Datasets:
Delete mnli.py
Browse files
mnli.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
18 |
-
|
19 |
-
|
20 |
-
import csv
|
21 |
-
import os
|
22 |
-
import textwrap
|
23 |
-
import json
|
24 |
-
|
25 |
-
import numpy as np
|
26 |
-
|
27 |
-
import datasets
|
28 |
-
|
29 |
-
|
30 |
-
_GLUE_CITATION = """\
|
31 |
-
@inproceedings{wang2019glue,
|
32 |
-
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
|
33 |
-
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
|
34 |
-
note={In the Proceedings of ICLR.},
|
35 |
-
year={2019}
|
36 |
-
}
|
37 |
-
"""
|
38 |
-
|
39 |
-
_GLUE_DESCRIPTION = """\
|
40 |
-
GLUE, the General Language Understanding Evaluation benchmark
|
41 |
-
(https://gluebenchmark.com/) is a collection of resources for training,
|
42 |
-
evaluating, and analyzing natural language understanding systems.
|
43 |
-
"""
|
44 |
-
|
45 |
-
_MNLI_BASE_KWARGS = dict(
|
46 |
-
text_features={
|
47 |
-
"premise": "sentence1",
|
48 |
-
"hypothesis": "sentence2",
|
49 |
-
},
|
50 |
-
label_classes=["entailment", "neutral", "contradiction"],
|
51 |
-
label_column="label",
|
52 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
|
53 |
-
data_dir="MNLI",
|
54 |
-
citation=textwrap.dedent(
|
55 |
-
"""\
|
56 |
-
@InProceedings{N18-1101,
|
57 |
-
author = "Williams, Adina
|
58 |
-
and Nangia, Nikita
|
59 |
-
and Bowman, Samuel",
|
60 |
-
title = "A Broad-Coverage Challenge Corpus for
|
61 |
-
Sentence Understanding through Inference",
|
62 |
-
booktitle = "Proceedings of the 2018 Conference of
|
63 |
-
the North American Chapter of the
|
64 |
-
Association for Computational Linguistics:
|
65 |
-
Human Language Technologies, Volume 1 (Long
|
66 |
-
Papers)",
|
67 |
-
year = "2018",
|
68 |
-
publisher = "Association for Computational Linguistics",
|
69 |
-
pages = "1112--1122",
|
70 |
-
location = "New Orleans, Louisiana",
|
71 |
-
url = "http://aclweb.org/anthology/N18-1101"
|
72 |
-
}
|
73 |
-
@article{bowman2015large,
|
74 |
-
title={A large annotated corpus for learning natural language inference},
|
75 |
-
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
|
76 |
-
journal={arXiv preprint arXiv:1508.05326},
|
77 |
-
year={2015}
|
78 |
-
}"""
|
79 |
-
),
|
80 |
-
url="http://www.nyu.edu/projects/bowman/multinli/",
|
81 |
-
)
|
82 |
-
|
83 |
-
|
84 |
-
class GlueConfig(datasets.BuilderConfig):
|
85 |
-
"""BuilderConfig for GLUE."""
|
86 |
-
|
87 |
-
def __init__(
|
88 |
-
self,
|
89 |
-
text_features,
|
90 |
-
label_column,
|
91 |
-
data_url,
|
92 |
-
data_dir,
|
93 |
-
citation,
|
94 |
-
url,
|
95 |
-
label_classes=None,
|
96 |
-
process_label=lambda x: x,
|
97 |
-
**kwargs,
|
98 |
-
):
|
99 |
-
"""BuilderConfig for GLUE.
|
100 |
-
Args:
|
101 |
-
text_features: `dict[string, string]`, map from the name of the feature
|
102 |
-
dict for each text field to the name of the column in the tsv file
|
103 |
-
label_column: `string`, name of the column in the tsv file corresponding
|
104 |
-
to the label
|
105 |
-
data_url: `string`, url to download the zip file from
|
106 |
-
data_dir: `string`, the path to the folder containing the tsv files in the
|
107 |
-
downloaded zip
|
108 |
-
citation: `string`, citation for the data set
|
109 |
-
url: `string`, url for information about the data set
|
110 |
-
label_classes: `list[string]`, the list of classes if the label is
|
111 |
-
categorical. If not provided, then the label will be of type
|
112 |
-
`datasets.Value('float32')`.
|
113 |
-
process_label: `Function[string, any]`, function taking in the raw value
|
114 |
-
of the label and processing it to the form required by the label feature
|
115 |
-
**kwargs: keyword arguments forwarded to super.
|
116 |
-
"""
|
117 |
-
super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
118 |
-
self.text_features = text_features
|
119 |
-
self.label_column = label_column
|
120 |
-
self.label_classes = label_classes
|
121 |
-
self.data_url = data_url
|
122 |
-
self.data_dir = data_dir
|
123 |
-
self.citation = citation
|
124 |
-
self.url = url
|
125 |
-
self.process_label = process_label
|
126 |
-
|
127 |
-
|
128 |
-
class Glue(datasets.GeneratorBasedBuilder):
|
129 |
-
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
130 |
-
|
131 |
-
BUILDER_CONFIGS = [
|
132 |
-
GlueConfig(
|
133 |
-
name=bias_amplified_splits_type,
|
134 |
-
description=textwrap.dedent(
|
135 |
-
"""\
|
136 |
-
The Multi-Genre Natural Language Inference Corpus is a crowdsourced
|
137 |
-
collection of sentence pairs with textual entailment annotations. Given a premise sentence
|
138 |
-
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
|
139 |
-
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
|
140 |
-
gathered from ten different sources, including transcribed speech, fiction, and government reports.
|
141 |
-
We use the standard test set, for which we obtained private labels from the authors, and evaluate
|
142 |
-
on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
|
143 |
-
the SNLI corpus as 550k examples of auxiliary training data."""
|
144 |
-
),
|
145 |
-
**_MNLI_BASE_KWARGS,
|
146 |
-
) for bias_amplified_splits_type in ["minority_examples", "partial_input"]
|
147 |
-
]
|
148 |
-
|
149 |
-
def _info(self):
|
150 |
-
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
151 |
-
if self.config.label_classes:
|
152 |
-
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
153 |
-
else:
|
154 |
-
features["label"] = datasets.Value("float32")
|
155 |
-
features["idx"] = datasets.Value("int32")
|
156 |
-
return datasets.DatasetInfo(
|
157 |
-
description=_GLUE_DESCRIPTION,
|
158 |
-
features=datasets.Features(features),
|
159 |
-
homepage=self.config.url,
|
160 |
-
citation=self.config.citation + "\n" + _GLUE_CITATION,
|
161 |
-
)
|
162 |
-
|
163 |
-
def _split_generators(self, dl_manager):
|
164 |
-
return [
|
165 |
-
datasets.SplitGenerator(
|
166 |
-
name="train.biased",
|
167 |
-
gen_kwargs={
|
168 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "train.biased.jsonl")),
|
169 |
-
},
|
170 |
-
),
|
171 |
-
datasets.SplitGenerator(
|
172 |
-
name="train.anti-biased",
|
173 |
-
gen_kwargs={
|
174 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "train.anti-biased.jsonl")),
|
175 |
-
},
|
176 |
-
),
|
177 |
-
datasets.SplitGenerator(
|
178 |
-
name="validation_matched.biased",
|
179 |
-
gen_kwargs={
|
180 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.biased.jsonl")),
|
181 |
-
},
|
182 |
-
),
|
183 |
-
datasets.SplitGenerator(
|
184 |
-
name="validation_matched.anti-biased",
|
185 |
-
gen_kwargs={
|
186 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.anti-biased.jsonl")),
|
187 |
-
},
|
188 |
-
),
|
189 |
-
datasets.SplitGenerator(
|
190 |
-
name="validation_mismatched.biased",
|
191 |
-
gen_kwargs={
|
192 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.biased.jsonl")),
|
193 |
-
},
|
194 |
-
),
|
195 |
-
datasets.SplitGenerator(
|
196 |
-
name="validation_mismatched.anti-biased",
|
197 |
-
gen_kwargs={
|
198 |
-
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.anti-biased.jsonl")),
|
199 |
-
},
|
200 |
-
),
|
201 |
-
]
|
202 |
-
|
203 |
-
def _generate_examples(self, filepath):
|
204 |
-
"""Generate examples.
|
205 |
-
|
206 |
-
Args:
|
207 |
-
filepath: a string
|
208 |
-
|
209 |
-
Yields:
|
210 |
-
dictionaries containing "premise", "hypothesis" and "label" strings
|
211 |
-
"""
|
212 |
-
process_label = self.config.process_label
|
213 |
-
label_classes = self.config.label_classes
|
214 |
-
|
215 |
-
for idx, line in enumerate(open(filepath, "rb")):
|
216 |
-
if line is not None:
|
217 |
-
line = line.strip().decode("utf-8")
|
218 |
-
item = json.loads(line)
|
219 |
-
example = {
|
220 |
-
"idx": item["idx"],
|
221 |
-
"premise": item["premise"],
|
222 |
-
"hypothesis": item["hypothesis"],
|
223 |
-
}
|
224 |
-
if self.config.label_column in item:
|
225 |
-
label = item[self.config.label_column]
|
226 |
-
# For some tasks, the label is represented as 0 and 1 in the tsv
|
227 |
-
# files and needs to be cast to integer to work with the feature.
|
228 |
-
if label_classes and label not in label_classes:
|
229 |
-
label = int(label) if label else None
|
230 |
-
example["label"] = process_label(label)
|
231 |
-
else:
|
232 |
-
example["label"] = process_label(-1)
|
233 |
-
|
234 |
-
yield example["idx"], example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|