gabrielaltay
commited on
Commit
·
2c29259
1
Parent(s):
49de995
upload hubscripts/bionlp_st_2019_bb_hub.py to hub from bigbio repo
Browse files- bionlp_st_2019_bb.py +594 -0
bionlp_st_2019_bb.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from .bigbiohub import kb_features
|
22 |
+
from .bigbiohub import BigBioConfig
|
23 |
+
from .bigbiohub import Tasks
|
24 |
+
|
25 |
+
_DATASETNAME = "bionlp_st_2019_bb"
|
26 |
+
_DISPLAYNAME = "BioNLP 2019 BB"
|
27 |
+
|
28 |
+
_SOURCE_VIEW_NAME = "source"
|
29 |
+
_UNIFIED_VIEW_NAME = "bigbio"
|
30 |
+
|
31 |
+
_LANGUAGES = ['English']
|
32 |
+
_PUBMED = True
|
33 |
+
_LOCAL = False
|
34 |
+
_CITATION = """\
|
35 |
+
@inproceedings{bossy-etal-2019-bacteria,
|
36 |
+
title = "Bacteria Biotope at {B}io{NLP} Open Shared Tasks 2019",
|
37 |
+
author = "Bossy, Robert and
|
38 |
+
Del{\'e}ger, Louise and
|
39 |
+
Chaix, Estelle and
|
40 |
+
Ba, Mouhamadou and
|
41 |
+
N{\'e}dellec, Claire",
|
42 |
+
booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
|
43 |
+
month = nov,
|
44 |
+
year = "2019",
|
45 |
+
address = "Hong Kong, China",
|
46 |
+
publisher = "Association for Computational Linguistics",
|
47 |
+
url = "https://aclanthology.org/D19-5719",
|
48 |
+
doi = "10.18653/v1/D19-5719",
|
49 |
+
pages = "121--131",
|
50 |
+
abstract = "This paper presents the fourth edition of the Bacteria
|
51 |
+
Biotope task at BioNLP Open Shared Tasks 2019. The task focuses on
|
52 |
+
the extraction of the locations and phenotypes of microorganisms
|
53 |
+
from PubMed abstracts and full-text excerpts, and the characterization
|
54 |
+
of these entities with respect to reference knowledge sources (NCBI
|
55 |
+
taxonomy, OntoBiotope ontology). The task is motivated by the importance
|
56 |
+
of the knowledge on biodiversity for fundamental research and applications
|
57 |
+
in microbiology. The paper describes the different proposed subtasks, the
|
58 |
+
corpus characteristics, and the challenge organization. We also provide an
|
59 |
+
analysis of the results obtained by participants, and inspect the evolution
|
60 |
+
of the results since the last edition in 2016.",
|
61 |
+
}
|
62 |
+
"""
|
63 |
+
|
64 |
+
_DESCRIPTION = """\
|
65 |
+
The task focuses on the extraction of the locations and phenotypes of
|
66 |
+
microorganisms from PubMed abstracts and full-text excerpts, and the
|
67 |
+
characterization of these entities with respect to reference knowledge
|
68 |
+
sources (NCBI taxonomy, OntoBiotope ontology). The task is motivated by
|
69 |
+
the importance of the knowledge on biodiversity for fundamental research
|
70 |
+
and applications in microbiology.
|
71 |
+
|
72 |
+
"""
|
73 |
+
|
74 |
+
_HOMEPAGE = "https://sites.google.com/view/bb-2019/dataset"
|
75 |
+
|
76 |
+
_LICENSE = 'License information unavailable'
|
77 |
+
|
78 |
+
_URLs = {
|
79 |
+
"source": {
|
80 |
+
"norm": {
|
81 |
+
"train": "https://drive.google.com/uc?export=download&id=1aXbshxgytZ1Dhbmw7OULPFarPO1FbcM3",
|
82 |
+
"dev": "https://drive.google.com/uc?export=download&id=14jRZWF8VeluEYrV9EybV3LeGm4q5nH6s",
|
83 |
+
"test": "https://drive.google.com/uc?export=download&id=1BPDCFTVMmIlOowYA-DkeNNFjwTfHYPG6",
|
84 |
+
},
|
85 |
+
"norm+ner": {
|
86 |
+
"train": "https://drive.google.com/uc?export=download&id=1yKxBPMej8EYdVeU4QS1xquFfXM76F-2K",
|
87 |
+
"dev": "https://drive.google.com/uc?export=download&id=1Xk7h9bax533QWclO3Ur7aS07OATBF_bG",
|
88 |
+
"test": "https://drive.google.com/uc?export=download&id=1Cb5hQIPS3LIeUL-UWdqyWfKB52xUz9cp",
|
89 |
+
},
|
90 |
+
"rel": {
|
91 |
+
"train": "https://drive.google.com/uc?export=download&id=1gnc-ScNpssC3qrA7cVox4Iei7i96sYqC",
|
92 |
+
"dev": "https://drive.google.com/uc?export=download&id=1wJM9XOfmvIBcX23t9bzQX5fLZwWQJIwS",
|
93 |
+
"test": "https://drive.google.com/uc?export=download&id=1smhKA4LEPK5UJEyBLseq0mBaT9REUevu",
|
94 |
+
},
|
95 |
+
"rel+ner": {
|
96 |
+
"train": "https://drive.google.com/uc?export=download&id=1CPx9NxTPQbygqMtxw3d0hNFajhecqgss",
|
97 |
+
"dev": "https://drive.google.com/uc?export=download&id=1lVyCCuAJ5TmmTDz4S0dISBNiWGR745_7",
|
98 |
+
"test": "https://drive.google.com/uc?export=download&id=1uE8oY5m-7mSA-W-e6vownnAVV97IwHhA",
|
99 |
+
},
|
100 |
+
"kb": {
|
101 |
+
"train": "https://drive.google.com/uc?export=download&id=1Iuce3T_IArXWBbIJ7RXb_STaPnWKQBN-",
|
102 |
+
"dev": "https://drive.google.com/uc?export=download&id=14yON_Tc9dm8esWYDVxL-krw23sgTCcdL",
|
103 |
+
"test": "https://drive.google.com/uc?export=download&id=1wVqI_t9mirGUk71BkwkcKJv0VNGyaHDs",
|
104 |
+
},
|
105 |
+
"kb+ner": {
|
106 |
+
"train": "https://drive.google.com/uc?export=download&id=1WMl9eD4OZXq8zkkmHp3hSEvAqaAVui6L",
|
107 |
+
"dev": "https://drive.google.com/uc?export=download&id=1oOfOfjIfg1XnesXwaKvSDfqgnchuximG",
|
108 |
+
"test": "https://drive.google.com/uc?export=download&id=1_dRbgpGJUBCfF-iN2qOAgOBRvYmE7byW",
|
109 |
+
},
|
110 |
+
},
|
111 |
+
"bigbio_kb": {
|
112 |
+
"kb+ner": {
|
113 |
+
"train": "https://drive.google.com/uc?export=download&id=1WMl9eD4OZXq8zkkmHp3hSEvAqaAVui6L",
|
114 |
+
"dev": "https://drive.google.com/uc?export=download&id=1oOfOfjIfg1XnesXwaKvSDfqgnchuximG",
|
115 |
+
"test": "https://drive.google.com/uc?export=download&id=1_dRbgpGJUBCfF-iN2qOAgOBRvYmE7byW",
|
116 |
+
},
|
117 |
+
},
|
118 |
+
}
|
119 |
+
|
120 |
+
_SUPPORTED_TASKS = [
|
121 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
122 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION,
|
123 |
+
Tasks.RELATION_EXTRACTION,
|
124 |
+
]
|
125 |
+
_SOURCE_VERSION = "1.0.0"
|
126 |
+
_BIGBIO_VERSION = "1.0.0"
|
127 |
+
|
128 |
+
|
129 |
+
class bionlp_st_2019_bb(datasets.GeneratorBasedBuilder):
|
130 |
+
"""This dataset is the fourth edition of the Bacteria
|
131 |
+
Biotope task at BioNLP Open Shared Tasks 2019"""
|
132 |
+
|
133 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
134 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
135 |
+
|
136 |
+
BUILDER_CONFIGS = [
|
137 |
+
BigBioConfig(
|
138 |
+
name="bionlp_st_2019_bb_norm_source",
|
139 |
+
version=SOURCE_VERSION,
|
140 |
+
description="bionlp_st_2019_bb entity normalization source schema",
|
141 |
+
schema="source",
|
142 |
+
subset_id="bionlp_st_2019_bb",
|
143 |
+
),
|
144 |
+
BigBioConfig(
|
145 |
+
name="bionlp_st_2019_bb_norm+ner_source",
|
146 |
+
version=SOURCE_VERSION,
|
147 |
+
description="bionlp_st_2019_bb entity recognition and normalization source schema",
|
148 |
+
schema="source",
|
149 |
+
subset_id="bionlp_st_2019_bb",
|
150 |
+
),
|
151 |
+
BigBioConfig(
|
152 |
+
name="bionlp_st_2019_bb_rel_source",
|
153 |
+
version=SOURCE_VERSION,
|
154 |
+
description="bionlp_st_2019_bb relation extraction source schema",
|
155 |
+
schema="source",
|
156 |
+
subset_id="bionlp_st_2019_bb",
|
157 |
+
),
|
158 |
+
BigBioConfig(
|
159 |
+
name="bionlp_st_2019_bb_rel+ner_source",
|
160 |
+
version=SOURCE_VERSION,
|
161 |
+
description="bionlp_st_2019_bb entity recognition and relation extraction source schema",
|
162 |
+
schema="source",
|
163 |
+
subset_id="bionlp_st_2019_bb",
|
164 |
+
),
|
165 |
+
BigBioConfig(
|
166 |
+
name="bionlp_st_2019_bb_kb_source",
|
167 |
+
version=SOURCE_VERSION,
|
168 |
+
description="bionlp_st_2019_bb entity normalization and relation extraction source schema",
|
169 |
+
schema="source",
|
170 |
+
subset_id="bionlp_st_2019_bb",
|
171 |
+
),
|
172 |
+
BigBioConfig(
|
173 |
+
name="bionlp_st_2019_bb_kb+ner_source",
|
174 |
+
version=SOURCE_VERSION,
|
175 |
+
description="bionlp_st_2019_bb entity recognition and normalization and relation extraction source schema",
|
176 |
+
schema="source",
|
177 |
+
subset_id="bionlp_st_2019_bb",
|
178 |
+
),
|
179 |
+
BigBioConfig(
|
180 |
+
name="bionlp_st_2019_bb_bigbio_kb",
|
181 |
+
version=BIGBIO_VERSION,
|
182 |
+
description="bionlp_st_2019_bb BigBio schema",
|
183 |
+
schema="bigbio_kb",
|
184 |
+
subset_id="bionlp_st_2019_bb",
|
185 |
+
),
|
186 |
+
]
|
187 |
+
|
188 |
+
DEFAULT_CONFIG_NAME = "bionlp_st_2019_bb_kb+ner_source"
|
189 |
+
|
190 |
+
def _info(self):
|
191 |
+
"""
|
192 |
+
- `features` defines the schema of the parsed data set. The schema depends on the
|
193 |
+
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
|
194 |
+
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
|
195 |
+
canonical KB-task schema defined in `biomedical/schemas/kb.py`.
|
196 |
+
"""
|
197 |
+
if self.config.schema == "source":
|
198 |
+
features = datasets.Features(
|
199 |
+
{
|
200 |
+
"id": datasets.Value("string"),
|
201 |
+
"document_id": datasets.Value("string"),
|
202 |
+
"text": datasets.Value("string"),
|
203 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
204 |
+
{
|
205 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
206 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
207 |
+
"type": datasets.Value("string"),
|
208 |
+
"id": datasets.Value("string"),
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"events": [ # E line in brat
|
212 |
+
{
|
213 |
+
"trigger": datasets.Value(
|
214 |
+
"string"
|
215 |
+
), # refers to the text_bound_annotation of the trigger,
|
216 |
+
"id": datasets.Value("string"),
|
217 |
+
"type": datasets.Value("string"),
|
218 |
+
"arguments": datasets.Sequence(
|
219 |
+
{
|
220 |
+
"role": datasets.Value("string"),
|
221 |
+
"ref_id": datasets.Value("string"),
|
222 |
+
}
|
223 |
+
),
|
224 |
+
}
|
225 |
+
],
|
226 |
+
"relations": [ # R line in brat
|
227 |
+
{
|
228 |
+
"id": datasets.Value("string"),
|
229 |
+
"head": {
|
230 |
+
"ref_id": datasets.Value("string"),
|
231 |
+
"role": datasets.Value("string"),
|
232 |
+
},
|
233 |
+
"tail": {
|
234 |
+
"ref_id": datasets.Value("string"),
|
235 |
+
"role": datasets.Value("string"),
|
236 |
+
},
|
237 |
+
"type": datasets.Value("string"),
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"equivalences": [ # Equiv line in brat
|
241 |
+
{
|
242 |
+
"id": datasets.Value("string"),
|
243 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"attributes": [ # M or A lines in brat
|
247 |
+
{
|
248 |
+
"id": datasets.Value("string"),
|
249 |
+
"type": datasets.Value("string"),
|
250 |
+
"ref_id": datasets.Value("string"),
|
251 |
+
"value": datasets.Value("string"),
|
252 |
+
}
|
253 |
+
],
|
254 |
+
"normalizations": [ # N lines in brat
|
255 |
+
{
|
256 |
+
"id": datasets.Value("string"),
|
257 |
+
"ref_id": datasets.Value("string"),
|
258 |
+
"resource_name": datasets.Value(
|
259 |
+
"string"
|
260 |
+
), # Name of the resource, e.g. "Wikipedia"
|
261 |
+
"cuid": datasets.Value(
|
262 |
+
"string"
|
263 |
+
), # ID in the resource, e.g. 534366
|
264 |
+
}
|
265 |
+
],
|
266 |
+
},
|
267 |
+
)
|
268 |
+
elif self.config.schema == "bigbio_kb":
|
269 |
+
features = kb_features
|
270 |
+
|
271 |
+
return datasets.DatasetInfo(
|
272 |
+
description=_DESCRIPTION,
|
273 |
+
features=features,
|
274 |
+
homepage=_HOMEPAGE,
|
275 |
+
license=str(_LICENSE),
|
276 |
+
citation=_CITATION,
|
277 |
+
)
|
278 |
+
|
279 |
+
def _split_generators(
|
280 |
+
self, dl_manager: datasets.DownloadManager
|
281 |
+
) -> List[datasets.SplitGenerator]:
|
282 |
+
version = self.config.name.split("_")[-2]
|
283 |
+
if version == "bigbio":
|
284 |
+
version = "kb+ner"
|
285 |
+
my_urls = _URLs[self.config.schema][version]
|
286 |
+
data_files = {
|
287 |
+
"train": Path(dl_manager.download_and_extract(my_urls["train"]))
|
288 |
+
/ f"BioNLP-OST-2019_BB-{version}_train",
|
289 |
+
"dev": Path(dl_manager.download_and_extract(my_urls["dev"]))
|
290 |
+
/ f"BioNLP-OST-2019_BB-{version}_dev",
|
291 |
+
"test": Path(dl_manager.download_and_extract(my_urls["test"]))
|
292 |
+
/ f"BioNLP-OST-2019_BB-{version}_test",
|
293 |
+
}
|
294 |
+
return [
|
295 |
+
datasets.SplitGenerator(
|
296 |
+
name=datasets.Split.TRAIN,
|
297 |
+
gen_kwargs={"data_files": data_files["train"]},
|
298 |
+
),
|
299 |
+
datasets.SplitGenerator(
|
300 |
+
name=datasets.Split.VALIDATION,
|
301 |
+
gen_kwargs={"data_files": data_files["dev"]},
|
302 |
+
),
|
303 |
+
datasets.SplitGenerator(
|
304 |
+
name=datasets.Split.TEST,
|
305 |
+
gen_kwargs={"data_files": data_files["test"]},
|
306 |
+
),
|
307 |
+
]
|
308 |
+
|
309 |
+
def _generate_examples(self, data_files: Path):
|
310 |
+
if self.config.schema == "source":
|
311 |
+
txt_files = list(data_files.glob("*txt"))
|
312 |
+
for guid, txt_file in enumerate(txt_files):
|
313 |
+
example = self.parse_brat_file(txt_file)
|
314 |
+
example["id"] = str(guid)
|
315 |
+
yield guid, example
|
316 |
+
elif self.config.schema == "bigbio_kb":
|
317 |
+
txt_files = list(data_files.glob("*txt"))
|
318 |
+
for guid, txt_file in enumerate(txt_files):
|
319 |
+
example = parsing.brat_parse_to_bigbio_kb(
|
320 |
+
self.parse_brat_file(txt_file)
|
321 |
+
)
|
322 |
+
example["id"] = str(guid)
|
323 |
+
yield guid, example
|
324 |
+
else:
|
325 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
326 |
+
|
327 |
+
def parse_brat_file(
|
328 |
+
self,
|
329 |
+
txt_file: Path,
|
330 |
+
annotation_file_suffixes: List[str] = None,
|
331 |
+
parse_notes: bool = False,
|
332 |
+
) -> Dict:
|
333 |
+
"""
|
334 |
+
Parse a brat file into the schema defined below.
|
335 |
+
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
336 |
+
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
337 |
+
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
338 |
+
|
339 |
+
Will include annotator notes, when `parse_notes == True`.
|
340 |
+
|
341 |
+
brat_features = datasets.Features(
|
342 |
+
{
|
343 |
+
"id": datasets.Value("string"),
|
344 |
+
"document_id": datasets.Value("string"),
|
345 |
+
"text": datasets.Value("string"),
|
346 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
347 |
+
{
|
348 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
349 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
350 |
+
"type": datasets.Value("string"),
|
351 |
+
"id": datasets.Value("string"),
|
352 |
+
}
|
353 |
+
],
|
354 |
+
"events": [ # E line in brat
|
355 |
+
{
|
356 |
+
"trigger": datasets.Value(
|
357 |
+
"string"
|
358 |
+
), # refers to the text_bound_annotation of the trigger,
|
359 |
+
"id": datasets.Value("string"),
|
360 |
+
"type": datasets.Value("string"),
|
361 |
+
"arguments": datasets.Sequence(
|
362 |
+
{
|
363 |
+
"role": datasets.Value("string"),
|
364 |
+
"ref_id": datasets.Value("string"),
|
365 |
+
}
|
366 |
+
),
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"relations": [ # R line in brat
|
370 |
+
{
|
371 |
+
"id": datasets.Value("string"),
|
372 |
+
"head": {
|
373 |
+
"ref_id": datasets.Value("string"),
|
374 |
+
"role": datasets.Value("string"),
|
375 |
+
},
|
376 |
+
"tail": {
|
377 |
+
"ref_id": datasets.Value("string"),
|
378 |
+
"role": datasets.Value("string"),
|
379 |
+
},
|
380 |
+
"type": datasets.Value("string"),
|
381 |
+
}
|
382 |
+
],
|
383 |
+
"equivalences": [ # Equiv line in brat
|
384 |
+
{
|
385 |
+
"id": datasets.Value("string"),
|
386 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
387 |
+
}
|
388 |
+
],
|
389 |
+
"attributes": [ # M or A lines in brat
|
390 |
+
{
|
391 |
+
"id": datasets.Value("string"),
|
392 |
+
"type": datasets.Value("string"),
|
393 |
+
"ref_id": datasets.Value("string"),
|
394 |
+
"value": datasets.Value("string"),
|
395 |
+
}
|
396 |
+
],
|
397 |
+
"normalizations": [ # N lines in brat
|
398 |
+
{
|
399 |
+
"id": datasets.Value("string"),
|
400 |
+
"type": datasets.Value("string"),
|
401 |
+
"ref_id": datasets.Value("string"),
|
402 |
+
"resource_name": datasets.Value(
|
403 |
+
"string"
|
404 |
+
), # Name of the resource, e.g. "Wikipedia"
|
405 |
+
"cuid": datasets.Value(
|
406 |
+
"string"
|
407 |
+
), # ID in the resource, e.g. 534366
|
408 |
+
"text": datasets.Value(
|
409 |
+
"string"
|
410 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
411 |
+
}
|
412 |
+
],
|
413 |
+
### OPTIONAL: Only included when `parse_notes == True`
|
414 |
+
"notes": [ # # lines in brat
|
415 |
+
{
|
416 |
+
"id": datasets.Value("string"),
|
417 |
+
"type": datasets.Value("string"),
|
418 |
+
"ref_id": datasets.Value("string"),
|
419 |
+
"text": datasets.Value("string"),
|
420 |
+
}
|
421 |
+
],
|
422 |
+
},
|
423 |
+
)
|
424 |
+
"""
|
425 |
+
|
426 |
+
example = {}
|
427 |
+
example["document_id"] = txt_file.with_suffix("").name
|
428 |
+
with txt_file.open(encoding="utf-8") as f:
|
429 |
+
if self.config.schema == "bigbio_kb":
|
430 |
+
example["text"] = f.read().replace("\u00A0", " ").replace("\n", " ")
|
431 |
+
else:
|
432 |
+
example["text"] = f.read()
|
433 |
+
|
434 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
435 |
+
# for event extraction
|
436 |
+
if annotation_file_suffixes is None:
|
437 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
438 |
+
|
439 |
+
if len(annotation_file_suffixes) == 0:
|
440 |
+
raise AssertionError(
|
441 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
442 |
+
)
|
443 |
+
|
444 |
+
ann_lines = []
|
445 |
+
for suffix in annotation_file_suffixes:
|
446 |
+
annotation_file = txt_file.with_suffix(suffix)
|
447 |
+
if annotation_file.exists():
|
448 |
+
with annotation_file.open(encoding="utf8") as f:
|
449 |
+
ann_lines.extend(f.readlines())
|
450 |
+
|
451 |
+
example["text_bound_annotations"] = []
|
452 |
+
example["events"] = []
|
453 |
+
example["relations"] = []
|
454 |
+
example["equivalences"] = []
|
455 |
+
example["attributes"] = []
|
456 |
+
example["normalizations"] = []
|
457 |
+
|
458 |
+
if parse_notes:
|
459 |
+
example["notes"] = []
|
460 |
+
|
461 |
+
for line in ann_lines:
|
462 |
+
line = line.strip()
|
463 |
+
if not line:
|
464 |
+
continue
|
465 |
+
|
466 |
+
if line.startswith("T"): # Text bound
|
467 |
+
ann = {}
|
468 |
+
fields = line.split("\t")
|
469 |
+
ann["id"] = fields[0]
|
470 |
+
ann["type"] = fields[1].split()[0]
|
471 |
+
if ann["type"] in ["Title", "Paragraph"]:
|
472 |
+
continue
|
473 |
+
ann["offsets"] = []
|
474 |
+
span_str = parsing.remove_prefix(fields[1], (ann["type"] + " "))
|
475 |
+
text = fields[2]
|
476 |
+
for span in span_str.split(";"):
|
477 |
+
start, end = span.split()
|
478 |
+
ann["offsets"].append([int(start), int(end)])
|
479 |
+
|
480 |
+
# Heuristically split text of discontiguous entities into chunks
|
481 |
+
ann["text"] = []
|
482 |
+
if len(ann["offsets"]) > 1:
|
483 |
+
i = 0
|
484 |
+
for start, end in ann["offsets"]:
|
485 |
+
chunk_len = end - start
|
486 |
+
if self.config.schema == "bigbio_kb":
|
487 |
+
ann["text"].append(
|
488 |
+
text[i : chunk_len + i].replace("\u00A0", " ")
|
489 |
+
)
|
490 |
+
else:
|
491 |
+
ann["text"].append(text[i : chunk_len + i])
|
492 |
+
i += chunk_len
|
493 |
+
while i < len(text) and text[i] == " ":
|
494 |
+
i += 1
|
495 |
+
else:
|
496 |
+
if self.config.schema == "bigbio_kb":
|
497 |
+
ann["text"] = [text.replace("\u00A0", " ")]
|
498 |
+
else:
|
499 |
+
ann["text"] = [text]
|
500 |
+
|
501 |
+
example["text_bound_annotations"].append(ann)
|
502 |
+
|
503 |
+
elif line.startswith("E"):
|
504 |
+
ann = {}
|
505 |
+
fields = line.split("\t")
|
506 |
+
|
507 |
+
ann["id"] = fields[0]
|
508 |
+
|
509 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
510 |
+
|
511 |
+
ann["arguments"] = []
|
512 |
+
for role_ref_id in fields[1].split()[1:]:
|
513 |
+
argument = {
|
514 |
+
"role": (role_ref_id.split(":"))[0],
|
515 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
516 |
+
}
|
517 |
+
ann["arguments"].append(argument)
|
518 |
+
|
519 |
+
example["events"].append(ann)
|
520 |
+
|
521 |
+
elif line.startswith("R"):
|
522 |
+
ann = {}
|
523 |
+
fields = line.split("\t")
|
524 |
+
|
525 |
+
ann["id"] = fields[0]
|
526 |
+
ann["type"] = fields[1].split()[0]
|
527 |
+
|
528 |
+
ann["head"] = {
|
529 |
+
"role": fields[1].split()[1].split(":")[0],
|
530 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
531 |
+
}
|
532 |
+
ann["tail"] = {
|
533 |
+
"role": fields[1].split()[2].split(":")[0],
|
534 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
535 |
+
}
|
536 |
+
|
537 |
+
example["relations"].append(ann)
|
538 |
+
|
539 |
+
# '*' seems to be the legacy way to mark equivalences,
|
540 |
+
# but I couldn't find any info on the current way
|
541 |
+
# this might have to be adapted dependent on the brat version
|
542 |
+
# of the annotation
|
543 |
+
elif line.startswith("*"):
|
544 |
+
ann = {}
|
545 |
+
fields = line.split("\t")
|
546 |
+
|
547 |
+
ann["id"] = fields[0]
|
548 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
549 |
+
|
550 |
+
example["equivalences"].append(ann)
|
551 |
+
|
552 |
+
elif line.startswith("A") or line.startswith("M"):
|
553 |
+
ann = {}
|
554 |
+
fields = line.split("\t")
|
555 |
+
|
556 |
+
ann["id"] = fields[0]
|
557 |
+
|
558 |
+
info = fields[1].split()
|
559 |
+
ann["type"] = info[0]
|
560 |
+
ann["ref_id"] = info[1]
|
561 |
+
|
562 |
+
if len(info) > 2:
|
563 |
+
ann["value"] = info[2]
|
564 |
+
else:
|
565 |
+
ann["value"] = ""
|
566 |
+
|
567 |
+
example["attributes"].append(ann)
|
568 |
+
|
569 |
+
elif line.startswith("N"):
|
570 |
+
ann = {}
|
571 |
+
fields = line.split("\t")
|
572 |
+
|
573 |
+
ann["id"] = fields[0]
|
574 |
+
|
575 |
+
info = fields[1].split()
|
576 |
+
|
577 |
+
ann["ref_id"] = info[1].split(":")[-1]
|
578 |
+
ann["resource_name"] = info[0]
|
579 |
+
ann["cuid"] = "".join(info[2].split(":")[1:])
|
580 |
+
example["normalizations"].append(ann)
|
581 |
+
|
582 |
+
elif parse_notes and line.startswith("#"):
|
583 |
+
ann = {}
|
584 |
+
fields = line.split("\t")
|
585 |
+
|
586 |
+
ann["id"] = fields[0]
|
587 |
+
ann["text"] = fields[2]
|
588 |
+
|
589 |
+
info = fields[1].split()
|
590 |
+
|
591 |
+
ann["type"] = info[0]
|
592 |
+
ann["ref_id"] = info[1]
|
593 |
+
example["notes"].append(ann)
|
594 |
+
return example
|