Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
yuvalr commited on
Commit
43d0d37
·
1 Parent(s): 7af6ec3

Delete mnli.py

Browse files
Files changed (1) hide show
  1. mnli.py +0 -234
mnli.py DELETED
@@ -1,234 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The General Language Understanding Evaluation (GLUE) benchmark."""
18
-
19
-
20
- import csv
21
- import os
22
- import textwrap
23
- import json
24
-
25
- import numpy as np
26
-
27
- import datasets
28
-
29
-
30
- _GLUE_CITATION = """\
31
- @inproceedings{wang2019glue,
32
- title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
33
- author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
34
- note={In the Proceedings of ICLR.},
35
- year={2019}
36
- }
37
- """
38
-
39
- _GLUE_DESCRIPTION = """\
40
- GLUE, the General Language Understanding Evaluation benchmark
41
- (https://gluebenchmark.com/) is a collection of resources for training,
42
- evaluating, and analyzing natural language understanding systems.
43
- """
44
-
45
- _MNLI_BASE_KWARGS = dict(
46
- text_features={
47
- "premise": "sentence1",
48
- "hypothesis": "sentence2",
49
- },
50
- label_classes=["entailment", "neutral", "contradiction"],
51
- label_column="label",
52
- data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
53
- data_dir="MNLI",
54
- citation=textwrap.dedent(
55
- """\
56
- @InProceedings{N18-1101,
57
- author = "Williams, Adina
58
- and Nangia, Nikita
59
- and Bowman, Samuel",
60
- title = "A Broad-Coverage Challenge Corpus for
61
- Sentence Understanding through Inference",
62
- booktitle = "Proceedings of the 2018 Conference of
63
- the North American Chapter of the
64
- Association for Computational Linguistics:
65
- Human Language Technologies, Volume 1 (Long
66
- Papers)",
67
- year = "2018",
68
- publisher = "Association for Computational Linguistics",
69
- pages = "1112--1122",
70
- location = "New Orleans, Louisiana",
71
- url = "http://aclweb.org/anthology/N18-1101"
72
- }
73
- @article{bowman2015large,
74
- title={A large annotated corpus for learning natural language inference},
75
- author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
76
- journal={arXiv preprint arXiv:1508.05326},
77
- year={2015}
78
- }"""
79
- ),
80
- url="http://www.nyu.edu/projects/bowman/multinli/",
81
- )
82
-
83
-
84
- class GlueConfig(datasets.BuilderConfig):
85
- """BuilderConfig for GLUE."""
86
-
87
- def __init__(
88
- self,
89
- text_features,
90
- label_column,
91
- data_url,
92
- data_dir,
93
- citation,
94
- url,
95
- label_classes=None,
96
- process_label=lambda x: x,
97
- **kwargs,
98
- ):
99
- """BuilderConfig for GLUE.
100
- Args:
101
- text_features: `dict[string, string]`, map from the name of the feature
102
- dict for each text field to the name of the column in the tsv file
103
- label_column: `string`, name of the column in the tsv file corresponding
104
- to the label
105
- data_url: `string`, url to download the zip file from
106
- data_dir: `string`, the path to the folder containing the tsv files in the
107
- downloaded zip
108
- citation: `string`, citation for the data set
109
- url: `string`, url for information about the data set
110
- label_classes: `list[string]`, the list of classes if the label is
111
- categorical. If not provided, then the label will be of type
112
- `datasets.Value('float32')`.
113
- process_label: `Function[string, any]`, function taking in the raw value
114
- of the label and processing it to the form required by the label feature
115
- **kwargs: keyword arguments forwarded to super.
116
- """
117
- super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
118
- self.text_features = text_features
119
- self.label_column = label_column
120
- self.label_classes = label_classes
121
- self.data_url = data_url
122
- self.data_dir = data_dir
123
- self.citation = citation
124
- self.url = url
125
- self.process_label = process_label
126
-
127
-
128
- class Glue(datasets.GeneratorBasedBuilder):
129
- """The General Language Understanding Evaluation (GLUE) benchmark."""
130
-
131
- BUILDER_CONFIGS = [
132
- GlueConfig(
133
- name=bias_amplified_splits_type,
134
- description=textwrap.dedent(
135
- """\
136
- The Multi-Genre Natural Language Inference Corpus is a crowdsourced
137
- collection of sentence pairs with textual entailment annotations. Given a premise sentence
138
- and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
139
- (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
140
- gathered from ten different sources, including transcribed speech, fiction, and government reports.
141
- We use the standard test set, for which we obtained private labels from the authors, and evaluate
142
- on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
143
- the SNLI corpus as 550k examples of auxiliary training data."""
144
- ),
145
- **_MNLI_BASE_KWARGS,
146
- ) for bias_amplified_splits_type in ["minority_examples", "partial_input"]
147
- ]
148
-
149
- def _info(self):
150
- features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
151
- if self.config.label_classes:
152
- features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
153
- else:
154
- features["label"] = datasets.Value("float32")
155
- features["idx"] = datasets.Value("int32")
156
- return datasets.DatasetInfo(
157
- description=_GLUE_DESCRIPTION,
158
- features=datasets.Features(features),
159
- homepage=self.config.url,
160
- citation=self.config.citation + "\n" + _GLUE_CITATION,
161
- )
162
-
163
- def _split_generators(self, dl_manager):
164
- return [
165
- datasets.SplitGenerator(
166
- name="train.biased",
167
- gen_kwargs={
168
- "filepath": dl_manager.download(os.path.join(self.config.name, "train.biased.jsonl")),
169
- },
170
- ),
171
- datasets.SplitGenerator(
172
- name="train.anti-biased",
173
- gen_kwargs={
174
- "filepath": dl_manager.download(os.path.join(self.config.name, "train.anti-biased.jsonl")),
175
- },
176
- ),
177
- datasets.SplitGenerator(
178
- name="validation_matched.biased",
179
- gen_kwargs={
180
- "filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.biased.jsonl")),
181
- },
182
- ),
183
- datasets.SplitGenerator(
184
- name="validation_matched.anti-biased",
185
- gen_kwargs={
186
- "filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.anti-biased.jsonl")),
187
- },
188
- ),
189
- datasets.SplitGenerator(
190
- name="validation_mismatched.biased",
191
- gen_kwargs={
192
- "filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.biased.jsonl")),
193
- },
194
- ),
195
- datasets.SplitGenerator(
196
- name="validation_mismatched.anti-biased",
197
- gen_kwargs={
198
- "filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.anti-biased.jsonl")),
199
- },
200
- ),
201
- ]
202
-
203
- def _generate_examples(self, filepath):
204
- """Generate examples.
205
-
206
- Args:
207
- filepath: a string
208
-
209
- Yields:
210
- dictionaries containing "premise", "hypothesis" and "label" strings
211
- """
212
- process_label = self.config.process_label
213
- label_classes = self.config.label_classes
214
-
215
- for idx, line in enumerate(open(filepath, "rb")):
216
- if line is not None:
217
- line = line.strip().decode("utf-8")
218
- item = json.loads(line)
219
- example = {
220
- "idx": item["idx"],
221
- "premise": item["premise"],
222
- "hypothesis": item["hypothesis"],
223
- }
224
- if self.config.label_column in item:
225
- label = item[self.config.label_column]
226
- # For some tasks, the label is represented as 0 and 1 in the tsv
227
- # files and needs to be cast to integer to work with the feature.
228
- if label_classes and label not in label_classes:
229
- label = int(label) if label else None
230
- example["label"] = process_label(label)
231
- else:
232
- example["label"] = process_label(-1)
233
-
234
- yield example["idx"], example