gabrielaltay
commited on
Commit
•
601420d
1
Parent(s):
facb80c
upload hubscripts/hallmarks_of_cancer_hub.py to hub from bigbio repo
Browse files- hallmarks_of_cancer.py +214 -0
hallmarks_of_cancer.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
from .bigbiohub import text_features
|
20 |
+
from .bigbiohub import BigBioConfig
|
21 |
+
from .bigbiohub import Tasks
|
22 |
+
|
23 |
+
_LANGUAGES = ['English']
|
24 |
+
_PUBMED = True
|
25 |
+
_LOCAL = False
|
26 |
+
_CITATION = """\
|
27 |
+
@article{DBLP:journals/bioinformatics/BakerSGAHSK16,
|
28 |
+
author = {Simon Baker and
|
29 |
+
Ilona Silins and
|
30 |
+
Yufan Guo and
|
31 |
+
Imran Ali and
|
32 |
+
Johan H{\"{o}}gberg and
|
33 |
+
Ulla Stenius and
|
34 |
+
Anna Korhonen},
|
35 |
+
title = {Automatic semantic classification of scientific literature
|
36 |
+
according to the hallmarks of cancer},
|
37 |
+
journal = {Bioinform.},
|
38 |
+
volume = {32},
|
39 |
+
number = {3},
|
40 |
+
pages = {432--440},
|
41 |
+
year = {2016},
|
42 |
+
url = {https://doi.org/10.1093/bioinformatics/btv585},
|
43 |
+
doi = {10.1093/bioinformatics/btv585},
|
44 |
+
timestamp = {Thu, 14 Oct 2021 08:57:44 +0200},
|
45 |
+
biburl = {https://dblp.org/rec/journals/bioinformatics/BakerSGAHSK16.bib},
|
46 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
47 |
+
}
|
48 |
+
"""
|
49 |
+
|
50 |
+
_DATASETNAME = "hallmarks_of_cancer"
|
51 |
+
_DISPLAYNAME = "Hallmarks of Cancer"
|
52 |
+
|
53 |
+
_DESCRIPTION = """\
|
54 |
+
The Hallmarks of Cancer (HOC) Corpus consists of 1852 PubMed publication
|
55 |
+
abstracts manually annotated by experts according to a taxonomy. The taxonomy
|
56 |
+
consists of 37 classes in a hierarchy. Zero or more class labels are assigned
|
57 |
+
to each sentence in the corpus. The labels are found under the "labels"
|
58 |
+
directory, while the tokenized text can be found under "text" directory.
|
59 |
+
The filenames are the corresponding PubMed IDs (PMID).
|
60 |
+
"""
|
61 |
+
|
62 |
+
_HOMEPAGE = "https://github.com/sb895/Hallmarks-of-Cancer"
|
63 |
+
|
64 |
+
_LICENSE = 'GNU General Public License v3.0 only'
|
65 |
+
|
66 |
+
_URLs = {
|
67 |
+
"corpus": "https://github.com/sb895/Hallmarks-of-Cancer/archive/refs/heads/master.zip",
|
68 |
+
"split_indices": "https://microsoft.github.io/BLURB/sample_code/data_generation.tar.gz",
|
69 |
+
}
|
70 |
+
|
71 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
72 |
+
_SOURCE_VERSION = "1.0.0"
|
73 |
+
_BIGBIO_VERSION = "1.0.0"
|
74 |
+
|
75 |
+
_CLASS_NAMES = [
|
76 |
+
"evading growth suppressors",
|
77 |
+
"tumor promoting inflammation",
|
78 |
+
"enabling replicative immortality",
|
79 |
+
"cellular energetics",
|
80 |
+
"resisting cell death",
|
81 |
+
"activating invasion and metastasis",
|
82 |
+
"genomic instability and mutation",
|
83 |
+
"none",
|
84 |
+
"inducing angiogenesis",
|
85 |
+
"sustaining proliferative signaling",
|
86 |
+
"avoiding immune destruction",
|
87 |
+
]
|
88 |
+
|
89 |
+
|
90 |
+
class HallmarksOfCancerDataset(datasets.GeneratorBasedBuilder):
|
91 |
+
"""Hallmarks Of Cancer Dataset"""
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
94 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
BigBioConfig(
|
98 |
+
name="hallmarks_of_cancer_source",
|
99 |
+
version=SOURCE_VERSION,
|
100 |
+
description="Hallmarks of Cancer source schema",
|
101 |
+
schema="source",
|
102 |
+
subset_id="hallmarks_of_cancer",
|
103 |
+
),
|
104 |
+
BigBioConfig(
|
105 |
+
name="hallmarks_of_cancer_bigbio_text",
|
106 |
+
version=BIGBIO_VERSION,
|
107 |
+
description="Hallmarks of Cancer Biomedical schema",
|
108 |
+
schema="bigbio_text",
|
109 |
+
subset_id="hallmarks_of_cancer",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
DEFAULT_CONFIG_NAME = "hallmarks_of_cancer_source"
|
113 |
+
|
114 |
+
def _info(self):
|
115 |
+
|
116 |
+
if self.config.schema == "source":
|
117 |
+
features = datasets.Features(
|
118 |
+
{
|
119 |
+
"document_id": datasets.Value("string"),
|
120 |
+
"text": datasets.Value("string"),
|
121 |
+
"label": [datasets.ClassLabel(names=_CLASS_NAMES)],
|
122 |
+
}
|
123 |
+
)
|
124 |
+
|
125 |
+
elif self.config.schema == "bigbio_text":
|
126 |
+
features = text_features
|
127 |
+
|
128 |
+
return datasets.DatasetInfo(
|
129 |
+
description=_DESCRIPTION,
|
130 |
+
features=features,
|
131 |
+
supervised_keys=None,
|
132 |
+
homepage=_HOMEPAGE,
|
133 |
+
license=str(_LICENSE),
|
134 |
+
citation=_CITATION,
|
135 |
+
)
|
136 |
+
|
137 |
+
def _split_generators(self, dl_manager):
|
138 |
+
"""Returns SplitGenerators."""
|
139 |
+
data_dir = dl_manager.download_and_extract(_URLs)
|
140 |
+
|
141 |
+
return [
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TRAIN,
|
144 |
+
gen_kwargs={
|
145 |
+
"corpuspath": Path(data_dir["corpus"]),
|
146 |
+
"indicespath": Path(data_dir["split_indices"])
|
147 |
+
/ "data_generation/indexing/HoC/train_pmid.tsv",
|
148 |
+
},
|
149 |
+
),
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TEST,
|
152 |
+
gen_kwargs={
|
153 |
+
"corpuspath": Path(data_dir["corpus"]),
|
154 |
+
"indicespath": Path(data_dir["split_indices"])
|
155 |
+
/ "data_generation/indexing/HoC/test_pmid.tsv",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.VALIDATION,
|
160 |
+
gen_kwargs={
|
161 |
+
"corpuspath": Path(data_dir["corpus"]),
|
162 |
+
"indicespath": Path(data_dir["split_indices"])
|
163 |
+
/ "data_generation/indexing/HoC/dev_pmid.tsv",
|
164 |
+
},
|
165 |
+
),
|
166 |
+
]
|
167 |
+
|
168 |
+
def _generate_examples(self, corpuspath: Path, indicespath: Path):
|
169 |
+
|
170 |
+
indices = indicespath.read_text(encoding="utf8").strip("\n").split(",")
|
171 |
+
dataset_dir = corpuspath / "Hallmarks-of-Cancer-master"
|
172 |
+
texts_dir = dataset_dir / "text"
|
173 |
+
labels_dir = dataset_dir / "labels"
|
174 |
+
|
175 |
+
uid = 1
|
176 |
+
for document_index, document in enumerate(indices):
|
177 |
+
text_file = texts_dir / document
|
178 |
+
label_file = labels_dir / document
|
179 |
+
text = text_file.read_text(encoding="utf8").strip("\n")
|
180 |
+
labels = label_file.read_text(encoding="utf8").strip("\n")
|
181 |
+
|
182 |
+
sentences = text.split("\n")
|
183 |
+
labels = labels.split("<")[1:]
|
184 |
+
|
185 |
+
for example_index, example_pair in enumerate(zip(sentences, labels)):
|
186 |
+
sentence, label = example_pair
|
187 |
+
|
188 |
+
label = label.strip()
|
189 |
+
|
190 |
+
if label == "":
|
191 |
+
label = "none"
|
192 |
+
|
193 |
+
multi_labels = [m_label.strip() for m_label in label.split("AND")]
|
194 |
+
unique_multi_labels = {
|
195 |
+
m_label.split("--")[0].lower().lstrip()
|
196 |
+
for m_label in multi_labels
|
197 |
+
if m_label != "NULL"
|
198 |
+
}
|
199 |
+
|
200 |
+
arrow_file_unique_key = 100 * document_index + example_index
|
201 |
+
if self.config.schema == "source":
|
202 |
+
yield arrow_file_unique_key, {
|
203 |
+
"document_id": f"{text_file.name.split('.')[0]}_{example_index}",
|
204 |
+
"text": sentence,
|
205 |
+
"label": list(unique_multi_labels),
|
206 |
+
}
|
207 |
+
elif self.config.schema == "bigbio_text":
|
208 |
+
yield arrow_file_unique_key, {
|
209 |
+
"id": uid,
|
210 |
+
"document_id": f"{text_file.name.split('.')[0]}_{example_index}",
|
211 |
+
"text": sentence,
|
212 |
+
"labels": list(unique_multi_labels),
|
213 |
+
}
|
214 |
+
uid += 1
|