Commit
·
20bf954
1
Parent(s):
8bee9ef
upload hubscripts/cellfinder_hub.py to hub from bigbio repo
Browse files- cellfinder.py +277 -0
cellfinder.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
The CellFinder project aims to create a stem cell data repository by linking
|
17 |
+
information from existing public databases and by performing text mining on the
|
18 |
+
research literature. The first version of the corpus is composed of 10 full text
|
19 |
+
documents containing more than 2,100 sentences, 65,000 tokens and 5,200
|
20 |
+
annotations for entities. The corpus has been annotated with six types of
|
21 |
+
entities (anatomical parts, cell components, cell lines, cell types,
|
22 |
+
genes/protein and species) with an overall inter-annotator agreement around 80%.
|
23 |
+
|
24 |
+
See: https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/
|
25 |
+
"""
|
26 |
+
from pathlib import Path
|
27 |
+
from typing import Dict, Iterator, Tuple
|
28 |
+
|
29 |
+
import datasets
|
30 |
+
|
31 |
+
from .bigbiohub import kb_features
|
32 |
+
from .bigbiohub import BigBioConfig
|
33 |
+
from .bigbiohub import Tasks
|
34 |
+
|
35 |
+
_LANGUAGES = ['English']
|
36 |
+
_PUBMED = True
|
37 |
+
_LOCAL = False
|
38 |
+
_CITATION = """\
|
39 |
+
@inproceedings{neves2012annotating,
|
40 |
+
title = {Annotating and evaluating text for stem cell research},
|
41 |
+
author = {Neves, Mariana and Damaschun, Alexander and Kurtz, Andreas and Leser, Ulf},
|
42 |
+
year = 2012,
|
43 |
+
booktitle = {
|
44 |
+
Proceedings of the Third Workshop on Building and Evaluation Resources for
|
45 |
+
Biomedical Text Mining\ (BioTxtM 2012) at Language Resources and Evaluation
|
46 |
+
(LREC). Istanbul, Turkey
|
47 |
+
},
|
48 |
+
pages = {16--23},
|
49 |
+
organization = {Citeseer}
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DATASETNAME = "cellfinder"
|
54 |
+
_DISPLAYNAME = "CellFinder"
|
55 |
+
|
56 |
+
_DESCRIPTION = """\
|
57 |
+
The CellFinder project aims to create a stem cell data repository by linking \
|
58 |
+
information from existing public databases and by performing text mining on the \
|
59 |
+
research literature. The first version of the corpus is composed of 10 full text \
|
60 |
+
documents containing more than 2,100 sentences, 65,000 tokens and 5,200 \
|
61 |
+
annotations for entities. The corpus has been annotated with six types of \
|
62 |
+
entities (anatomical parts, cell components, cell lines, cell types, \
|
63 |
+
genes/protein and species) with an overall inter-annotator agreement around 80%.
|
64 |
+
|
65 |
+
See: https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/
|
66 |
+
"""
|
67 |
+
|
68 |
+
_HOMEPAGE = (
|
69 |
+
"https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/"
|
70 |
+
)
|
71 |
+
_LICENSE = 'Creative Commons Attribution Share Alike 3.0 Unported'
|
72 |
+
|
73 |
+
_SOURCE_URL = (
|
74 |
+
"https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/resources/cellfinder/"
|
75 |
+
)
|
76 |
+
_URLS = {
|
77 |
+
_DATASETNAME: _SOURCE_URL + "cellfinder1_brat.tar.gz",
|
78 |
+
_DATASETNAME + "_splits": _SOURCE_URL + "cellfinder1_brat_sections.tar.gz",
|
79 |
+
}
|
80 |
+
|
81 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
82 |
+
|
83 |
+
_SOURCE_VERSION = "1.0.0"
|
84 |
+
_BIGBIO_VERSION = "1.0.0"
|
85 |
+
|
86 |
+
|
87 |
+
class CellFinderDataset(datasets.GeneratorBasedBuilder):
|
88 |
+
"""The CellFinder corpus."""
|
89 |
+
|
90 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
91 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
92 |
+
|
93 |
+
BUILDER_CONFIGS = [
|
94 |
+
BigBioConfig(
|
95 |
+
name="cellfinder_source",
|
96 |
+
version=SOURCE_VERSION,
|
97 |
+
description="CellFinder source schema",
|
98 |
+
schema="source",
|
99 |
+
subset_id="cellfinder",
|
100 |
+
),
|
101 |
+
BigBioConfig(
|
102 |
+
name="cellfinder_bigbio_kb",
|
103 |
+
version=BIGBIO_VERSION,
|
104 |
+
description="CellFinder BigBio schema",
|
105 |
+
schema="bigbio_kb",
|
106 |
+
subset_id="cellfinder",
|
107 |
+
),
|
108 |
+
BigBioConfig(
|
109 |
+
name="cellfinder_splits_source",
|
110 |
+
version=SOURCE_VERSION,
|
111 |
+
description="CellFinder source schema",
|
112 |
+
schema="source",
|
113 |
+
subset_id="cellfinder_splits",
|
114 |
+
),
|
115 |
+
BigBioConfig(
|
116 |
+
name="cellfinder_splits_bigbio_kb",
|
117 |
+
version=BIGBIO_VERSION,
|
118 |
+
description="CellFinder BigBio schema",
|
119 |
+
schema="bigbio_kb",
|
120 |
+
subset_id="cellfinder_splits",
|
121 |
+
),
|
122 |
+
]
|
123 |
+
|
124 |
+
DEFAULT_CONFIG_NAME = "cellfinder_source"
|
125 |
+
SPLIT_TO_IDS = {
|
126 |
+
"train": [16316465, 17381551, 17389645, 18162134, 18286199],
|
127 |
+
"test": [15971941, 16623949, 16672070, 17288595, 17967047],
|
128 |
+
}
|
129 |
+
|
130 |
+
def _info(self):
|
131 |
+
if self.config.schema == "source":
|
132 |
+
features = datasets.Features(
|
133 |
+
{
|
134 |
+
"document_id": datasets.Value("string"),
|
135 |
+
"text": datasets.Value("string"),
|
136 |
+
"type": datasets.Value("string"),
|
137 |
+
"entities": [
|
138 |
+
{
|
139 |
+
"entity_id": datasets.Value("string"),
|
140 |
+
"type": datasets.Value("string"),
|
141 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
142 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
143 |
+
}
|
144 |
+
],
|
145 |
+
}
|
146 |
+
)
|
147 |
+
|
148 |
+
elif self.config.schema == "bigbio_kb":
|
149 |
+
features = kb_features
|
150 |
+
|
151 |
+
return datasets.DatasetInfo(
|
152 |
+
description=_DESCRIPTION,
|
153 |
+
features=features,
|
154 |
+
homepage=_HOMEPAGE,
|
155 |
+
license=str(_LICENSE),
|
156 |
+
citation=_CITATION,
|
157 |
+
)
|
158 |
+
|
159 |
+
def _split_generators(self, dl_manager):
|
160 |
+
urls = _URLS[_DATASETNAME]
|
161 |
+
if self.config.subset_id.endswith("_splits"):
|
162 |
+
urls = _URLS[_DATASETNAME + "_splits"]
|
163 |
+
|
164 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
165 |
+
|
166 |
+
return [
|
167 |
+
datasets.SplitGenerator(
|
168 |
+
name=datasets.Split.TRAIN,
|
169 |
+
gen_kwargs={"data_dir": data_dir, "split": "train"},
|
170 |
+
),
|
171 |
+
datasets.SplitGenerator(
|
172 |
+
name=datasets.Split.TEST,
|
173 |
+
gen_kwargs={"data_dir": data_dir, "split": "test"},
|
174 |
+
),
|
175 |
+
]
|
176 |
+
|
177 |
+
def _is_to_exclude(self, file: Path) -> bool:
|
178 |
+
|
179 |
+
to_exclude = False
|
180 |
+
|
181 |
+
if (
|
182 |
+
file.name.startswith("._")
|
183 |
+
or file.name.endswith(".ann")
|
184 |
+
or file.name == "LICENSE"
|
185 |
+
):
|
186 |
+
to_exclude = True
|
187 |
+
|
188 |
+
return to_exclude
|
189 |
+
|
190 |
+
def _not_in_split(self, file: Path, split: str) -> bool:
|
191 |
+
|
192 |
+
to_exclude = False
|
193 |
+
|
194 |
+
# SKIP files according to split
|
195 |
+
if self.config.subset_id.endswith("_splits"):
|
196 |
+
file_id = file.stem.split("_")[0]
|
197 |
+
else:
|
198 |
+
file_id = file.stem
|
199 |
+
|
200 |
+
if int(file_id) not in self.SPLIT_TO_IDS[split]:
|
201 |
+
to_exclude = True
|
202 |
+
|
203 |
+
return to_exclude
|
204 |
+
|
205 |
+
def _generate_examples(
|
206 |
+
self, data_dir: Path, split: str
|
207 |
+
) -> Iterator[Tuple[str, Dict]]:
|
208 |
+
if self.config.schema == "source":
|
209 |
+
for file in data_dir.iterdir():
|
210 |
+
|
211 |
+
# Ignore hidden files and annotation files - we just consider the brat text files
|
212 |
+
if self._is_to_exclude(file=file):
|
213 |
+
continue
|
214 |
+
|
215 |
+
if self._not_in_split(file=file, split=split):
|
216 |
+
continue
|
217 |
+
|
218 |
+
# Read brat annotations for the given text file and convert example to the source format
|
219 |
+
brat_example = parsing.parse_brat_file(file)
|
220 |
+
source_example = self._to_source_example(file, brat_example)
|
221 |
+
|
222 |
+
yield source_example["document_id"], source_example
|
223 |
+
|
224 |
+
elif self.config.schema == "bigbio_kb":
|
225 |
+
for file in data_dir.iterdir():
|
226 |
+
|
227 |
+
# Ignore hidden files and annotation files - we just consider the brat text files
|
228 |
+
if self._is_to_exclude(file=file):
|
229 |
+
continue
|
230 |
+
|
231 |
+
if self._not_in_split(file=file, split=split):
|
232 |
+
continue
|
233 |
+
|
234 |
+
# Read brat annotations for the given text file and convert example to the BigBio-KB format
|
235 |
+
brat_example = parsing.parse_brat_file(file)
|
236 |
+
kb_example = parsing.brat_parse_to_bigbio_kb(brat_example)
|
237 |
+
kb_example["id"] = kb_example["document_id"]
|
238 |
+
|
239 |
+
# Fix text type annotation for the converted example
|
240 |
+
kb_example["passages"][0]["type"] = self.get_text_type(file)
|
241 |
+
|
242 |
+
yield kb_example["id"], kb_example
|
243 |
+
|
244 |
+
def _to_source_example(self, input_file: Path, brat_example: Dict) -> Dict:
|
245 |
+
"""
|
246 |
+
Converts an example extracted using the default brat parsing logic to the source format
|
247 |
+
of the given corpus.
|
248 |
+
"""
|
249 |
+
text_type = self.get_text_type(input_file)
|
250 |
+
source_example = {
|
251 |
+
"document_id": brat_example["document_id"],
|
252 |
+
"text": brat_example["text"],
|
253 |
+
"type": text_type,
|
254 |
+
}
|
255 |
+
|
256 |
+
id_prefix = brat_example["document_id"] + "_"
|
257 |
+
|
258 |
+
source_example["entities"] = []
|
259 |
+
for entity_annotation in brat_example["text_bound_annotations"]:
|
260 |
+
entity_ann = entity_annotation.copy()
|
261 |
+
|
262 |
+
entity_ann["entity_id"] = id_prefix + entity_ann["id"]
|
263 |
+
entity_ann.pop("id")
|
264 |
+
|
265 |
+
source_example["entities"].append(entity_ann)
|
266 |
+
|
267 |
+
return source_example
|
268 |
+
|
269 |
+
def get_text_type(self, input_file: Path) -> str:
|
270 |
+
"""
|
271 |
+
Exctracts section name from filename, if absent return full_text
|
272 |
+
"""
|
273 |
+
|
274 |
+
name_parts = str(input_file.stem).split("_")
|
275 |
+
if len(name_parts) == 3:
|
276 |
+
return name_parts[2]
|
277 |
+
return "full_text"
|