gabrielaltay
commited on
Commit
·
24c19f4
1
Parent(s):
9367da5
upload hubscripts/lll_hub.py to hub from bigbio repo
Browse files
lll.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and Simon Ott, github: nomisto
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline
|
18 |
+
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the
|
19 |
+
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the
|
20 |
+
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in
|
21 |
+
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is
|
22 |
+
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene
|
23 |
+
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene
|
24 |
+
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from
|
25 |
+
sentences.
|
26 |
+
"""
|
27 |
+
|
28 |
+
# NOTE:
|
29 |
+
# word stop offsets are increased by one to be consistent with python slicing.
|
30 |
+
# test set does not include entity relation information
|
31 |
+
|
32 |
+
import itertools as it
|
33 |
+
from typing import List
|
34 |
+
|
35 |
+
import datasets
|
36 |
+
|
37 |
+
from .bigbiohub import kb_features
|
38 |
+
from .bigbiohub import BigBioConfig
|
39 |
+
from .bigbiohub import Tasks
|
40 |
+
|
41 |
+
_LANGUAGES = ['English']
|
42 |
+
_PUBMED = True
|
43 |
+
_LOCAL = False
|
44 |
+
_CITATION = """\
|
45 |
+
@article{article,
|
46 |
+
author = {Nédellec, C.},
|
47 |
+
year = {2005},
|
48 |
+
month = {01},
|
49 |
+
pages = {},
|
50 |
+
title = {Learning Language in Logic - Genic Interaction Extraction Challenge},
|
51 |
+
journal = {Proceedings of the Learning Language in Logic 2005 Workshop at the \
|
52 |
+
International Conference on Machine Learning}
|
53 |
+
}
|
54 |
+
"""
|
55 |
+
|
56 |
+
_DATASETNAME = "lll"
|
57 |
+
_DISPLAYNAME = "LLL05"
|
58 |
+
|
59 |
+
_DESCRIPTION = """\
|
60 |
+
The LLL05 challenge task is to learn rules to extract protein/gene interactions from biology abstracts from the Medline
|
61 |
+
bibliography database. The goal of the challenge is to test the ability of the participating IE systems to identify the
|
62 |
+
interactions and the gene/proteins that interact. The participants will test their IE patterns on a test set with the
|
63 |
+
aim of extracting the correct agent and target.The challenge focuses on information extraction of gene interactions in
|
64 |
+
Bacillus subtilis. Extracting gene interaction is the most popular event IE task in biology. Bacillus subtilis (Bs) is
|
65 |
+
a model bacterium and many papers have been published on direct gene interactions involved in sporulation. The gene
|
66 |
+
interactions are generally mentioned in the abstract and the full text of the paper is not needed. Extracting gene
|
67 |
+
interaction means, extracting the agent (proteins) and the target (genes) of all couples of genic interactions from
|
68 |
+
sentences.
|
69 |
+
"""
|
70 |
+
|
71 |
+
_HOMEPAGE = "http://genome.jouy.inra.fr/texte/LLLchallenge"
|
72 |
+
|
73 |
+
_LICENSE = 'License information unavailable'
|
74 |
+
|
75 |
+
_URLS = {
|
76 |
+
_DATASETNAME: [
|
77 |
+
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data.txt", # noqa
|
78 |
+
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/train/task2/genic_interaction_linguistic_data_coref.txt", # noqa
|
79 |
+
"http://genome.jouy.inra.fr/texte/LLLchallenge/data/LLLChalenge05/data/test/task2/enriched_test_data.txt", # noqa
|
80 |
+
]
|
81 |
+
}
|
82 |
+
|
83 |
+
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]
|
84 |
+
|
85 |
+
_SOURCE_VERSION = "1.0.0"
|
86 |
+
|
87 |
+
_BIGBIO_VERSION = "1.0.0"
|
88 |
+
|
89 |
+
|
90 |
+
class LLLDataset(datasets.GeneratorBasedBuilder):
|
91 |
+
"""LLL dataset for gene interaction extraction (RE)"""
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
94 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
BigBioConfig(
|
98 |
+
name="lll_source",
|
99 |
+
version=SOURCE_VERSION,
|
100 |
+
description="LLL source schema",
|
101 |
+
schema="source",
|
102 |
+
subset_id="lll",
|
103 |
+
),
|
104 |
+
BigBioConfig(
|
105 |
+
name="lll_bigbio_kb",
|
106 |
+
version=BIGBIO_VERSION,
|
107 |
+
description="LLL BigBio schema",
|
108 |
+
schema="bigbio_kb",
|
109 |
+
subset_id="lll",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
DEFAULT_CONFIG_NAME = "lll_source"
|
114 |
+
|
115 |
+
def _info(self) -> datasets.DatasetInfo:
|
116 |
+
|
117 |
+
if self.config.schema == "source":
|
118 |
+
features = datasets.Features(
|
119 |
+
{
|
120 |
+
"id": datasets.Value("string"),
|
121 |
+
"sentence": datasets.Value("string"),
|
122 |
+
"words": [
|
123 |
+
{
|
124 |
+
"id": datasets.Value("string"),
|
125 |
+
"text": datasets.Value("string"),
|
126 |
+
"offsets": datasets.Sequence(datasets.Value("int32")),
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"genic_interactions": [
|
130 |
+
{
|
131 |
+
"ref_id1": datasets.Value("string"),
|
132 |
+
"ref_id2": datasets.Value("string"),
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"agents": [
|
136 |
+
{
|
137 |
+
"ref_id": datasets.Value("string"),
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"targets": [
|
141 |
+
{
|
142 |
+
"ref_id": datasets.Value("string"),
|
143 |
+
}
|
144 |
+
],
|
145 |
+
"lemmas": [
|
146 |
+
{
|
147 |
+
"ref_id": datasets.Value("string"),
|
148 |
+
"lemma": datasets.Value("string"),
|
149 |
+
}
|
150 |
+
],
|
151 |
+
"syntactic_relations": [
|
152 |
+
{
|
153 |
+
"type": datasets.Value("string"),
|
154 |
+
"ref_id1": datasets.Value("string"),
|
155 |
+
"ref_id2": datasets.Value("string"),
|
156 |
+
}
|
157 |
+
],
|
158 |
+
}
|
159 |
+
)
|
160 |
+
|
161 |
+
elif self.config.schema == "bigbio_kb":
|
162 |
+
features = kb_features
|
163 |
+
|
164 |
+
return datasets.DatasetInfo(
|
165 |
+
description=_DESCRIPTION,
|
166 |
+
features=features,
|
167 |
+
homepage=_HOMEPAGE,
|
168 |
+
license=str(_LICENSE),
|
169 |
+
citation=_CITATION,
|
170 |
+
)
|
171 |
+
|
172 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
173 |
+
|
174 |
+
urls = _URLS[_DATASETNAME]
|
175 |
+
train_path, train_coref_path, test_path = dl_manager.download_and_extract(urls)
|
176 |
+
|
177 |
+
return [
|
178 |
+
datasets.SplitGenerator(
|
179 |
+
name=datasets.Split.TRAIN,
|
180 |
+
gen_kwargs={
|
181 |
+
"data_paths": [train_path, train_coref_path],
|
182 |
+
"split": "train",
|
183 |
+
},
|
184 |
+
),
|
185 |
+
datasets.SplitGenerator(
|
186 |
+
name=datasets.Split.TEST,
|
187 |
+
gen_kwargs={"data_paths": [test_path], "split": "test"},
|
188 |
+
),
|
189 |
+
]
|
190 |
+
|
191 |
+
def _generate_examples(self, data_paths, split):
|
192 |
+
|
193 |
+
if self.config.schema == "source":
|
194 |
+
for path in data_paths:
|
195 |
+
with open(path, encoding="utf8") as documents:
|
196 |
+
for document in self._generate_parsed_documents(documents, split):
|
197 |
+
yield document["id"], document
|
198 |
+
|
199 |
+
elif self.config.schema == "bigbio_kb":
|
200 |
+
uid = it.count(0)
|
201 |
+
for path in data_paths:
|
202 |
+
with open(path, encoding="utf8") as documents:
|
203 |
+
for document in self._generate_parsed_documents(documents, split):
|
204 |
+
document_ = {}
|
205 |
+
document_["id"] = next(uid)
|
206 |
+
document_["document_id"] = document["id"]
|
207 |
+
|
208 |
+
document_["passages"] = [
|
209 |
+
{
|
210 |
+
"id": next(uid),
|
211 |
+
"type": BigBioValues.NULL,
|
212 |
+
"text": [document["sentence"]],
|
213 |
+
"offsets": [[0, len(document["sentence"])]],
|
214 |
+
}
|
215 |
+
]
|
216 |
+
|
217 |
+
id_to_word = {i["id"]: i for i in document["words"]}
|
218 |
+
document_["entities"] = []
|
219 |
+
for agent in document["agents"]:
|
220 |
+
word = id_to_word[agent["ref_id"]]
|
221 |
+
document_["entities"].append(
|
222 |
+
{
|
223 |
+
"id": f"{document_['id']}-agent-{word['id']}",
|
224 |
+
"type": "agent",
|
225 |
+
"text": [word["text"]],
|
226 |
+
"offsets": [
|
227 |
+
[word["offsets"][0], word["offsets"][1]]
|
228 |
+
],
|
229 |
+
"normalized": [],
|
230 |
+
}
|
231 |
+
)
|
232 |
+
for agent in document["targets"]:
|
233 |
+
word = id_to_word[agent["ref_id"]]
|
234 |
+
document_["entities"].append(
|
235 |
+
{
|
236 |
+
"id": f"{document_['id']}-target-{word['id']}",
|
237 |
+
"type": "target",
|
238 |
+
"text": [word["text"]],
|
239 |
+
"offsets": [
|
240 |
+
[word["offsets"][0], word["offsets"][1]]
|
241 |
+
],
|
242 |
+
"normalized": [],
|
243 |
+
}
|
244 |
+
)
|
245 |
+
|
246 |
+
document_["relations"] = [
|
247 |
+
{
|
248 |
+
"id": next(uid),
|
249 |
+
"type": "genic_interaction",
|
250 |
+
"arg1_id": f"{document_['id']}-agent-{relation['ref_id1']}",
|
251 |
+
"arg2_id": f"{document_['id']}-target-{relation['ref_id2']}",
|
252 |
+
"normalized": [],
|
253 |
+
}
|
254 |
+
for relation in document["genic_interactions"]
|
255 |
+
]
|
256 |
+
|
257 |
+
document_["events"] = []
|
258 |
+
document_["coreferences"] = []
|
259 |
+
yield document_["document_id"], document_
|
260 |
+
|
261 |
+
def _generate_parsed_documents(self, fstream, split):
|
262 |
+
for raw_document in self._generate_raw_documents(fstream):
|
263 |
+
yield self._parse_document(raw_document, split)
|
264 |
+
|
265 |
+
def _generate_raw_documents(self, fstream):
|
266 |
+
raw_document = []
|
267 |
+
for line in fstream:
|
268 |
+
if "%" in line:
|
269 |
+
continue
|
270 |
+
elif line.strip():
|
271 |
+
raw_document.append(line.strip())
|
272 |
+
elif raw_document:
|
273 |
+
if raw_document:
|
274 |
+
yield raw_document
|
275 |
+
raw_document = []
|
276 |
+
# needed for last document
|
277 |
+
if raw_document:
|
278 |
+
yield raw_document
|
279 |
+
|
280 |
+
def _parse_document(self, raw_document, split):
|
281 |
+
document = {}
|
282 |
+
for line in raw_document:
|
283 |
+
key, value = line.split("\t", 1)
|
284 |
+
if key in ["ID", "sentence"]:
|
285 |
+
document[key.lower()] = value
|
286 |
+
elif key in [
|
287 |
+
"words",
|
288 |
+
"genic_interactions",
|
289 |
+
"agents",
|
290 |
+
"targets",
|
291 |
+
"lemmas",
|
292 |
+
"syntactic_relations",
|
293 |
+
]:
|
294 |
+
document[key.lower()] = self._parse_elements(value, key)
|
295 |
+
else:
|
296 |
+
raise NotImplementedError()
|
297 |
+
|
298 |
+
# Needed as testset does not contain agents, targets and genic_interactions (dataset was part of a challenge)
|
299 |
+
if split == "test":
|
300 |
+
document.setdefault("genic_interactions", [])
|
301 |
+
document.setdefault("agents", [])
|
302 |
+
document.setdefault("targets", [])
|
303 |
+
|
304 |
+
return document
|
305 |
+
|
306 |
+
def _parse_elements(self, values, type):
|
307 |
+
return [self._parse_element(atom, type) for atom in values.split("\t")]
|
308 |
+
|
309 |
+
def _parse_element(self, atom, type):
|
310 |
+
# Sorry for that abomination, parses the arguments from atoms like rel(arg1, ..., argn)
|
311 |
+
args = atom.split("(", 1)[1][:-1].split(",")
|
312 |
+
if type == "words":
|
313 |
+
# fix offsets for python slicing
|
314 |
+
return {
|
315 |
+
"id": args[0],
|
316 |
+
"text": args[1].strip("'"),
|
317 |
+
"offsets": [int(args[2]), int(args[3]) + 1],
|
318 |
+
}
|
319 |
+
elif type == "genic_interactions":
|
320 |
+
return {"ref_id1": args[0], "ref_id2": args[1]}
|
321 |
+
elif type == "agents":
|
322 |
+
return {"ref_id": args[0]}
|
323 |
+
elif type == "targets":
|
324 |
+
return {"ref_id": args[0]}
|
325 |
+
elif type == "lemmas":
|
326 |
+
return {"ref_id": args[0], "lemma": args[1].strip("'")}
|
327 |
+
elif type == "syntactic_relations":
|
328 |
+
return {"type": args[0].strip("'"), "ref_id1": args[1], "ref_id2": args[2]}
|