi = {10.13026/C2RS98},
|
58 |
+
url = {https://physionet.org/content/mednli/}
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
|
63 |
+
_DATASETNAME = "mednli"
|
64 |
+
_DISPLAYNAME = "MedNLI"
|
65 |
+
|
66 |
+
_DESCRIPTION = """\
|
67 |
+
State of the art models using deep neural networks have become very good in learning an accurate
|
68 |
+
mapping from inputs to outputs. However, they still lack generalization capabilities in conditions
|
69 |
+
that differ from the ones encountered during training. This is even more challenging in specialized,
|
70 |
+
and knowledge intensive domains, where training data is limited. To address this gap, we introduce
|
71 |
+
MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI),
|
72 |
+
grounded in the medical history of patients. As the source of premise sentences, we used the
|
73 |
+
MIMIC-III. More specifically, to minimize the risks to patient privacy, we worked with clinical
|
74 |
+
notes corresponding to the deceased patients. The clinicians in our team suggested the Past Medical
|
75 |
+
History to be the most informative section of a clinical note, from which useful inferences can be
|
76 |
+
drawn about the patient.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
_HOMEPAGE = "https://physionet.org/content/mednli/1.0.0/"
|
81 |
+
|
82 |
+
_LICENSE = "PHYSIONET_LICENSE_1p5"
|
83 |
+
|
84 |
+
_URLS = {}
|
85 |
+
|
86 |
+
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
87 |
+
|
88 |
+
_SOURCE_VERSION = "1.0.0"
|
89 |
+
_BIGBIO_VERSION = "1.0.0"
|
90 |
+
|
91 |
+
|
92 |
+
class MedNLIDataset(datasets.GeneratorBasedBuilder):
|
93 |
+
"""MedNLI"""
|
94 |
+
|
95 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
96 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
97 |
+
|
98 |
+
BUILDER_CONFIGS = [
|
99 |
+
BigBioConfig(
|
100 |
+
name="mednli_source",
|
101 |
+
version=SOURCE_VERSION,
|
102 |
+
description="MedNLI source schema",
|
103 |
+
schema="source",
|
104 |
+
subset_id="mednli",
|
105 |
+
),
|
106 |
+
BigBioConfig(
|
107 |
+
name="mednli_bigbio_te",
|
108 |
+
version=BIGBIO_VERSION,
|
109 |
+
description="MedNLI BigBio schema",
|
110 |
+
schema="bigbio_te",
|
111 |
+
subset_id="mednli",
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
DEFAULT_CONFIG_NAME = "mednli_source"
|
116 |
+
|
117 |
+
def _info(self) -> datasets.DatasetInfo:
|
118 |
+
|
119 |
+
if self.config.schema == "source":
|
120 |
+
features = datasets.Features(
|
121 |
+
{
|
122 |
+
"pairID": datasets.Value("string"),
|
123 |
+
"gold_label": datasets.Value("string"),
|
124 |
+
"sentence1": datasets.Value("string"),
|
125 |
+
"sentence2": datasets.Value("string"),
|
126 |
+
"sentence1_parse": datasets.Value("string"),
|
127 |
+
"sentence2_parse": datasets.Value("string"),
|
128 |
+
"sentence1_binary_parse": datasets.Value("string"),
|
129 |
+
"sentence2_binary_parse": datasets.Value("string"),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
|
133 |
+
elif self.config.schema == "bigbio_te":
|
134 |
+
features = entailment_features
|
135 |
+
|
136 |
+
return datasets.DatasetInfo(
|
137 |
+
description=_DESCRIPTION,
|
138 |
+
features=features,
|
139 |
+
homepage=_HOMEPAGE,
|
140 |
+
license=str(_LICENSE),
|
141 |
+
citation=_CITATION,
|
142 |
+
)
|
143 |
+
|
144 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
145 |
+
if self.config.data_dir is None:
|
146 |
+
raise ValueError(
|
147 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
extract_dir = dl_manager.extract(
|
151 |
+
os.path.join(
|
152 |
+
self.config.data_dir,
|
153 |
+
"mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip",
|
154 |
+
)
|
155 |
+
)
|
156 |
+
data_dir = os.path.join(
|
157 |
+
extract_dir,
|
158 |
+
"mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0",
|
159 |
+
)
|
160 |
+
|
161 |
+
return [
|
162 |
+
datasets.SplitGenerator(
|
163 |
+
name=datasets.Split.TRAIN,
|
164 |
+
gen_kwargs={
|
165 |
+
"filepath": os.path.join(data_dir, "mli_train_v1.jsonl"),
|
166 |
+
"split": "train",
|
167 |
+
},
|
168 |
+
),
|
169 |
+
datasets.SplitGenerator(
|
170 |
+
name=datasets.Split.TEST,
|
171 |
+
gen_kwargs={
|
172 |
+
"filepath": os.path.join(data_dir, "mli_test_v1.jsonl"),
|
173 |
+
"split": "test",
|
174 |
+
},
|
175 |
+
),
|
176 |
+
datasets.SplitGenerator(
|
177 |
+
name=datasets.Split.VALIDATION,
|
178 |
+
gen_kwargs={
|
179 |
+
"filepath": os.path.join(data_dir, "mli_dev_v1.jsonl"),
|
180 |
+
"split": "dev",
|
181 |
+
},
|
182 |
+
),
|
183 |
+
]
|
184 |
+
|
185 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
186 |
+
with open(filepath, "r") as f:
|
187 |
+
if self.config.schema == "source":
|
188 |
+
for line in f:
|
189 |
+
json_line = json.loads(line)
|
190 |
+
yield json_line["pairID"], json_line
|
191 |
+
|
192 |
+
elif self.config.schema == "bigbio_te":
|
193 |
+
for line in f:
|
194 |
+
json_line = json.loads(line)
|
195 |
+
entailment_example = {
|
196 |
+
"id": json_line["pairID"],
|
197 |
+
"premise": json_line["sentence1"],
|
198 |
+
"hypothesis": json_line["sentence2"],
|
199 |
+
"label": json_line["gold_label"],
|
200 |
+
}
|
201 |
+
yield json_line["pairID"], entailment_example
|