gabrielaltay
commited on
Commit
•
a7381ad
1
Parent(s):
430fdaf
upload hubscripts/linnaeus_hub.py to hub from bigbio repo
Browse files- linnaeus.py +271 -0
linnaeus.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
LINNAEUS provides a novel corpus of full-text documents manually annotated for species mentions.
|
18 |
+
|
19 |
+
To understand the true performance of the LINNAEUS system, we generated a gold standard dataset specifically
|
20 |
+
annotated to evaluate species name identification software. The reliability of this gold standard is high,
|
21 |
+
however some species names are likely to be omitted from this evaluation set, as shown by IAA analysis.
|
22 |
+
Performance of species tagging by LINNAEUS on full-text articles is very good, with 94.3% recall and
|
23 |
+
97.1% precision on mention level, and 98.1% recall and 90.4% precision on document level.
|
24 |
+
"""
|
25 |
+
|
26 |
+
import csv
|
27 |
+
import os
|
28 |
+
from pathlib import Path
|
29 |
+
from typing import Dict, List, Tuple
|
30 |
+
|
31 |
+
import datasets
|
32 |
+
|
33 |
+
from .bigbiohub import kb_features
|
34 |
+
from .bigbiohub import BigBioConfig
|
35 |
+
from .bigbiohub import Tasks
|
36 |
+
|
37 |
+
_LANGUAGES = ['English']
|
38 |
+
_PUBMED = True
|
39 |
+
_LOCAL = False
|
40 |
+
_CITATION = """\
|
41 |
+
@Article{gerner2010linnaeus,
|
42 |
+
title={LINNAEUS: a species name identification system for biomedical literature},
|
43 |
+
author={Gerner, Martin and Nenadic, Goran and Bergman, Casey M},
|
44 |
+
journal={BMC bioinformatics},
|
45 |
+
volume={11},
|
46 |
+
number={1},
|
47 |
+
pages={1--17},
|
48 |
+
year={2010},
|
49 |
+
publisher={BioMed Central}
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DATASETNAME = "linnaeus"
|
54 |
+
_DISPLAYNAME = "LINNAEUS"
|
55 |
+
|
56 |
+
_DESCRIPTION = """\
|
57 |
+
Linnaeus is a novel corpus of full-text documents manually annotated for species mentions.
|
58 |
+
"""
|
59 |
+
|
60 |
+
_HOMEPAGE = "http://linnaeus.sourceforge.net/"
|
61 |
+
|
62 |
+
_LICENSE = 'Creative Commons Attribution 4.0 International'
|
63 |
+
|
64 |
+
_URLS = {
|
65 |
+
_DATASETNAME: "https://sourceforge.net/projects/linnaeus/files/Corpora/manual-corpus-species-1.0.tar.gz/download",
|
66 |
+
}
|
67 |
+
|
68 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
69 |
+
|
70 |
+
_SOURCE_VERSION = "1.0.0"
|
71 |
+
_BIGBIO_VERSION = "1.0.0"
|
72 |
+
|
73 |
+
|
74 |
+
class LinnaeusDataset(datasets.GeneratorBasedBuilder):
|
75 |
+
"""Linneaus provides a new gold-standard corpus of full-text articles
|
76 |
+
with manually annotated mentions of species names."""
|
77 |
+
|
78 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
79 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
80 |
+
|
81 |
+
BUILDER_CONFIGS = [
|
82 |
+
BigBioConfig(
|
83 |
+
name="linnaeus_source",
|
84 |
+
version=SOURCE_VERSION,
|
85 |
+
description="Linnaeus source schema",
|
86 |
+
schema="source",
|
87 |
+
subset_id="linnaeus",
|
88 |
+
),
|
89 |
+
BigBioConfig(
|
90 |
+
name="linnaeus_filtered_source",
|
91 |
+
version=SOURCE_VERSION,
|
92 |
+
description="Linnaeus source schema (filtered tags)",
|
93 |
+
schema="source",
|
94 |
+
subset_id="linnaeus_filtered",
|
95 |
+
),
|
96 |
+
BigBioConfig(
|
97 |
+
name="linnaeus_bigbio_kb",
|
98 |
+
version=BIGBIO_VERSION,
|
99 |
+
description="Linnaeus BigBio schema",
|
100 |
+
schema="bigbio_kb",
|
101 |
+
subset_id="linnaeus",
|
102 |
+
),
|
103 |
+
BigBioConfig(
|
104 |
+
name="linnaeus_filtered_bigbio_kb",
|
105 |
+
version=BIGBIO_VERSION,
|
106 |
+
description="Linnaeus BigBio schema (filtered tags)",
|
107 |
+
schema="bigbio_kb",
|
108 |
+
subset_id="linnaeus_filtered",
|
109 |
+
),
|
110 |
+
]
|
111 |
+
|
112 |
+
DEFAULT_CONFIG_NAME = "linneaus_source"
|
113 |
+
|
114 |
+
def _info(self) -> datasets.DatasetInfo:
|
115 |
+
|
116 |
+
if self.config.schema == "source":
|
117 |
+
features = datasets.Features(
|
118 |
+
{
|
119 |
+
"document_id": datasets.Value("string"),
|
120 |
+
"document_type": datasets.Value("string"),
|
121 |
+
"text": datasets.Value("string"),
|
122 |
+
"entities": [
|
123 |
+
{
|
124 |
+
"id": datasets.Value("string"),
|
125 |
+
"type": datasets.Value("string"),
|
126 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
127 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
128 |
+
"normalized": [
|
129 |
+
{
|
130 |
+
"db_name": datasets.Value("string"),
|
131 |
+
"db_id": datasets.Value("string"),
|
132 |
+
}
|
133 |
+
],
|
134 |
+
}
|
135 |
+
],
|
136 |
+
}
|
137 |
+
)
|
138 |
+
|
139 |
+
elif self.config.schema == "bigbio_kb":
|
140 |
+
features = kb_features
|
141 |
+
|
142 |
+
return datasets.DatasetInfo(
|
143 |
+
description=_DESCRIPTION,
|
144 |
+
features=features,
|
145 |
+
homepage=_HOMEPAGE,
|
146 |
+
license=str(_LICENSE),
|
147 |
+
citation=_CITATION,
|
148 |
+
)
|
149 |
+
|
150 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
151 |
+
urls = _URLS[_DATASETNAME]
|
152 |
+
data_dir = dl_manager.download_and_extract(urls)
|
153 |
+
|
154 |
+
return [
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.TRAIN,
|
157 |
+
gen_kwargs={
|
158 |
+
"data_files": os.path.join(data_dir, "manual-corpus-species-1.0")
|
159 |
+
},
|
160 |
+
),
|
161 |
+
]
|
162 |
+
|
163 |
+
def _generate_examples(self, data_files: Path) -> Tuple[int, Dict]:
|
164 |
+
"""Yields examples as (key, example) tuples."""
|
165 |
+
data_path = Path(os.path.join(data_files, "txt"))
|
166 |
+
if self.config.subset_id.endswith("filtered"):
|
167 |
+
tags_path = Path(os.path.join(data_files, "filtered_tags.tsv"))
|
168 |
+
else:
|
169 |
+
tags_path = Path(os.path.join(data_files, "tags.tsv"))
|
170 |
+
data_files = list(data_path.glob("*txt"))
|
171 |
+
tags = self._load_tags(tags_path)
|
172 |
+
|
173 |
+
if self.config.schema == "source":
|
174 |
+
for guid, data_file in enumerate(data_files):
|
175 |
+
document_key = data_file.stem
|
176 |
+
if document_key not in tags:
|
177 |
+
continue
|
178 |
+
example = self._create_source_example(data_file, tags.get(document_key))
|
179 |
+
example["document_id"] = str(document_key)
|
180 |
+
yield guid, example
|
181 |
+
|
182 |
+
elif self.config.schema == "bigbio_kb":
|
183 |
+
for guid, data_file in enumerate(data_files):
|
184 |
+
document_key = data_file.stem
|
185 |
+
if document_key not in tags:
|
186 |
+
continue
|
187 |
+
example = self._create_kb_example(data_file, tags.get(document_key))
|
188 |
+
example["document_id"] = str(document_key)
|
189 |
+
example["id"] = guid
|
190 |
+
yield guid, example
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def _load_tags(path: Path) -> Dict:
|
194 |
+
"""Loads all tags into a dictionary with document ID as keys and all annotations to that file as values."""
|
195 |
+
tags = {}
|
196 |
+
document_id_col = 1
|
197 |
+
|
198 |
+
with open(path, encoding="utf-8") as csv_file:
|
199 |
+
reader = csv.reader(csv_file, delimiter="\t")
|
200 |
+
next(reader)
|
201 |
+
for line in reader:
|
202 |
+
document_id = line[document_id_col]
|
203 |
+
line.pop(document_id_col)
|
204 |
+
if document_id not in tags:
|
205 |
+
tags[document_id] = [line]
|
206 |
+
else:
|
207 |
+
tags[document_id].append(line)
|
208 |
+
return tags
|
209 |
+
|
210 |
+
def _create_source_example(self, txt_file, tags) -> Dict:
|
211 |
+
"""Creates example in source schema."""
|
212 |
+
example = {}
|
213 |
+
example["entities"] = []
|
214 |
+
with open(txt_file, "r") as file:
|
215 |
+
text = file.read()
|
216 |
+
example["text"] = text
|
217 |
+
example["document_type"] = "Article"
|
218 |
+
for tag_id, tag in enumerate(tags):
|
219 |
+
species_id, start, end, entity_text, _ = tag
|
220 |
+
entity_type, db_name, db_id = species_id.split(":")
|
221 |
+
entity = {
|
222 |
+
"id": str(tag_id),
|
223 |
+
"type": entity_type,
|
224 |
+
"text": [entity_text],
|
225 |
+
"offsets": [(int(start), int(end))],
|
226 |
+
"normalized": [
|
227 |
+
{
|
228 |
+
"db_name": db_name,
|
229 |
+
"db_id": db_id,
|
230 |
+
}
|
231 |
+
],
|
232 |
+
}
|
233 |
+
example["entities"].append(entity)
|
234 |
+
return example
|
235 |
+
|
236 |
+
def _create_kb_example(self, txt_file, tags) -> Dict:
|
237 |
+
"""Creates example in BigBio KB schema."""
|
238 |
+
example = {}
|
239 |
+
with open(txt_file, "r") as file:
|
240 |
+
text = file.read()
|
241 |
+
# Passages
|
242 |
+
example["passages"] = [
|
243 |
+
{
|
244 |
+
"id": f"{txt_file.stem}__text",
|
245 |
+
"text": [text],
|
246 |
+
"type": "Article",
|
247 |
+
"offsets": [(0, len(text))],
|
248 |
+
}
|
249 |
+
]
|
250 |
+
# Entities
|
251 |
+
example["entities"] = []
|
252 |
+
for tag_id, tag in enumerate(tags):
|
253 |
+
species_id, start, end, entity_text, _ = tag
|
254 |
+
entity_type, db_name, db_id = species_id.split(":")
|
255 |
+
entity = {
|
256 |
+
"id": f"{txt_file.stem}__T{str(tag_id)}",
|
257 |
+
"type": entity_type,
|
258 |
+
"text": [entity_text],
|
259 |
+
"offsets": [(int(start), int(end))],
|
260 |
+
"normalized": [
|
261 |
+
{
|
262 |
+
"db_name": db_name,
|
263 |
+
"db_id": db_id,
|
264 |
+
}
|
265 |
+
],
|
266 |
+
}
|
267 |
+
example["entities"].append(entity)
|
268 |
+
example["events"] = []
|
269 |
+
example["relations"] = []
|
270 |
+
example["coreferences"] = []
|
271 |
+
return example
|