|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import os |
|
import re |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from bioc import biocxml |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import get_texts_and_offsets_from_bioc_ann |
|
|
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@Article{Wei2015, |
|
author={Wei, Chih-Hsuan and Kao, Hung-Yu and Lu, Zhiyong}, |
|
title={GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains}, |
|
journal={BioMed Research International}, |
|
year={2015}, |
|
month={Aug}, |
|
day={25}, |
|
publisher={Hindawi Publishing Corporation}, |
|
volume={2015}, |
|
pages={918710}, |
|
issn={2314-6133}, |
|
doi={10.1155/2015/918710}, |
|
url={https://doi.org/10.1155/2015/918710} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "gnormplus" |
|
_DISPLAYNAME = "GNormPlus" |
|
|
|
_DESCRIPTION = """\ |
|
We re-annotated two existing gene corpora. The BioCreative II GN corpus is a widely used data set for benchmarking GN |
|
tools and includes document-level annotations for a total of 543 articles (281 in its training set; and 262 in test). |
|
The Citation GIA Test Collection was recently created for gene indexing at the NLM and includes 151 PubMed abstracts |
|
with both mention-level and document-level annotations. They are selected because both have a focus on human genes. |
|
For both corpora, we added annotations of gene families and protein domains. For the BioCreative GN corpus, we also |
|
added mention-level gene annotations. As a result, in our new corpus, there are a total of 694 PubMed articles. |
|
PubTator was used as our annotation tool along with BioC formats. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/" |
|
|
|
_LICENSE = "UNKNOWN" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/GNormPlus/GNormPlusCorpus.zip" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class GnormplusDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset loader for GNormPlus corpus.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="gnormplus_source", |
|
version=SOURCE_VERSION, |
|
description="gnormplus source schema", |
|
schema="source", |
|
subset_id="gnormplus", |
|
), |
|
BigBioConfig( |
|
name="gnormplus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="gnormplus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="gnormplus", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "gnormplus_source" |
|
|
|
_re_tax_id = re.compile(r"(?P<db_id>\d+)\([tT]ax:(?P<tax_id>\d+)\)") |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"location": { |
|
"offset": datasets.Value("int64"), |
|
"length": datasets.Value("int64"), |
|
}, |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
"tax_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise NotImplementedError(self.config.schema) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepaths": [ |
|
os.path.join(data_dir, "GNormPlusCorpus/BC2GNtrain.BioC.xml"), |
|
|
|
|
|
|
|
|
|
os.path.join(data_dir, "GNormPlusCorpus/NLMIAT.BioC.xml"), |
|
], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": [ |
|
os.path.join(data_dir, "GNormPlusCorpus/BC2GNtest.BioC.xml"), |
|
] |
|
}, |
|
), |
|
] |
|
|
|
def _parse_bioc_entity(self, uid, bioc_ann, db_id_key="NCBIGene", insert_tax_id=False): |
|
offsets, texts = get_texts_and_offsets_from_bioc_ann(bioc_ann) |
|
_type = bioc_ann.infons["type"] |
|
|
|
|
|
normalized = [] |
|
if _type in bioc_ann.infons: |
|
for _id in bioc_ann.infons[_type].split(","): |
|
match = self._re_tax_id.match(_id) |
|
if match: |
|
_id = match.group("db_id") |
|
|
|
n = {"db_name": db_id_key, "db_id": _id} |
|
if insert_tax_id: |
|
n["tax_id"] = match.group("tax_id") if match else None |
|
|
|
normalized.append(n) |
|
return { |
|
"id": uid, |
|
"offsets": offsets, |
|
"text": texts, |
|
"type": _type, |
|
"normalized": normalized, |
|
} |
|
|
|
def _generate_examples(self, filepaths) -> Tuple[int, Dict]: |
|
uid = map(str, itertools.count(start=0, step=1)) |
|
|
|
for filepath in filepaths: |
|
with open(filepath, "r") as fp: |
|
collection = biocxml.load(fp) |
|
|
|
for _, document in enumerate(collection.documents): |
|
idx = next(uid) |
|
text = " ".join([passage.text for passage in document.passages]) |
|
|
|
insert_tax = self.config.schema == "source" |
|
entities = [ |
|
self._parse_bioc_entity(next(uid), entity, insert_tax_id=insert_tax) |
|
for passage in document.passages |
|
for entity in passage.annotations |
|
] |
|
|
|
|
|
self.adjust_entity_offsets(text, entities) |
|
|
|
if self.config.schema == "source": |
|
features = { |
|
"doc_id": document.id, |
|
"passages": [ |
|
{ |
|
"text": passage.text, |
|
"type": passage.infons["type"], |
|
"location": { |
|
"offset": passage.offset, |
|
"length": passage.total_span.length, |
|
}, |
|
} |
|
for passage in document.passages |
|
], |
|
"entities": entities, |
|
} |
|
|
|
yield idx, features |
|
elif self.config.schema == "bigbio_kb": |
|
|
|
passage_spans = [] |
|
start = 0 |
|
for passage in document.passages: |
|
end = start + len(passage.text) |
|
passage_spans.append((start, end)) |
|
start = end + 1 |
|
|
|
features = { |
|
"id": next(uid), |
|
"document_id": document.id, |
|
"passages": [ |
|
{ |
|
"id": next(uid), |
|
"type": passage.infons["type"], |
|
"text": [passage.text], |
|
"offsets": [span], |
|
} |
|
for passage, span in zip(document.passages, passage_spans) |
|
], |
|
"entities": entities, |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|
|
yield idx, features |
|
else: |
|
raise NotImplementedError(self.config.schema) |
|
|
|
def adjust_entity_offsets(self, text: str, entities: List[Dict]): |
|
for entity in entities: |
|
start, end = entity["offsets"][0] |
|
entity_mention = entity["text"][0] |
|
if not text[start:end] == entity_mention: |
|
if text[start - 1 : end - 1] == entity_mention: |
|
entity["offsets"] = [(start - 1, end - 1)] |
|
elif text[start : end - 1] == entity_mention: |
|
entity["offsets"] = [(start, end - 1)] |
|
|