Commit
·
8c0e245
1
Parent(s):
d7eacb2
upload hub_repos/cardiode/cardiode.py to hub from bigbio repo
Browse files- cardiode.py +300 -0
cardiode.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
from .bigbiohub import BigBioConfig, Tasks, kb_features
|
24 |
+
|
25 |
+
_LOCAL = True
|
26 |
+
_CITATION = """\
|
27 |
+
@data{
|
28 |
+
data/AFYQDY_2022,
|
29 |
+
author = {Christoph Dieterich},
|
30 |
+
publisher = {heiDATA},
|
31 |
+
title = {{CARDIO:DE}},
|
32 |
+
year = {2022},
|
33 |
+
version = {V5},
|
34 |
+
doi = {10.11588/data/AFYQDY},
|
35 |
+
url = {https://doi.org/10.11588/data/AFYQDY}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_DESCRIPTION = """\
|
40 |
+
First freely available and distributable large German clinical corpus from the cardiovascular domain.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi%3A10.11588%2Fdata%2FAFYQDY"
|
44 |
+
|
45 |
+
_LICENSE = "DUA"
|
46 |
+
_LANGUAGES = ["German"]
|
47 |
+
_URLS = {}
|
48 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
49 |
+
_SOURCE_VERSION = "5.0.0"
|
50 |
+
_BIGBIO_VERSION = "1.0.0"
|
51 |
+
_DATASETNAME = "cardiode"
|
52 |
+
_DISPLAYNAME = "CARDIO:DE"
|
53 |
+
_PUBMED = False
|
54 |
+
|
55 |
+
|
56 |
+
class CardioDataset(datasets.GeneratorBasedBuilder):
|
57 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
58 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
BigBioConfig(
|
62 |
+
name="cardiode_source",
|
63 |
+
version=SOURCE_VERSION,
|
64 |
+
description="CARDIO:DE source schema",
|
65 |
+
schema="source",
|
66 |
+
subset_id="cardiode",
|
67 |
+
),
|
68 |
+
BigBioConfig(
|
69 |
+
name="cardiode_bigbio_kb",
|
70 |
+
version=BIGBIO_VERSION,
|
71 |
+
description="CARDIO:DE BigBio schema",
|
72 |
+
schema="bigbio_kb",
|
73 |
+
subset_id="cardidoe",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "cardiode_bigbio_kb"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
if self.config.schema == "source":
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"doc_id": datasets.Value("string"),
|
84 |
+
"annotations": [
|
85 |
+
{
|
86 |
+
"text": datasets.Value("string"),
|
87 |
+
"tokens": [
|
88 |
+
{
|
89 |
+
"id": datasets.Value("string"),
|
90 |
+
"offsets": datasets.Value("string"),
|
91 |
+
"text": datasets.Value("string"),
|
92 |
+
"type": datasets.Value("string"),
|
93 |
+
"parent_annotation_id": datasets.Value("string"),
|
94 |
+
"section": datasets.Value("string"),
|
95 |
+
}
|
96 |
+
],
|
97 |
+
}
|
98 |
+
],
|
99 |
+
}
|
100 |
+
)
|
101 |
+
|
102 |
+
elif self.config.schema == "bigbio_kb":
|
103 |
+
features = kb_features
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
features=features,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
114 |
+
if self.config.data_dir is None:
|
115 |
+
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
|
116 |
+
else:
|
117 |
+
data_dir = self.config.data_dir
|
118 |
+
|
119 |
+
return [
|
120 |
+
datasets.SplitGenerator(
|
121 |
+
name=datasets.Split.TRAIN,
|
122 |
+
gen_kwargs={
|
123 |
+
"filepath": os.path.join(data_dir),
|
124 |
+
"split": "train",
|
125 |
+
},
|
126 |
+
)
|
127 |
+
]
|
128 |
+
|
129 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
130 |
+
"""Yields examples as (key, example) tuples."""
|
131 |
+
doc_ids = _sort_files(Path(filepath) / "tsv" / "CARDIODE400_main")
|
132 |
+
for uid, doc in enumerate(doc_ids):
|
133 |
+
tsv_path = Path(filepath) / "tsv" / "CARDIODE400_main" / f"{doc}"
|
134 |
+
df, sentences = _parse_tsv(tsv_path)
|
135 |
+
if self.config.schema == "source":
|
136 |
+
yield uid, _make_source(uid, doc, df, sentences)
|
137 |
+
elif self.config.schema == "bigbio_kb":
|
138 |
+
yield uid, _make_bigbio_kb(uid, doc, df, sentences)
|
139 |
+
|
140 |
+
|
141 |
+
def _parse_tsv(path: str) -> pd.DataFrame:
|
142 |
+
# read whole .tsv as a string
|
143 |
+
with open(path, encoding="utf-8") as file:
|
144 |
+
content = file.read()
|
145 |
+
|
146 |
+
# separate doc into sentences
|
147 |
+
passages = content.split("#")
|
148 |
+
|
149 |
+
# remove the first line (un-tabbed) of each sentence
|
150 |
+
# split sentences into words/tokens
|
151 |
+
# and store string sentences for the passages
|
152 |
+
sentences = []
|
153 |
+
for i, passage in enumerate(passages):
|
154 |
+
if passage.split("\n")[0].startswith("Text="):
|
155 |
+
sentences.append(passage.split("\n")[0].split("Text=")[1])
|
156 |
+
passages[i] = passage.split("\n")[1:]
|
157 |
+
|
158 |
+
# clean empty sentences and tokens
|
159 |
+
clean_passages = [[token for token in passage if token != ""] for passage in passages if passage != []]
|
160 |
+
|
161 |
+
# make a dataframe out of the clean tokens
|
162 |
+
df = []
|
163 |
+
for passage in clean_passages:
|
164 |
+
for token in passage:
|
165 |
+
df.append(token.split("\t"))
|
166 |
+
|
167 |
+
df = pd.DataFrame(df).rename(
|
168 |
+
columns={
|
169 |
+
0: "passage_token_id",
|
170 |
+
1: "token_offset",
|
171 |
+
2: "text",
|
172 |
+
3: "label",
|
173 |
+
4: "uncertain",
|
174 |
+
5: "relation",
|
175 |
+
6: "section",
|
176 |
+
}
|
177 |
+
)
|
178 |
+
|
179 |
+
# correct weird rows were label is NoneType
|
180 |
+
df["label"].fillna("_", inplace=True)
|
181 |
+
|
182 |
+
# split passage and token ids
|
183 |
+
df[["passage_id", "token_id"]] = df["passage_token_id"].str.split("-", expand=True)
|
184 |
+
|
185 |
+
# split labels and their spans
|
186 |
+
# some docs do not have labels spanning various tokens (or they do not have any labels at all)
|
187 |
+
if df["label"].apply(lambda x: "[" in x).any():
|
188 |
+
df[["lab", "span"]] = df["label"].str.split("[", expand=True)
|
189 |
+
df["span"] = df["span"].str.replace("]", "", regex=True)
|
190 |
+
else:
|
191 |
+
df["lab"] = "_"
|
192 |
+
df["span"] = None
|
193 |
+
|
194 |
+
# split start and end offsets and cast to int
|
195 |
+
df[["offset_start", "offset_end"]] = df["token_offset"].str.split("-", expand=True)
|
196 |
+
df["offset_start"] = df["offset_start"].astype(int)
|
197 |
+
df["offset_end"] = df["offset_end"].astype(int)
|
198 |
+
|
199 |
+
# correct offset gaps between tokens
|
200 |
+
i = 0
|
201 |
+
while i < len(df) - 1:
|
202 |
+
gap = df.loc[i + 1]["offset_start"] - df.loc[i]["offset_end"]
|
203 |
+
if gap > 1:
|
204 |
+
df.loc[i + 1 :, "offset_start"] = df.loc[i + 1 :, "offset_start"] - (gap - 1)
|
205 |
+
df.loc[i + 1 :, "offset_end"] = df.loc[i + 1 :, "offset_end"] - (gap - 1)
|
206 |
+
i += 1
|
207 |
+
|
208 |
+
return df, sentences
|
209 |
+
|
210 |
+
|
211 |
+
def _make_source(uid: int, doc_id: str, df: pd.DataFrame, sentences: list):
|
212 |
+
out = {"doc_id": doc_id, "annotations": []}
|
213 |
+
for i, sentence in enumerate(sentences):
|
214 |
+
anno = {"text": sentence, "tokens": []}
|
215 |
+
chunk = df[df["passage_id"] == str(i + 1)]
|
216 |
+
for _, row in chunk.iterrows():
|
217 |
+
anno["tokens"].append(
|
218 |
+
{
|
219 |
+
"id": row["passage_token_id"],
|
220 |
+
"offsets": row["token_offset"],
|
221 |
+
"text": row["text"],
|
222 |
+
"type": row["label"],
|
223 |
+
"parent_annotation_id": row["relation"],
|
224 |
+
"section": row["section"],
|
225 |
+
}
|
226 |
+
)
|
227 |
+
out["annotations"].append(anno)
|
228 |
+
return out
|
229 |
+
|
230 |
+
|
231 |
+
def _make_bigbio_kb(uid: int, doc_id: str, df: pd.DataFrame, sentences: list):
|
232 |
+
out = {
|
233 |
+
"id": str(uid),
|
234 |
+
"document_id": doc_id,
|
235 |
+
"passages": [],
|
236 |
+
"entities": [],
|
237 |
+
"events": [],
|
238 |
+
"coreferences": [],
|
239 |
+
"relations": [],
|
240 |
+
}
|
241 |
+
|
242 |
+
# handle passages
|
243 |
+
i, sen_num, offset_mark = 0, 0, 0
|
244 |
+
while i < len(df):
|
245 |
+
pid = df.iloc[i]["passage_id"]
|
246 |
+
passage = df[df["passage_id"] == pid]
|
247 |
+
|
248 |
+
out["passages"].append(
|
249 |
+
{
|
250 |
+
"id": f"{uid}-{pid}",
|
251 |
+
"type": "sentence",
|
252 |
+
"text": [sentences[sen_num]],
|
253 |
+
"offsets": [[offset_mark, offset_mark + len(sentences[sen_num])]],
|
254 |
+
}
|
255 |
+
)
|
256 |
+
|
257 |
+
i += len(passage)
|
258 |
+
offset_mark += len(sentences[sen_num]) + 1
|
259 |
+
sen_num += 1
|
260 |
+
|
261 |
+
# handle entities
|
262 |
+
text = " ".join(sentences)
|
263 |
+
i = 0
|
264 |
+
while i < len(df):
|
265 |
+
if df.iloc[i]["lab"] != "_" and df.iloc[i]["span"] is None:
|
266 |
+
out["entities"].append(
|
267 |
+
{
|
268 |
+
"id": f'{uid}-{df.iloc[i]["passage_token_id"]}',
|
269 |
+
"type": df.iloc[i]["lab"],
|
270 |
+
"text": [text[df.iloc[i]["offset_start"] : df.iloc[i]["offset_end"]]],
|
271 |
+
"offsets": [[df.iloc[i]["offset_start"], df.iloc[i]["offset_end"]]],
|
272 |
+
"normalized": [],
|
273 |
+
}
|
274 |
+
)
|
275 |
+
i += 1
|
276 |
+
elif df.iloc[i]["span"] is not None:
|
277 |
+
ent = df[df["span"] == df.iloc[i]["span"]]
|
278 |
+
out["entities"].append(
|
279 |
+
{
|
280 |
+
"id": f'{uid}-{df.iloc[i]["passage_token_id"]}',
|
281 |
+
"type": df.iloc[i]["lab"],
|
282 |
+
"text": [text[ent.iloc[0]["offset_start"] : ent.iloc[-1]["offset_end"]]],
|
283 |
+
"offsets": [[ent.iloc[0]["offset_start"], ent.iloc[-1]["offset_end"]]],
|
284 |
+
"normalized": [],
|
285 |
+
}
|
286 |
+
)
|
287 |
+
i += len(ent)
|
288 |
+
else:
|
289 |
+
i += 1
|
290 |
+
|
291 |
+
return out
|
292 |
+
|
293 |
+
|
294 |
+
def _sort_files(filepath):
|
295 |
+
doc_ids = os.listdir(filepath)
|
296 |
+
doc_ids = [int(doc_ids[i].split(".")[0]) for i in range(len(doc_ids))]
|
297 |
+
doc_ids = sorted(doc_ids)
|
298 |
+
doc_ids = [f"{doc_ids[i]}.tsv" for i in range(len(doc_ids))]
|
299 |
+
return doc_ids
|
300 |
+
|