|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The data came from the GENIA version 3.02 corpus (Kim et al., 2003). |
|
This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors. |
|
From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on |
|
a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus. |
|
""" |
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{collier-kim-2004-introduction, |
|
title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}", |
|
author = "Collier, Nigel and Kim, Jin-Dong", |
|
booktitle = "Proceedings of the International Joint Workshop |
|
on Natural Language Processing in Biomedicine and its Applications |
|
({NLPBA}/{B}io{NLP})", |
|
month = aug # " 28th and 29th", year = "2004", |
|
address = "Geneva, Switzerland", |
|
publisher = "COLING", |
|
url = "https://aclanthology.org/W04-1213", |
|
pages = "73--78", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "jnlpba" |
|
_DISPLAYNAME = "JNLPBA" |
|
|
|
_DESCRIPTION = """\ |
|
NER For Bio-Entities |
|
""" |
|
|
|
_HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004" |
|
|
|
_LICENSE = 'Creative Commons Attribution 3.0 Unported' |
|
|
|
_URLS = { |
|
_DATASETNAME: "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz", |
|
} |
|
|
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION |
|
] |
|
|
|
|
|
|
|
|
|
_SOURCE_VERSION = "3.2.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class JNLPBADataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The data came from the GENIA version 3.02 corpus |
|
(Kim et al., 2003). |
|
This was formed from a controlled search on MEDLINE |
|
using the MeSH terms human, blood cells and transcription factors. |
|
From this search 2,000 abstracts were selected and hand annotated |
|
according to a small taxonomy of 48 classes based on |
|
a chemical classification. |
|
Among the classes, 36 terminal classes were used to annotate the GENIA corpus. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="jnlpba_source", |
|
version=SOURCE_VERSION, |
|
description="jnlpba source schema", |
|
schema="source", |
|
subset_id="jnlpba", |
|
), |
|
BigBioConfig( |
|
name="jnlpba_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="jnlpba BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="jnlpba", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "jnlpba_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.load_dataset("jnlpba", split="train").features |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data = datasets.load_dataset("jnlpba") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"data": data["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data": data["validation"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data: datasets.Dataset) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
uid = 0 |
|
|
|
if self.config.schema == "source": |
|
for key, sample in enumerate(data): |
|
yield key, sample |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for i, sample in enumerate(data): |
|
feature_dict = { |
|
"id": uid, |
|
"document_id": "NULL", |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|
|
uid += 1 |
|
offset_start = 0 |
|
for token, tag in zip(sample["tokens"], sample["ner_tags"]): |
|
offset_start += len(token) + 1 |
|
feature_dict["entities"].append( |
|
{ |
|
"id": uid, |
|
"offsets": [[offset_start, offset_start + len(token)]], |
|
"text": [token], |
|
"type": tag, |
|
"normalized": [], |
|
} |
|
) |
|
uid += 1 |
|
|
|
|
|
yield i, feature_dict |
|
|