|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Collection of brain xray images for fine-grain classification.""" |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
from pathlib import Path |
|
import os |
|
|
|
_CITATION = """\ |
|
@misc{kaggle-brain-tumor-classification, |
|
title={Kaggle: Brain Tumor Classification (MRI)}, |
|
howpublished={\\url{https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri?resource=download}}, |
|
note = {Accessed: 2022-06-30}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is intended as a test case for classification tasks (4 different kinds of brain xrays). The dataset consists of almost 1400 JPEG images grouped into two splits - training and validation. Each split contains 4 categories labeled as n0~n3, each corresponding to a cancer result of the mrt. |
|
|
|
|
|
| Label | Xray Category | Train Images | Validation Images | |
|
| ----- | --------------------- | ------------ | ----------------- | |
|
| n0 | glioma_tumor | 826 | 100 | |
|
| n1 | meningioma_tumor | 822 | 115 | |
|
| n2 | pituitary_tumor | 827 | 74 | |
|
| n3 | no_tumor | 395 | 105 | |
|
|
|
|
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri?resource=download" |
|
|
|
_LICENSE = "cc0-1.0" |
|
|
|
_URLS = { |
|
"original": "https://ibm.ent.box.com/index.php?rm=box_download_shared_file&shared_name=nf6md3mxww5k9rw4ks1hwffuo5iez1pc&file_id=f_978363130854" |
|
} |
|
|
|
LABELS = [ |
|
"Glioma Tumor", |
|
"Meningioma Tumor", |
|
"Pituitary Tumor", |
|
"No Tumor" |
|
] |
|
|
|
|
|
class BrainTumorCollectionGenerator(datasets.GeneratorBasedBuilder): |
|
"""Collection of brain xray images for fine-grain classification.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="original", version=VERSION, description="Original JPEG files: images are 400x300 px or larger; ~550 MB"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "original" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=LABELS) |
|
} |
|
) |
|
supervised_keys = ("image", "label") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=supervised_keys, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(url) |
|
print("Test"+data_dir) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "xrays", "training", "training"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "xrays", "validation", "validation"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
paths = list(Path(filepath).glob("**/*.jpg")) |
|
data = [] |
|
|
|
for path in paths: |
|
tumor_folder = str(path).split("/")[-2] |
|
index = int(tumor_folder[1]) |
|
label = LABELS[index] |
|
data.append({"file": str(path), "label": label}) |
|
|
|
df = pd.DataFrame(data) |
|
print(df) |
|
df.sort_values("file", inplace=True) |
|
|
|
for idx_, row in df.iterrows(): |
|
yield idx_, { |
|
"image": row["file"], |
|
"label": row["label"] |
|
} |