bjelkenhed commited on
Commit
1ede384
1 Parent(s): 5f51769

Metadata support

Browse files
archive/nst/metadata_se_csv.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:94993f25e3cc9415a465dbdb1529a300aca3dc24e0a29cdfb112d153be06f1bc
3
- size 19735371
 
 
 
 
babelbox_voice.py CHANGED
@@ -1,20 +1,14 @@
1
  """ Babelbox Voice Dataset"""
2
 
 
3
  import csv
4
- import os
5
- import urllib
6
-
7
  import datasets
8
- import requests
9
- import glob
10
- import gzip
11
  from typing import List
12
- from datasets.utils.py_utils import size_str
13
- logger = datasets.logging.get_logger(__name__)
14
- import torchaudio
15
- import torch
16
- from tqdm import tqdm
17
  from pathlib import Path
 
 
 
18
 
19
  _CITATION = """\
20
  @inproceedings{babelboxvoice:2022,
@@ -92,35 +86,46 @@ class BabelboxVoice(datasets.GeneratorBasedBuilder):
92
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
93
 
94
  archive_paths = dl_manager.download(_DL_URLS)
95
-
96
  local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
 
 
 
97
 
98
- #meta_url = self.config.meta_url
99
-
100
- #meta_path = dl_manager.download_and_extract(_METADATA_URL)
101
-
102
- meta_archive = dl_manager.iter_archive(_METADATA_URL)
103
-
104
- print(meta_archive)
105
-
106
  metadata = {}
107
- for path, file in meta_archive:
108
- print(type(file))
109
- reader = csv.DictReader(file)
110
  for row in tqdm(reader, desc="Reading metadata..."):
111
- filename = row['filename_channel_1']
112
- sentence = row['text']
113
- metadata[filename] = sentence
 
114
 
115
  """
116
  metadata = {}
117
- with open(meta_path, encoding="utf-8") as f:
118
- reader = csv.DictReader(f)
119
- for row in tqdm(reader, desc="Reading metadata..."):
120
- filename = row['filename_channel_1']
121
- sentence = row['text']
122
- metadata[filename] = sentence
123
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  return [
126
  datasets.SplitGenerator(name=datasets.Split.TRAIN,
 
1
  """ Babelbox Voice Dataset"""
2
 
3
+ import os
4
  import csv
5
+ import codecs
 
 
6
  import datasets
 
 
 
7
  from typing import List
 
 
 
 
 
8
  from pathlib import Path
9
+ from tqdm import tqdm
10
+
11
+ logger = datasets.logging.get_logger(__name__)
12
 
13
  _CITATION = """\
14
  @inproceedings{babelboxvoice:2022,
 
86
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
87
 
88
  archive_paths = dl_manager.download(_DL_URLS)
 
89
  local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
90
+
91
+ metadata_path = dl_manager.download(_METADATA_URL)
92
+ local_extracted_metadata_path = dl_manager.extract(metadata_path) if not dl_manager.is_streaming else None
93
 
94
+ metadata_archive = dl_manager.iter_archive(metadata_path)
 
 
 
 
 
 
 
95
  metadata = {}
96
+ for path, file in metadata_archive:
97
+ reader = csv.DictReader(codecs.iterdecode(file, 'utf-8'))
 
98
  for row in tqdm(reader, desc="Reading metadata..."):
99
+ filename = row['filename_channel_1']
100
+ sentence = row['text']
101
+ metadata[filename] = sentence
102
+
103
 
104
  """
105
  metadata = {}
106
+ if dl_manager.is_streaming:
107
+ meta_archive = dl_manager.iter_archive(_METADATA_URL)
108
+ for path, file in meta_archive:
109
+ reader = csv.DictReader(codecs.iterdecode(file, 'utf-8'))
110
+ for row in tqdm(reader, desc="Reading metadata..."):
111
+ filename = row['filename_channel_1']
112
+ sentence = row['text']
113
+ metadata[filename] = sentence
114
+ else:
115
+ metadata_path = dl_manager.download(_METADATA_URL)
116
+ local_extracted_metadata_path = dl_manager.extract(metadata_path)
117
+ metadata_path = Path(local_extracted_metadata_path)
118
+ for filename in metadata_path.glob("*.csv"):
119
+ with open(filename) as csv_file:
120
+ reader = csv.DictReader(csv_file)
121
+ for row in tqdm(reader, desc="Reading metadata..."):
122
+ filename = row['filename_channel_1']
123
+ sentence = row['text']
124
+ metadata[filename] = sentence
125
+
126
+ """
127
+
128
+
129
 
130
  return [
131
  datasets.SplitGenerator(name=datasets.Split.TRAIN,