text
stringlengths
8
6.05M
print "importing matplotlib" import matplotlib.pyplot as plt print "done importing matplotlib" import autograd.numpy.linalg as npla import autograd.numpy as np import autograd.numpy.random as npr import autograd.scipy.misc as scpm from autograd import grad import tractor.sdss as sdss import astrometry.sdss as asdss import astrometry.util.fits as aufits from scipy.stats.distributions import gamma import CelestePy.celeste as celeste import CelestePy.celeste_galaxy_conditionals as galaxies from CelestePy.util.data.get_data import tractor_src_to_celestepy_src from CelestePy.celeste_src import SrcParams from scipy.optimize import minimize ############################################################################ # Likelihoods of varying shapes/dimensionality for testing samplers ############################################################################ BANDS = ['u', 'g', 'r', 'i', 'z'] def make_fits_images(run, camcol, field): """gets field files from local cache (or sdss), returns UGRIZ dict of fits images""" print """==================================================\n\n Grabbing image files from the cache. TODO: turn off the tractor printing... """ imgs = {} for band in BANDS: print "reading in band %s" % band imgs[band] = sdss.get_tractor_image_dr9(run, camcol, field, band) fn = asdss.DR9().retrieve('photoField', run, camcol, field) F = aufits.fits_table(fn) # convert to FitsImage's imgfits = {} for iband,band in enumerate(BANDS): print "converting images %s" % band frame = asdss.DR9().readFrame(run, camcol, field, band) calib = np.median(frame.getCalibVec()) gain = F[0].gain[iband] darkvar = F[0].dark_variance[iband] sky = np.median(frame.getSky()) imgfits[band] = celeste.FitsImage(iband, timg=imgs[band], calib=calib, gain=gain, darkvar=darkvar, sky=sky) return imgfits from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.pyplot as plt def add_colorbar_to_axis(ax, cim): """ pretty generic helper function to throw a colorbar onto an axis """ divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="10%", pad=0.05) cbar = plt.colorbar(cim, cax=cax) # Manually set ticklabels (not ticklocations, they remain unchanged) #ax4.set_yticklabels([0, 50, 30, 'foo', 'bar', 'baz']) if __name__=="__main__": # galaxy parameters: loc, shape, etc in arg here # TODO: actually make this reflect how # galaxy location, shape parameters actually create gaussian # mixture parameters def create_pixel_grid(image, loc): v_s = image.equa2pixel(loc) bound = image.R minx_b, maxx_b = max(0, int(v_s[0] - bound)), min(int(v_s[0] + bound + 1), image.nelec.shape[1]) miny_b, maxy_b = max(0, int(v_s[1] - bound)), min(int(v_s[1] + bound + 1), image.nelec.shape[0]) y_grid = np.arange(miny_b, maxy_b, dtype=np.float) x_grid = np.arange(minx_b, maxx_b, dtype=np.float) xx, yy = np.meshgrid(x_grid, y_grid, indexing='xy') pixel_grid = np.column_stack((xx.ravel(order='C'), yy.ravel(order='C'))) return xx.astype(int), yy.astype(int),pixel_grid def gen_galaxy_image(pixel_info, images, fluxes, loc, gal_theta, gal_sig, gal_rho, gal_phi): xx = pixel_info[0] pixel_grid = pixel_info[2] bandims = np.zeros((xx.shape[0], xx.shape[1], len(images))) for idx,image in enumerate(images): im = gen_galaxy_psf_image(pixel_info[2], image, loc, gal_theta, gal_sig, gal_rho, gal_phi, image.weights, image.means, image.covars) bandims[:,:,idx] = fluxes[idx] * im.reshape(xx.shape, order='C') return bandims def gen_point_source_image(pixel_info, images, fluxes, loc): xx = pixel_info[0] pixel_grid = pixel_info[2] bandims = np.zeros((xx.shape[0], xx.shape[1], len(images))) for idx,image in enumerate(images): im = gen_point_source_psf_image(pixel_grid, image, loc, image.weights, image.means, image.covars) bandims[:,:,idx] = fluxes[idx] * im.reshape(xx.shape, order='C') return bandims def calc_galaxy_prior(): return 0 def calc_point_source_prior(): return 0 def calc_total_prob_galaxy(images, fluxes, loc, shape): xx,yy,pixel_grid = create_pixel_grid(images[0], loc) pixel_info = [xx, yy, pixel_grid] prior = calc_galaxy_prior() lams = gen_galaxy_image(pixel_info, images, fluxes, loc, shape[0], shape[1], shape[2], shape[3]) curr_sum = prior for idx,image in enumerate(images): curr_sum += np.sum(image.nelec[yy,xx] * np.log(lams[:,:,idx]) - lams[:,:,idx]) # verify galaxy fig, axarr = plt.subplots(1, 2) axarr[0].contourf(xx, yy, lams[:,:,0]) axarr[1].contourf(xx, yy, image.nelec[yy,xx]) plt.show() return curr_sum, pixel_info def calc_total_prob_point_source(pixel_info, images, fluxes, loc): xx = pixel_info[0] yy = pixel_info[1] prior = calc_point_source_prior() lams = gen_point_source_image(pixel_info, images, fluxes, loc) curr_sum = prior for idx,image in enumerate(images): curr_sum += np.sum(image.nelec[yy,xx] * np.log(lams[:,:,idx]) - lams[:,:,idx]) return curr_sum NUM_BANDS = 5 NUM_LOC = 2 NUM_SHAPE = 4 def squared_loss_single_im(galaxy_src, point_src, image): galaxy_im = celeste.gen_src_image(galaxy_src, image, return_patch=False) point_src_im = celeste.gen_src_image(point_src, image, return_patch=False) loss = np.sum((galaxy_im - point_src_im)**2) return loss def squared_loss(galaxy_src, point_src, images): loss = 0 for image in images: loss += squared_loss_single_im(galaxy_src, point_src, image) return loss # read in image and corresponding source print "read in images and sources" run = 125 camcol = 1 field = 17 tsrcs = sdss.get_tractor_sources_dr9(run, camcol, field) imgfits = make_fits_images(run, camcol, field) # list of images, list of celeste sources imgs = [imgfits[b] for b in BANDS] srcs = [tractor_src_to_celestepy_src(s) for s in tsrcs] src_types = np.array([src.a for src in srcs]) rfluxes = np.array([src.fluxes[2] for src in srcs]) rfluxes[src_types == 0] = -1 brightest_i = np.argmax(rfluxes) # dim 10 # bright 46 # medium 1 def star_arg_squared_loss_single_im(fluxes, galaxy_src, image): star = SrcParams(src.u, a=0, fluxes=np.exp(fluxes)) return squared_loss_single_im(galaxy_src, star, image) def star_arg_squared_loss(fluxes, galaxy_src, images): star = SrcParams(src.u, a=0, fluxes=np.exp(fluxes)) return squared_loss(galaxy_src, star, images) # do gradient descent for src in [srcs[10]]: if src.a == 0: continue star = SrcParams(src.u, a=0, fluxes=src.fluxes) print "loss, galaxy with itself:", squared_loss(src, src, imgs) print "loss, galaxy with star:", squared_loss(src, star, imgs) final_fluxes = np.zeros(len(BANDS)) for bi,b in enumerate(BANDS): res = minimize(star_arg_squared_loss_single_im, np.log(src.fluxes), args=(src, imgs[bi]), method='Nelder-Mead', options={'maxiter':10}) print "original result:", squared_loss_single_im(src, star, imgs[bi]) print "opt result for band", bi, ":", res final_fluxes[bi] = np.exp(res.x[bi]) print "fluxes:", src.fluxes, final_fluxes final_star = SrcParams(src.u, a=0, fluxes=final_fluxes) # add noise and calculate per-band likelihoods ZERO_CONST = 0.1 gal_likelihoods = np.zeros(len(BANDS)) orig_star_likelihoods = np.zeros(len(BANDS)) final_star_likelihoods = np.zeros(len(BANDS)) for bi, b in enumerate(BANDS): galaxy_im = celeste.gen_src_image(src, imgs[bi], return_patch=False) galaxy_im_noise = np.zeros(galaxy_im.shape) for (i,j),value in np.ndenumerate(galaxy_im): galaxy_im_noise[i,j] = np.random.poisson(galaxy_im[i,j]) # calculate galaxy likelihood gal_likelihoods[bi] = np.sum(galaxy_im_noise * np.log(galaxy_im + ZERO_CONST) - galaxy_im) # calculate star likelihood orig_star_im = celeste.gen_src_image(star, imgs[bi], return_patch=False) final_star_im = celeste.gen_src_image(final_star, imgs[bi], return_patch=False) orig_star_likelihoods[bi] = np.sum(np.sum(galaxy_im_noise * np.log(orig_star_im + ZERO_CONST) - orig_star_im)) + ZERO_CONST) - final_star_im)) print "galaxy likelihoods:", gal_likelihoods print "orig star likelihoods:", orig_star_likelihoods print "final star likelihoods:", final_star_likelihoods # show the new star fig, axarr = plt.subplots(len(BANDS), 2) for bi, b in enumerate(BANDS): final_galaxy_im = celeste.gen_src_image(src, imgs[bi]) final_star_im = celeste.gen_src_image(final_star, imgs[bi]) gim = axarr[bi,0].imshow(final_galaxy_im) sim = axarr[bi,1].imshow(final_star_im) add_colorbar_to_axis(axarr[bi,0], gim) add_colorbar_to_axis(axarr[bi,1], sim) for c in range(2): axarr[bi,c].get_xaxis().set_visible(False) axarr[bi,c].get_yaxis().set_visible(False) axarr[0,0].set_title('galaxy patch') axarr[0,1].set_title('star patch') plt.savefig('dim_galaxy.png')
from pymongo import MongoClient symbol_list = ['ethusdt', 'btcusdt', 'bchusdt', 'ltcusdt', 'eosusdt', 'ethbtc', 'eosbtc', 'xrpusdt'] period = ['1min', '5min', '15min', '30min', '60min', '4hour', '1day', '1week', '1mon'] orders_list = ['submitted', 'partial-filled', 'partial-canceled', 'filled', 'canceled'] mdb = { "host": '172.24.132.208', # "host": '51facai.51vip.biz', "user": 'data', "password": 'data123', "db": 'invest', "port": '27017', # "port": '16538', "marketP1": 'dw_market', "M5": 'dw_M5', "M15": 'dw_M15', "M30": 'dw_M30', "D1": 'dw_D1', "H1": 'dw_H1', "H4": 'dw_H4', "W1": 'dw_W1', "M1": 'dw_M1', "Y1": 'dw_Y1', "MON1": 'dw_MON1', "depth": 'dw_depth', "acc": 'accounts', "bal": 'balance', "orders": 'orders', "market_detail": 'dw_ticker_detail', "future": 'ok_future' } mongo_url = 'mongodb://' + mdb["user"] + \ ':' + mdb["password"] + '@' + mdb["host"] + ':' + \ mdb["port"] + '/' + mdb["db"] conn = MongoClient(mongo_url) sdb = conn[mdb["db"]] ticker_coll = sdb[mdb["marketP1"]] dwM1_coll = sdb[mdb["M1"]] dwM5_coll = sdb[mdb["M5"]] dwD1_coll = sdb[mdb["D1"]] dwH1_coll = sdb[mdb["H1"]] dwW1_coll = sdb[mdb["W1"]] future_kline_coll = sdb[mdb["future"]] depth_coll = sdb[mdb["depth"]] detail_coll = sdb[mdb["market_detail"]] acc_coll = sdb[mdb["acc"]] balance_coll = sdb[mdb["bal"]] orders_coll = sdb[mdb["orders"]]
import pytest from pages import LoginPage,MenuPage,Role_management from utils.db import AddRoleDB from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.desired_capabilities import DesiredCapabilities @pytest.fixture(scope='session') def selenium(chrome_options): docker = 0 container_url = 'http://192.168.1.200:4444/wd/hub' #docker容器远程地址 if docker==0: driver = webdriver.Chrome(chrome_options=chrome_options) driver.implicitly_wait(10) #全局等待时间 yield driver driver.quit() else: driver = webdriver.Remote(command_executor=container_url, desired_capabilities=DesiredCapabilities.CHROME) driver.implicitly_wait(10) # 全局等待时间 yield driver driver.quit() @pytest.fixture(scope='session') def chrome_options(): chrome_options = Options() chrome_options.add_argument('--start-maximized') #最大化启动浏览器 # chrome_options.add_argument('--headless') return chrome_options @pytest.fixture def Login_page(selenium): selenium.get('http://192.168.1.22:20004/#/passport/login') return LoginPage(selenium) @pytest.fixture def menu_page(Login_page,selenium): Login_page.login('root','123456') return MenuPage(selenium) @pytest.fixture def add_role_page(menu_page,selenium): menu_page.main_menu_sub_menu('系统管理','角色管理') return Role_management(selenium) @pytest.fixture(scope='session') def db(): try: db = AddRoleDB() except Exception as ex: pytest.skip(str(ex)) else: yield db db.close()
sentence = input() s, t = sentence.split() j = 0 word = '' for i in range(len(t)): if t[i] == s[j]: word += t[i] j += 1 if j==len(s): break if s in word: print("Yes") else: print("No")
import requests import psycopg2 conn = psycopg2.connect(host="localhost", database="cartola_fc", user="postgres", password="postgres") print("Conectado ao banco") cur = conn.cursor() rowcount = cur.rowcount url = "https://api.cartolafc.globo.com/atletas/mercado" try: data = requests.get(url).json() print("Carregando os dados dos status dos atletas na rodada - - - - - Aguarde") for atleta in data['atletas']: result = [] rodada_id = atleta['rodada_id'] atleta_id = atleta['atleta_id'] id_status = atleta['status_id'] result = [rodada_id, atleta_id, id_status] cur.execute("""INSERT into cartola_fc.tb_status_rodada VALUES ( %s, %s, %s )""",(result)) conn.commit() cur.close() print("Sucesso! Inicializando próxima carga....") except IOError as io: print("Erro")
#import sys #input = sys.stdin.readline def main(): K = int( input()) now = 7 now %= K for i in range(10**7): if now == 0: print(i+1) return now = (now*10+7)%K print("-1") if __name__ == '__main__': main()
#! /usr/bin/env python # -*- coding: utf-8 -*- # Title :test4.py # Description :I am test script # Author :Devon # Date :2018-01-04 # Version :0.1 # Usage :python test4.py # Notes : # python_version :2.7.14 # ============================================================================== ''' 类和实例(class和instance): 1.类:类是抽象的模板,如如Student类,类型为类<class '__main__.Student'> 2.实例:实例是类创建出来的一个个的具体对象,对象有相同方法,但是里面具体数据可能不同。类型为object。<__main__.Student object at 0x7f346359b390> 3.区别: Student()是实例对象 Student就是类 4.__init__方法是类实例创建之后调用, 对当前对象的实例的一些初始化, 没有返回值 函数: 函数和类中方法区别: 类的方法的第一个参数永远是实例变量self,调用是不需要传递这个参数。其他和普通函数没有区别。 区别: test_fun()是str类型,可以看成对象 test_fun就是函数 ''' class Student(object): def __init__(self): pass student = Student() student2 = Student() student.name = 'devon' print student.name print Student print student2 print Student() def test_fun(): print "test function" return "yes" print test_fun() print type(test_fun()) # print test_fun print type(test_fun) import os # 定义一个类,初始化id和name,然后定义个方法,让用户输入name,然后打印输入的名字 class Job(object): def __init__(self, id, name): self.id = id self.name = name def get_user_name(self): name_input = input("Please enter your name:") print name_input job = Job(1, 'devon') # 在实例化的时候要输入参数 print job.id, job.name print job.get_user_name() # 调用class的方法
# 144. Binary Tree Preorder Traversal # # Given a binary tree, return the preorder traversal of its nodes' values. # # For example: # Given binary tree [1,null,2,3], # 1 # \ # 2 # / # 3 # return [1,2,3]. # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def preorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ Solution.res = [] def preorder(node): if not node: return Solution.res.append(node.val) preorder(node.left) preorder(node.right) preorder(root) return Solution.res if __name__ == '__main__': sol = Solution() root = TreeNode(1) node1 = TreeNode(2) node2 = TreeNode(3) root.right = node1 node1.left = node2 assert sol.preorderTraversal(root) == [1, 2, 3]
# Lint143. Sort Colors II ''' Given an array of n objects with k different colors (numbered from 1 to k), sort them so that objects of the same color are adjacent, with the colors in the order 1, 2, ... k. ''' Solution 1: Counting Sort (Naive) Time O(n) Space O(k) Solution 2: Quick Sort idea (preferred) Time O(nlogk) Space O(1) Solution 2+: Quick Sort idea, three parts each time Time O(nlogk) Space O(1) # Solution 2 class Solution: """ @param colors: A list of integer @param k: An integer @return: nothing """ def sortColors2(self, colors, k): # write your code here self.sort(colors, 1, k, 0, len(colors)-1) def sort(self, colors, lower, upper, left, right): if lower == upper: return mid = (lower+upper)//2 # ....ssssssgggggsgs....gsgss... # l j i r j = left # ! made mistake mutiple times to assign j=0 ! for i in range(left, right): if colors[i] <= mid: colors[i], colors[j] = colors[j], colors[i] j += 1 # ....ssssssggggggggggggggggg # l j r self.sort(colors, left, j, lower, mid) self.sort(colors, j, right, mid+1, upper) # Solution 2+: lt, eq, gt 3 parts version class Solution: def sortColors2(self, colors, k): self.sort(colors, 1, k, 0, len(colors)-1) def sort(self, colors, lower, upper, left, right): if lower >= upper: return pivot = (lower + upper) // 2 # ....sssssseeeeesge....ggggg # l j i k r i, j, k = left, left, right while i <= k: # check right bound is k not right if colors[i] == pivot: i += 1 elif colors[i] < pivot: self.swap(colors, i, j) j += 1 i += 1 else: self.swap(colors, i, k) k -= 1 # ....sssssseeeeeeeeggggggggg # l j k r self.sort(colors, lower, pivot-1, left, j-1) self.sort(colors, pivot+1, upper, k+1, right) def swap(self, arr, i, j): arr[i], arr[j] = arr[j], arr[i]
#Programa: intercambio.py #Propósito: Intercambiar el valor de dos variables númericas #Autor: Jose Manuel Serrano Palomo. #Fecha: 13/10/2019 # #Variables a usar: # A,B los dos números a los que vamos a intercambiar # suma nos ayudará a realizar el intercambio #Algoritmo: # LEER A,B # suma <-- A + B # A <-- suma - A # B <-- suma - B #ESCRIBIR A Y B print("Invertir el valor de dos variables A y B") print("-----------------------------------------\n") #Leemos los datos A = int(input("Introduce el número A: ")) B = int(input("Introduce el número B: ")) #Calculamos suma = A + B A = suma - A B = suma - B # Forma alternativa A,B = B,A #Escribimos los datos print("El valor de A es ",A , " y el valor de B es ", B)
#!/usr/bin/env python # -*- coding: utf8 -*- ''' Created on 2017/12/18 @author: ChaoZhong @email: 16796679@qq.com ''' from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, SelectField from wtforms.validators import DataRequired, Length, IPAddress from .models import Category class UsersForm(FlaskForm): """登录表单""" username = StringField(u'用户名', validators=[DataRequired()]) password = PasswordField(u'密码', validators=[DataRequired(), Length(min=6, message=u'密码长度不对')]) submit = SubmitField(u'登 录') class HostAddForm(FlaskForm): hostname = StringField(u'主机名', validators=[DataRequired(), Length(min=-1, max=100, message=u'主机名最大长度100')]) wip = StringField(u'外网', validators=[DataRequired(), IPAddress]) iip = StringField(u'内网', validators=[DataRequired(), IPAddress]) idc = StringField(u'IDC', validators=[DataRequired(), Length(min=-1, max=50)]) category = SelectField(u'项目', choices=[(cat.id, cat.cat_name) for cat in Category.query.order_by(Category.cat_name).all()]) submit = SubmitField(u'添加') class CatAddForm(FlaskForm): cat_name = StringField('项目名称', validators=[DataRequired(), Length(max=100)]) submit = SubmitField(u'添加')
# -*- coding: utf-8 -*- """ Created on Sat Mar 2 14:49:57 2019 @author: saib """ urls = ['a.in','b.hk','c.in','h.in','k.uk','us.com'] print(list(filter(lambda x : x.endswith('in'),urls)))
import pygame import random pygame.init() clock = pygame.time.Clock() screen = pygame.display.set_mode((640, 640)) # player playerX_change = 20 playerY_change = 20 pos_X = random.randint(0, 32) * 20 pos_Y = random.randint(0, 32) * 20 player_surface = pygame.transform.scale(pygame.image.load("player.png"), (20, 20)).convert() player_surface_rect = player_surface.get_rect(center=(pos_X, pos_Y)) position_list = [] # food pos_foodX = random.randint(0, 32) * 20 pos_foodY = random.randint(0, 32) * 20 food_surface = pygame.transform.scale(pygame.image.load("apple.png"), (20, 20)).convert() food_surface_rect = food_surface.get_rect(center=(pos_foodX, pos_foodY)) key = "" black_surface = pygame.transform.scale(pygame.image.load("black-square.png"), (20, 20)).convert() for i in range(0, 32): for j in range(0, 32): screen.blit(black_surface, (i * 20, j * 20)) def create_snake(): global pos_Y, pos_X, player_surface, player_surface_rect screen.blit(player_surface, player_surface_rect) create_snake() def create_food(): global pos_foodY, pos_foodX, food_surface screen.blit(food_surface, food_surface_rect) create_food() def blit_black(): pass def blit_player(rect): global position_list position_list.append(rect) print(position_list) screen.blit(player_surface, rect) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_DOWN: key = "down" if event.key == pygame.K_UP: key = "up" if event.key == pygame.K_LEFT: key = "left" if event.key == pygame.K_RIGHT: key = "right" if key == "down": player_surface_rect.centery += playerY_change blit_player(player_surface_rect) if key == "up": player_surface_rect.centery -= playerY_change blit_player(player_surface_rect) if key == "left": player_surface_rect.centerx -= playerX_change blit_player(player_surface_rect) if key == "right": player_surface_rect.centerx += playerX_change blit_player(player_surface_rect) pygame.display.update() clock.tick(10)
from app.controllers.auth import auth from app.libraries.response_message import error_message, data_message from app.database import session from app.models.category import Category from app.models.course import Course from flask import ( Blueprint, request, ) page = Blueprint('course', __name__, static_folder='static', template_folder='templates') @page.route('/categories/<int:category_id>/courses', methods=['GET']) def get_courses_by_category_id(category_id): try: category = session.query(Category).filter_by(id=category_id).one() except: return error_message(404, "Category not found.") courses = session.query(Course).filter_by(category_id=category_id).all() return data_message(200, {"Category": category.serialize, "Courses": [c.serialize for c in courses]}, "Successfully returned all courses by given category.") @page.route('/categories/<int:category_id>/courses', methods=['POST']) @auth.login_required def add_course(category_id): try: category = session.query(Category).filter_by(id=category_id).one() except: return error_message(404, "Cannot add new course to this category: Category not found.") name = request.form.get('name') if name: course = Course(name=name, description=request.form.get('description'), img_url=request.form.get('img-url'), intro_video_url=request.form.get('intro-video-url'), category_id=category.id) session.add(course) session.commit() else: return error_message(400, "Course name is required.") return data_message(200, {"Course": course.serialize}, "Successfully added a course.") @page.route('/categories/<int:category_id>/courses/<int:course_id>', methods=['GET']) def get_course_by_id(category_id, course_id): try: course = session.query(Course).filter_by(id=course_id, category_id=category_id).one() except: return error_message(404, "Course not found.") return data_message(200, {"Course": course.serialize}, "Successfully returned the selected course.") @page.route('/categories/<int:category_id>/courses/<int:course_id>', methods=['PUT']) @auth.login_required def edit_course(category_id, course_id): try: course = session.query(Course).filter_by(id=course_id, category_id=category_id).one() except: return error_message(404, "Cannot update: Course not found.") if request.form.get('name'): # if 'name' is a non-empty value then update else keep current value course.name = request.form('name') course.description = request.form.get('description') course.img_url = request.form.get('img-url') course.intro_video_url = request.form.get('intro-video-url') session.add(course) session.commit() return data_message(200, {"Course": course.serialize}, "Successfully updated the course.") @page.route('/categories/<int:category_id>/courses/<int:course_id>', methods=['DELETE']) @auth.login_required def delete_course(category_id, course_id): try: course = session.query(Course).filter_by(id=course_id, category_id=category_id).one() except: return error_message(404, "Cannot delete: Course not found.") session.delete(course) session.commit() return data_message(200, None, "Course was successfully deleted.")
import platform import re from collections import namedtuple from copy import deepcopy from elasticsearch.helpers import streaming_bulk from elasticsearch.exceptions import NotFoundError from langdetect.lang_detect_exception import LangDetectException from onegov.core.utils import is_non_string_iterable from onegov.search import log, Searchable, utils from onegov.search.errors import SearchOfflineError from queue import Queue, Empty, Full ES_ANALYZER_MAP = { 'en': 'english', 'de': 'german', 'fr': 'french', 'en_html': 'english_html', 'de_html': 'german_html', 'fr_html': 'french_html', } ANALYSIS_CONFIG = { "filter": { "english_stop": { "type": "stop", "stopwords": "_english_" }, "english_stemmer": { "type": "stemmer", "language": "english" }, "english_possessive_stemmer": { "type": "stemmer", "language": "possessive_english" }, "german_stop": { "type": "stop", "stopwords": "_german_" }, "german_stemmer": { "type": "stemmer", "language": "light_german" }, "french_elision": { "type": "elision", "articles_case": True, "articles": [ "l", "m", "t", "qu", "n", "s", "j", "d", "c", "jusqu", "quoiqu", "lorsqu", "puisqu" ] }, "french_stop": { "type": "stop", "stopwords": "_french_" }, "french_keywords": { "type": "keyword_marker", "keywords": ["Exemple"] }, "french_stemmer": { "type": "stemmer", "language": "light_french" } }, "analyzer": { "english_html": { "tokenizer": "standard", "char_filter": [ "html_strip" ], "filter": [ "english_possessive_stemmer", "lowercase", "english_stop", "english_stemmer" ] }, "german_html": { "tokenizer": "standard", "char_filter": [ "html_strip" ], "filter": [ "lowercase", "german_stop", "german_normalization", "german_stemmer" ] }, "french_html": { "tokenizer": "standard", "char_filter": [ "html_strip" ], "filter": [ "french_elision", "lowercase", "french_stop", "french_keywords", "french_stemmer" ] }, "autocomplete": { "type": "custom", "char_filter": ["html_strip"], "tokenizer": "standard", "filter": ["lowercase"] }, "tags": { "type": "custom", "tokenizer": "keyword", "filter": ["lowercase"] }, } } IndexParts = namedtuple('IndexParts', ( 'hostname', 'schema', 'language', 'type_name', 'version' )) def parse_index_name(index_name): """ Takes the given index name and returns the hostname, schema, language and type_name in a dictionary. * If the index_name doesn't match the pattern, all values are None. * If the index_name has no version, the version is None. """ if index_name.count('-') == 3: hostname, schema, language, type_name = index_name.split('-') version = None elif index_name.count('-') == 4: hostname, schema, language, type_name, version = index_name.split('-') else: hostname = None schema = None language = None type_name = None version = None return IndexParts( hostname=hostname, schema=schema, language=language, type_name=type_name, version=version ) class Indexer: """ Takes actions from a queue and executes them on the elasticsearch cluster. Depends on :class:`IndexManager` for index management and expects to have the same :class:`TypeRegistry` as :class:`ORMEventTranslator`. The idea is that this class does the indexing/deindexing, the index manager sets up the indices and the orm event translator listens for changes in the ORM. A queue is used so the indexer can be run in a separate thread. """ def __init__(self, mappings, queue, es_client, hostname=None): self.es_client = es_client self.queue = queue self.hostname = hostname or platform.node() self.ixmgr = IndexManager(self.hostname, es_client=self.es_client) self.mappings = mappings self.failed_task = None def process(self, block=False, timeout=None): """ Processes the queue until it is empty or until there's an error. If there's an error, the next call to this function will try to execute the failed task again. This is mainly meant for elasticsearch outages. :block: If True, the process waits for the queue to be available. Useful if you run this in a separate thread. :timeout: How long the blocking call should block. Has no effect if ``block`` is False. :return: The number of successfully processed items """ try: processed = 0 while True: # get the previously failed task or a new one task = self.failed_task or self.queue.get(block, timeout) self.failed_task = None if self.process_task(task): processed += 1 else: # if the task failed, keep it for the next run and give up self.failed_task = task return processed except Empty: pass return processed def bulk_process(self): """ Processes the queue in bulk. This offers better performance but it is less safe at the moment and should only be used as part of reindexing. """ def actions(): try: task = self.queue.get(block=False, timeout=None) if task['action'] == 'index': yield { '_op_type': 'index', '_index': self.ensure_index(task), '_id': task['id'], 'doc': task['properties'] } elif task['action'] == 'delete': yield { '_op_type': 'delete', '_index': self.ensure_index(task), '_id': task['id'], 'doc': task['properties'] } else: raise NotImplementedError except Empty: pass for success, info in streaming_bulk(self.es_client, actions()): if success: self.queue.task_done() def process_task(self, task): try: getattr(self, task['action'])(task) except SearchOfflineError: return False self.queue.task_done() return True def ensure_index(self, task): return self.ixmgr.ensure_index( task['schema'], task['language'], self.mappings[task['type_name']], return_index='internal' ) def index(self, task): index = self.ensure_index(task) self.es_client.index( index=index, id=task['id'], document=task['properties'] ) def delete(self, task): # get all the types this model could be stored in (with polymorphic) # identites, this could be many mapping = self.mappings[task['type_name']] if mapping.model: types = utils.related_types(mapping.model) else: types = (mapping.name, ) # delete the document from all languages (because we don't know # which one anymore) - and delete from all related types (polymorphic) for type in types: ix = self.ixmgr.get_external_index_name( schema=task['schema'], language='*', type_name=type ) # for the delete operation we need the internal index names for internal in self.es_client.indices.get_alias(index=ix).keys(): try: self.es_client.delete( index=internal, id=task['id'] ) except NotFoundError: pass class TypeMapping: __slots__ = ['name', 'mapping', 'version', 'model'] def __init__(self, name, mapping, model=None): self.name = name self.mapping = self.add_defaults(mapping) self.version = utils.hash_mapping(mapping) self.model = model def add_defaults(self, mapping): mapping['es_public'] = { 'type': 'boolean' } mapping['es_last_change'] = { 'type': 'date' } mapping['es_suggestion'] = { 'analyzer': 'autocomplete', 'type': 'completion', 'contexts': [ { 'name': 'es_suggestion_context', 'type': 'category' } ] } mapping['es_tags'] = { 'analyzer': 'tags', 'type': 'text', } return mapping def for_language(self, language): """ Returns the mapping for the given language. Mappings can be slightly different for each language. That is, the analyzer changes. Because the :class:`IndexManager` puts each language into its own index we do not have to worry about creating different versions of the same mapping here. """ return self.supplement_analyzer(deepcopy(self.mapping), language) def supplement_analyzer(self, dictionary, language): """ Iterate through the dictionary found in the type mapping and replace the 'localized' type with a 'text' type that includes a language specific analyzer. """ supplement = False for key, value in dictionary.items(): if hasattr(value, 'items'): dictionary[key] = self.supplement_analyzer(value, language) elif key == 'type' and value.startswith('localized'): supplement = value.replace('localized', language) break if supplement: assert 'analyzer' not in dictionary dictionary[key] = 'text' dictionary['analyzer'] = ES_ANALYZER_MAP[supplement] return dictionary class TypeMappingRegistry: def __init__(self): self.mappings = {} def __getitem__(self, key): return self.mappings[key] def __iter__(self): yield from self.mappings.values() def register_orm_base(self, base): """ Takes the given SQLAlchemy base and registers all :class:`~onegov.search.mixins.Searchable` objects. """ for model in utils.searchable_sqlalchemy_models(base): self.register_type(model.es_type_name, model.es_properties, model) def register_type(self, type_name, mapping, model=None): """ Registers the given type with the given mapping. The mapping is as dictionary representing the part below the ``mappings/type_name``. See: `<https://www.elastic.co/guide/en/elasticsearch/reference/current/\ indices-create-index.html#mappings>`_ When the mapping changes, a new index is created internally and the alias to this index (the external name of the index) is pointed to this new index. As a consequence, a change in the mapping requires a reindex. """ assert type_name not in self.mappings self.mappings[type_name] = TypeMapping(type_name, mapping, model) @property def registered_fields(self): """ Goes through all the registered types and returns the a set with all fields used by the mappings. """ return {key for mapping in self for key in mapping.mapping.keys()} class IndexManager: """ Manages the creation/destruction of indices. The indices it creates have an internal name and an external alias. To facilitate that, versions are used. """ def __init__(self, hostname, es_client): assert hostname and es_client self.hostname = hostname self.es_client = es_client self.created_indices = set() @property def normalized_hostname(self): return utils.normalize_index_segment( self.hostname, allow_wildcards=False) def query_indices(self): """ Queryies the elasticsearch cluster for indices belonging to this hostname. """ return set( ix for ix in self.es_client.cat.indices( index=f'{self.normalized_hostname}-*', h='index' ).splitlines() ) def query_aliases(self): """ Queryies the elasticsearch cluster for aliases belonging to this hostname. """ result = set() infos = self.es_client.indices.get_alias( index='{}-*'.format(self.normalized_hostname) ) for info in infos.values(): for alias in info['aliases']: result.add(alias) return result def ensure_index(self, schema, language, mapping, return_index='external'): """ Takes the given database schema, language and type name and creates an internal index with a version number and an external alias without the version number. :schema: The database schema this index is based on. :language: The language in ISO 639-1 format. :mapping: The :class:`TypeMapping` mapping used in this index. :return_index: The index name to return. Either 'external' or 'internal'. :return: The (external/aliased) name of the created index. """ assert schema and language and mapping assert len(language) == 2 assert return_index == 'external' or return_index == 'internal' external = self.get_external_index_name(schema, language, mapping.name) internal = self.get_internal_index_name( schema, language, mapping.name, mapping.version) return_value = return_index == 'external' and external or internal if internal in self.created_indices: return return_value if self.es_client.indices.exists(index=internal): self.created_indices.add(internal) return return_value # create the index self.es_client.indices.create( index=internal, mappings={ 'properties': mapping.for_language(language) }, settings={ 'analysis': ANALYSIS_CONFIG, 'index': { 'number_of_shards': 1, 'number_of_replicas': 0, 'refresh_interval': '5s' } } ) # point the alias to the new index self.es_client.indices.put_alias(name=external, index=internal) # cache the result self.created_indices.add(internal) return return_value def remove_expired_indices(self, current_mappings): """ Removes all expired indices. An index is expired if it's version number is no longer known in the current mappings. :return: The number of indices that were deleted. """ active_versions = set(m.version for m in current_mappings) count = 0 for index in self.query_indices(): info = parse_index_name(index) if info.version and info.version not in active_versions: self.es_client.indices.delete(index=index) self.created_indices.remove(index) count += 1 return count def get_managed_indices_wildcard(self, schema): """ Returns a wildcard index name for all indices managed. """ return '-'.join(( utils.normalize_index_segment( self.hostname, allow_wildcards=False), utils.normalize_index_segment( schema, allow_wildcards=False), '*' )) def get_external_index_names(self, schema, languages='*', types='*'): """ Returns a comma separated string of external index names that match the given arguments. Useful to pass on to elasticsearch when targeting multiple indices. """ indices = [] for language in languages: for type_name in types: indices.append( self.get_external_index_name(schema, language, type_name)) return ','.join(indices) def get_external_index_name(self, schema, language, type_name): """ Generates the external index name from the given parameters. """ segments = (self.hostname, schema, language, type_name) segments = ( utils.normalize_index_segment(s, allow_wildcards=True) for s in segments ) return '-'.join(segments) def get_internal_index_name(self, schema, language, type_name, version): """ Generates the internal index name from the given parameters. """ return '-'.join(( self.get_external_index_name(schema, language, type_name), utils.normalize_index_segment(version, allow_wildcards=False) )) class ORMLanguageDetector(utils.LanguageDetector): html_strip_expression = re.compile(r'<[^<]+?>') def localized_properties(self, obj): for key, definition in obj.es_properties.items(): if definition.get('type', '').startswith('localized'): yield key def localized_texts(self, obj, max_chars=None): chars = 0 for p in self.localized_properties(obj): text = getattr(obj, p, '') if not isinstance(text, str): continue yield text.strip() chars += len(text) if max_chars is not None and max_chars <= chars: break def detect_object_language(self, obj): properties = self.localized_properties(obj) if not properties: # here, the mapping will be the same for all languages return self.supported_languages[0] text = ' '.join(self.localized_texts(obj, max_chars=1024)) text = self.html_strip_expression.sub('', text).strip() if not text: return self.supported_languages[0] try: return self.detect(text) except LangDetectException: return self.supported_languages[0] class ORMEventTranslator: """ Handles the onegov.core orm events, translates them into indexing actions and puts the result into a queue for the indexer to consume. The queue may be limited. Once the limit is reached, new events are no longer processed and an error is logged. """ converters = { 'date': lambda dt: dt and dt.isoformat(), } def __init__(self, mappings, max_queue_size=0, languages=( 'de', 'fr', 'en' )): self.mappings = mappings self.queue = Queue(maxsize=max_queue_size) self.detector = ORMLanguageDetector(languages) self.stopped = False def on_insert(self, schema, obj): if not self.stopped: if isinstance(obj, Searchable): self.index(schema, obj) def on_update(self, schema, obj): if not self.stopped: if isinstance(obj, Searchable): self.delete(schema, obj) self.index(schema, obj) def on_delete(self, schema, obj): if not self.stopped: if isinstance(obj, Searchable): self.delete(schema, obj) def put(self, translation): try: self.queue.put_nowait(translation) except Full: log.error("The orm event translator queue is full!") def index(self, schema, obj): if obj.es_skip: return if obj.es_language == 'auto': language = self.detector.detect_object_language(obj) else: language = obj.es_language translation = { 'action': 'index', 'id': getattr(obj, obj.es_id), 'schema': schema, 'type_name': obj.es_type_name, 'language': language, 'properties': {} } mapping_ = self.mappings[obj.es_type_name].for_language(language) for prop, mapping in mapping_.items(): if prop == 'es_suggestion': continue convert = self.converters.get(mapping['type'], lambda v: v) raw = getattr(obj, prop) if is_non_string_iterable(raw): translation['properties'][prop] = [convert(v) for v in raw] else: translation['properties'][prop] = convert(raw) if obj.es_public: contexts = {'es_suggestion_context': ['public']} else: contexts = {'es_suggestion_context': ['private']} suggestion = obj.es_suggestion if is_non_string_iterable(suggestion): translation['properties']['es_suggestion'] = { 'input': suggestion, 'contexts': contexts } else: translation['properties']['es_suggestion'] = { 'input': [suggestion], 'contexts': contexts } self.put(translation) def delete(self, schema, obj): translation = { 'action': 'delete', 'schema': schema, 'type_name': obj.es_type_name, 'id': getattr(obj, obj.es_id) } self.put(translation)
#!/usr/bin/python #!/usr/bin/env python #simple script to look for and download videos from YT, parameters are provided via arguments, you can select the video acording to size,format #resolution etc. I have to add an option to download audio only. And have to polish up the code a little bit, its 5:52 am and the holiday was well #used. import mechanize import pafy from bs4 import BeautifulSoup as bs from sys import argv i=0 q=len(argv) query="" for i in range(1,len(argv)): query=query+str(argv[i])+" " print("Searching for \""+query+"\" :") search_url="https://www.youtube.com/results?search_query="+query.replace(" ","+") list=[] res_list=[] size_list=[] ext_list=[] i=0 br=mechanize.Browser() br.set_handle_robots(False) br.set_handle_referer(False) br.set_handle_refresh(False) br.addheaders=[('User-agent','Firefox')] br.open(search_url) soup=bs(br.response().read()) for link in soup.find_all('a'): if "watch" in str(link.get('href')): list.append(str(link.get('href'))) dl="https://www.youtube.com"+str(list[0]) video=pafy.new(dl) print("\n\nDownloading : "+video.title) streams = video.streams for s in streams: i=i+1 ext_list.append(s.extension) res_list.append(s.resolution) size_list.append(s.get_filesize()) l=0 print("Select File ->") for l in range(0,i): print(str(l+1)+"> "+str(ext_list[l])+" | "+str(res_list[l])+" | "+str("{0:.2f}".format(size_list[l]/(1024.0*1024.0)))+"Mb"+" |") print("\n----------") choice=input() if(choice==0 or choice>i): exit() choice=choice-1 best = video.getbest(preftype=str(ext_list[choice])) filename = best.download(filepath="/home/txjoe/Downloads/"+video.title +"."+best.extension)
from django.db import models from datetime import datetime as dt # Create your models here. class ContactUs(models.Model): name = models.CharField(max_length=30) email = models.EmailField() comment = models.TextField() comment_date = models.DateTimeField(auto_now_add=dt.now) def __str__(self): return self.name + " " + self.email + " " + str(self.comment_date)
from astropy.table import Table, Column import numpy as np import astropy.table import sys import glob KEEP = "w ns omegam sigma8 H0 omegabh2 omeganuh2".split() def add_extra_parameters(cat): """ Add additional DES systematics to the Planck chain. Since the data doesn't constrain these at all just draw from a flat distribution over some allowed range. """ extraparam_file = args.extra extra = np.loadtxt(extraparam_file, dtype=[("param", "S50"), ("centre", "float64"), ("range", "float64")]) print "Drawing random values for extra parameters ", extra["param"] nsamples = len(cat) wt = cat["weight"] like = cat["like"] cat.remove_column("like") cat.remove_column("weight") for line in extra: param = line["param"] central_value = line["centre"] value_range = line["range"] samp = draw_from_range(nsamples, value_range, central_value) cat[param] = samp cat["weight"] = wt cat["like"] = like return cat def draw_from_range(nsamples, value_range, central_value): vlower = central_value - value_range/2.0 vupper = central_value + value_range/2.0 return np.random.uniform(low=vlower, high=vupper, size=nsamples) def write_cat(cat, filename, random=False, deweight=False): """ Write a catalog in the CosmoSIS format, optionally converting a weight column into a repeated multiplicity and reducing the weights to unity and also optionally randomizing the catalog """ c = open(filename, 'w') c.write('#') c.write(' '.join(cat.colnames)) c.write('\n') n = len(cat) order = np.arange(n, dtype=int) if random: np.random.shuffle(order) if deweight: weight = cat['weight'] weight_col = cat.colnames.index("weight") for i in xrange(len(cat)): j = order[i] row = cat[j] if deweight: repeats = int(weight[j]) row[weight_col] = 1.0 for k in xrange(repeats): c.write(' '.join(str(s) for s in row)) c.write('\n') else: c.write(' '.join(str(s) for s in row)) c.write('\n') c.close() def transform(cat): pairs = [ ('cosmological_parameters--w', 'w'), ('cosmological_parameters--n_s', 'ns'), ('cosmological_parameters--omega_m', 'omegam'), ('cosmological_parameters--omega_b', 'omegabh2'), ('cosmological_parameters--sigma8_input', 'sigma8'), ('cosmological_parameters--s8', 'sigma8'), ('cosmological_parameters--h0', 'H0'), ('cosmological_parameters--omnuh2', 'omeganuh2'), ] for new,old in pairs: if old in cat.colnames: cat.rename_column(old, new) KEEP = args.keep.split() if "H0" in KEEP: cat['cosmological_parameters--h0']/=100.0 if "omegabh2" in KEEP: cat['cosmological_parameters--omega_b']/=cat['cosmological_parameters--h0']**2 if "s8" in KEEP: cat['cosmological_parameters--s8'] = cat["cosmological_parameters--sigma8_input"] * np.sqrt(cat["cosmological_parameters--omega_m"]/0.3) #move weight and like to the end names = cat.colnames[2:] + cat.colnames[:2] cat = cat[names] return cat def write_header(outfile, params): #put the like cols at the end line = " ".join(params) outfile.write('#'+line+"\n") def find_params(base): filename = base+".paramnames" names = ["weight", "like"] indices = [0,1] KEEP = args.keep.split() print "Keeping parameters %s"%KEEP for i,line in enumerate(open(filename)): name = line.split()[0].rstrip('*') if name not in KEEP: continue if name=="s8": continue names.append(name) indices.append(i+2) return names,indices def process_files(base, outfilename, randomize, deweight): filenames = glob.glob(base+"_[0-9].txt") params,indices = find_params(base) chains = [] for filename in filenames: print filename chains.append(np.loadtxt(filename, usecols=indices).T) chains = np.hstack(chains) cat=Table(rows=chains.T, names=params) cat = transform(cat) if args.extra: cat = add_extra_parameters(cat) write_cat(cat, outfilename, random=randomize, deweight=deweight) def main(): import argparse global args parser=argparse.ArgumentParser(description="Planck Format Chains -> Cosmosis Format") parser.add_argument("base", help="Root chain name including path") parser.add_argument("output", help="Output file name") parser.add_argument("--randomize", action='store_true', help="Randomize the ordering") parser.add_argument("--keep", default="w ns omegam sigma8 H0 omegabh2 omeganuh2 s8", help="Parameters to keep") parser.add_argument("--extra", default="", help="File with additional parameters to add.") parser.add_argument("--deweight", action='store_true', help="Convert to weight=1 chains by repeating lines (only for integer Planck weights i.e. not the _post_ ones)") if __name__ == '__main__': args = parser.parse_args() process_files(args.base, args.output, args.randomize, args.deweight) KEEP = args.keep.split() main()
from flask import Flask, render_template, Response import cv2 import time # import camera app = Flask(__name__) # cam = camera.camera('rtsp://admin:QPPZFE@192.168.100.57:554/H.264_stream') # cam = cv2.VideoCapture('rtsp://admin:QPPZFE@192.168.100.57:554/H.264_stream') # use 0 for web camera # for cctv camera use rtsp://username:password@ip_address:554/user=username_password='password'_channel=channel_number_stream=0.sdp' instead of camera # for local webcam use cv2.VideoCapture(0) def skipFrames(timegap, FPS, cap, CALIBRATION): latest = None while True : for i in range(int(timegap*FPS/CALIBRATION)) : _,latest = cap.read() if(not _): time.sleep(0.5)#refreshing time break else: break return latest def skipFrames(timegap, FPS, cap, CALIBRATION): latest = None ret = None while True : for i in range(int(timegap*FPS/CALIBRATION)) : ret,latest = cap.read() if(not ret): time.sleep(0.5)#refreshing time break else: break return latest, ret def gen_frames(): # generate frame by frame from camera FPS = 60 CALIBRATION = 1.5 gap = 0.1 frame = None while True: # time.sleep(0.05) # Capture frame-by-frame # success, frame = camera.read() # read the camera frame # frame, success = skipFrames(gap, FPS, cam, CALIBRATION) try: new_frame = cv2.imread('../jetson-inference/build/aarch64/bin/cap.jpg') print(frame.shape[:2]) new_frame = cv2.resize(new_frame, (640, 480)) frame = new_frame # frame = cv2.imread('tes.PNG') except: # frame = None pass # s = time.time() if frame is None: continue ret, buffer = cv2.imencode('.jpg', frame) frame = buffer.tobytes() # gap = time.time()-s yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result @app.route('/video_feed') def video_feed(): #Video streaming route. Put this in the src attribute of an img tag return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html') if __name__ == '__main__': app.run(host='192.168.100.104', port=5001, debug=True)
from keras.callbacks import Callback class ClassAccuracy(Callback): def __init__(self, data_x, data_y, class_label, label="class accuracy"): super(ClassAccuracy, self).__init__() self.label = "%s for %s" % (label, class_label) self.class_label = class_label self.data_x = data_x self.data_y = data_y self.scores = [] def on_epoch_end(self, epoch, logs={}): pred_y = self.model.predict_on_batch(self.data_x) pred_y_labels = [] for row in pred_y: pred_y_labels.append( 1 if row[1] > row[0] else 0) (acc, tp, fp) = self.score_class(self.data_y, pred_y_labels) logs[self.label] = acc print(' - {:04.2f} (tp: {:3.0f}, fp: {:3.0f} -- {:15s})'.format(acc * 100, tp, fp, self.label)) self.scores.append(acc) def score_class(self, data_y, pred_y): tp = 0.0 fp = 0.0 for i in range(0, len(data_y)): label = data_y[i] pred = pred_y[i] if pred == self.class_label: if label == pred: tp += 1.0 else: fp += 1.0 acc = 0.0 if tp+fp == 0.0 else tp/(tp+fp) return acc, tp, fp def avg_score(self, last_n_epochs): last = self.scores[:-last_n_epochs] return sum(last)/len(last) class Accuracy(Callback): def __init__(self, data_x, data_y, label="accuracy"): super(Accuracy, self).__init__() self.label = label self.data_x = data_x self.data_y = data_y self.scores = [] def on_epoch_end(self, epoch, logs={}): pred_y = self.model.predict_on_batch(self.data_x) pred_y_labels = [] for row in pred_y: pred_y_labels.append( 1 if row[1] > row[0] else 0) (acc, tp, fp) = self.score_class(self.data_y, pred_y_labels) logs[self.label] = acc print(' - {:04.2f} (tp: {:3.0f}, fp: {:3.0f} -- {:15s})'.format(acc * 100, tp, fp, self.label)) self.scores.append(acc) def score_class(self, data_y, pred_y): tp = 0.0 fp = 0.0 for i in range(0, len(data_y)): label = data_y[i] pred = pred_y[i] if label == pred: tp += 1.0 else: fp += 1.0 acc = 0.0 if tp+fp == 0.0 else tp/(tp+fp) return acc, tp, fp def avg_score(self, last_n_epochs): last = self.scores[-last_n_epochs:] return sum(last)/len(last)
from rec2 import factorial as fact import rec2 print(fact(4)) print(rec2.factorial(2))
from slack_webhook import Slack URL='' def send_slack(msg): slack = Slack(url=URL) slack.post(text=msg)
from models import Session, FoodieUser s = Session() def create_users(): s.add(FoodieUser(name='John Doe', age=44)) s.add(FoodieUser(name='San Martin', age=999)) s.commit() def main(): create_users() if __name__ == '__main__': main()
from __future__ import absolute_import, unicode_literals import errno import logging import os import signal import subprocess from mopidy import backend, exceptions import pykka from . import Extension from .client import dLeynaClient from .library import dLeynaLibraryProvider from .playback import dLeynaPlaybackProvider DBUS_SESSION_BUS_ADDRESS = 'DBUS_SESSION_BUS_ADDRESS' DBUS_SESSION_BUS_PID = 'DBUS_SESSION_BUS_PID' logger = logging.getLogger(__name__) class dLeynaBackend(pykka.ThreadingActor, backend.Backend): uri_schemes = [Extension.ext_name] __dbus_pid = None def __init__(self, config, audio): super(dLeynaBackend, self).__init__() try: if DBUS_SESSION_BUS_ADDRESS in os.environ: self.client = dLeynaClient() else: env = self.__start_dbus() self.__dbus_pid = int(env[DBUS_SESSION_BUS_PID]) self.client = dLeynaClient(str(env[DBUS_SESSION_BUS_ADDRESS])) except Exception as e: logger.error('Error starting %s: %s', Extension.dist_name, e) # TODO: clean way to bail out late? raise exceptions.ExtensionError('Error starting dLeyna client') self.library = dLeynaLibraryProvider(self, config) self.playback = dLeynaPlaybackProvider(audio, self) def on_stop(self): if self.__dbus_pid is not None: self.__stop_dbus(self.__dbus_pid) def __start_dbus(self): logger.info('Starting %s D-Bus daemon', Extension.dist_name) out = subprocess.check_output(['dbus-launch'], universal_newlines=True) logger.debug('%s D-Bus environment:\n%s', Extension.dist_name, out) return dict(line.split('=', 1) for line in out.splitlines()) def __stop_dbus(self, pid): logger.info('Stopping %s D-Bus daemon', Extension.dist_name) try: os.kill(pid, signal.SIGTERM) except OSError as e: if e.errno != errno.ESRCH: raise logger.debug('Stopped %s D-Bus daemon', Extension.dist_name)
#from optparse import make_option from django.core.management.base import BaseCommand, CommandError import env class Command(BaseCommand): help = 'Delete environment in %s' % env.path def handle(self, **options): env.delete()
import ev3dev.ev3 as ev3 import ev3dev.core as core import time as time def main(): LEFT =ev3.Leds.LEFT RIGHT =ev3.Leds.RIGHT GREEN =ev3.Leds.GREEN RED =ev3.Leds.RED buttons =ev3.Button ev3.Leds.all_off() while(True): '''core.Screen.clear() core.Screen.draw.text([5,20,200,100],String(ev3.Button.LEFT)) core.Screen.draw.text([5,50,200,100],String(ev3.Button.RIGHT)) core.Screen.update()''' time.sleep(1) left_flag=bool(buttons.left.value()) right_flag=bool(buttons.right.value()) print(str(left_flag)+" "+str(right_flag)) if(left_flag==True): ev3.Leds.set_color(LEFT, GREEN) else: ev3.Leds.set_color(LEFT, RED) if(right_flag==True): ev3.Leds.set_color(RIGHT, GREEN) else: ev3.Leds.set_color(RIGHT, RED) if __name__ == '__main__': main()
#!/usr/bin/python # vim: set fileencoding=UTF-8 a = int(input("? ")) b = int(input("? ")) c = int(input("? ")) if a < 1 or b < 1 or c < 1 : print("As dimensões dos lados do triângulo devem ser todas positivas") else: if a + b <= c or a + c <= b or c + b <= a : print("Não é triângulo") else: if a == b and b == c : print("O triângulo é equilátero") else: if a == b or b == c or c == a : print("O triângulo é isósceles") else: print("O triângulo é escaleno")
from django.urls import path from django.contrib import admin from . import views urlpatterns = [ path('', views.HomePage), path('subject/', views.SubjectPage), path('results/', views.result1), ]
from setuptools import setup, find_packages setup( name='ships', version='1.0', author='akerlay', packages=find_packages(), python_requires='>=3.7', classifiers=[ 'Environment :: Console', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: Python :: 3.7', ], include_package_data=True, entry_points={ 'console_scripts': [ 'app = app.app:main', ] }, )
# # # # Processing Pipeline for the Full Domain (Artic-wide) import subprocess, os, warnings import xarray as xr os.chdir('/workspace/UA/malindgren/repos/seaice_noaa_indicators/pipeline') base_path = '/workspace/Shared/Tech_Projects/SeaIce_NOAA_Indicators/project_data/nsidc_0051' ncpus = str(64) # interpolate and smooth daily timeseries print('interp/smooth') # _ = subprocess.call(['ipython','make_daily_timeseries_interp_smooth.py','--','-b', base_path, '-n', ncpus]) begin = '1979' for end in ['2007','2013','2017']: # make clim from smoothed timeseries print('clim') begin_full, end_full = '1978', '2017' fn = os.path.join(base_path,'smoothed','NetCDF','nsidc_0051_sic_nasateam_{}-{}_north_smoothed.nc'.format(begin_full, end_full)) clim_fn = os.path.join(base_path,'smoothed','NetCDF','nsidc_0051_sic_nasateam_{}-{}_north_smoothed_climatology.nc'.format(begin, end)) # _ = subprocess.call(['ipython','make_daily_timeseries_climatology.py','--','-f', fn, '-o', clim_fn, '-b', begin, '-e', end]) # calc FUBU print('fubu') outpath = os.path.join(base_path, 'outputs','NetCDF') if not os.path.exists(outpath): _ = os.path.makedirs(outpath) # _ = subprocess.call(['ipython','compute_fubu_dates.py','--','-b', base_path, '-f', fn, '-begin', begin, '-end', end]) # # calc FUBU clim print('fubu clim') fubu_fn = os.path.join( base_path,'outputs','NetCDF','nsidc_0051_sic_nasateam_{}-{}_north_smoothed_fubu_dates.nc'.format(begin, end)) fubu_clim_fn = fubu_fn.replace('.nc', '_climatology.nc') # with xr.open_dataset(fubu_fn) as ds: # ds_clim = ds.sel(year=slice(1979,2007)).mean('year').round(0) # ds_clim.to_netcdf(fubu_clim_fn) # plots mimicking the paper figs points_fn = '/workspace/Shared/Tech_Projects/SeaIce_NOAA_Indicators/project_data/nsidc_0051/selection_points/chuckchi-beaufort_points.shp' # fig3 out_fn = os.path.join(base_path,'outputs/png/chuckchi-beaufort_avg_fig3.png') _ = subprocess.call(['ipython','make_figure_3_paper.py','--','-n',fn,'-c',clim_fn,'-p',points_fn,'-o',out_fn]) # fig4 out_fn = os.path.join(base_path,'outputs','png','barrow_avg_fig4.png') _ = subprocess.call(['ipython','make_figure_4_paper.py','--','-n',fn,'-c',clim_fn,'-f',fubu_fn,'-fc',fubu_clim_fn,'-p',points_fn,'-o',out_fn]) # fig5/6 _ = subprocess.call(['ipython','make_figure_5-6_paper.py','--','-b',base_path]) _ = subprocess.call(['ipython','make_figure_7_paper.py','--','-b',base_path])
import multiprocessing from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence from sklearn.linear_model import SGDClassifier lr = SGDClassifier(loss='log', penalty = 'l1') # X_data = [] # Y_data = [] # # for line in open(r"C:\Users\10651\Desktop\评论数据\200000条总数据\好样本\a.txt","r",encoding='UTF-8'): #设置文件对象并读取每一行文件 # X_data.append(line) #将每一行文件加入到list中 # Y_data.append(1) # for line in open(r"C:\Users\10651\Desktop\评论数据\200000条总数据\坏样本\b.txt","r",encoding='UTF-8'): #设置文件对象并读取每一行文件 # X_data.append(line) #将每一行文件加入到list中 # Y_data.append(0) corpus = r'C:\Users\10651\Desktop\评论数据\200000条分词数据\坏样本\b.txt' sentences = LineSentence(corpus) # 加载语料,LineSentence用于处理分行分词语料 #sentences1 = word2vec.Text8Corpus(corpus) #用来处理按文本分词语料 #print('=--=-=-=-=-=',sentences) model = Word2Vec(sentences, size=12,window=25,min_count=2,workers=5,sg=1,hs=1) #训练模型就这一句话 去掉出现频率小于2的词 model.save() # model = Word2Vec(LineSentence(X_data), size=100, window=10, min_count=3, # workers=multiprocessing.cpu_count(), sg=1, iter=10, negative=20) from keras.optimizers import SGD,Adam from keras.models import Sequential from keras.layers import Dense,Activation,Dropout from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from scipy.stats import ks_2samp import statsmodels.api as sm model_nn = Sequential() model_nn.add(Dense(2000, input_dim=1000, init = 'uniform')) model_nn.add(Dropout(0.15)) # 使用Dropout防止过拟合 model_nn.add(Dense(1550, activation='tanh', init = 'uniform')) model_nn.add(Dropout(0.15)) # 使用Dropout防止过拟合 model_nn.add(Dense(550, activation='tanh', init = 'uniform')) model_nn.add(Dropout(0.15)) # 使用Dropout防止过拟合 model_nn.add(Dense(1, activation='sigmoid'))
# -*- coding: utf-8 -*- """ Created on Wed May 22 11:50:29 2019 @author: flau """ import numpy as np from scipy.io import wavfile from scipy.signal import deconvolve import matplotlib.pyplot as plt fs, measure = wavfile.read('Messung.wav') fs, test = wavfile.read('Testsignal.wav') difference=len(measure)-len(test) correlation=np.correlate(test,measure,"full") maxsample=len(measure)-(np.ceil(np.argmax(correlation))) zeros=np.zeros(int(maxsample)) measure=np.concatenate([zeros,measure]) test=test[:144000] measure=measure[:144000] spectrum_m = np.fft.fft(measure) magnitude_m = np.abs(spectrum_m) phase_m = np.angle(spectrum_m,deg=True) spectrum_t = np.fft.fft(test) magnitude_t = np.abs(spectrum_t) phase_t = np.angle(spectrum_t,deg=True) spectrum_f=spectrum_m/spectrum_t len2=np.ceil(len(spectrum_f)/2) spectrum_f=spectrum_f[:int(len2)] magnitude_f = np.abs(spectrum_f) phase_f = np.angle(spectrum_f,deg=True) impulsantwort=np.fft.ifft(spectrum_f) plt.plot(phase_f) plt.xscale('log') #plt.show
class Dog: count = [] def __init__(self, name, type): self.name = name self.type = type self.nomer = len(self.count) self.count.append(1) # def add_trick(self, trick): # self.tricks.append(trick) dog1 = Dog("Sharik", "Alabai") dog1.temperature = 10 # print(dog1.temperature) dog2 = Dog("Simba", "Alabai") dog3 = Dog("Laika", "Alabai") print(dog1.nomer) print(dog2.nomer) print(dog3.nomer) # dog1.add_trick("roll over") # dog2.add_trick("play dead") # # print(dog2.tricks) # print(dog1.tricks)
import scipy.io as sio import h5py def load_deep_features(data_name): import numpy as np valid_data, req_rec, b_wv_matrix = True, True, True unlabels, zero_shot, doc2vec, split = False, False, False, False if data_name.find('_doc2vec') > -1: doc2vec = True req_rec, b_wv_matrix = False, False if data_name == 'wiki_doc2vec': path = './datasets/wiki_data/wiki_deep_doc2vec_data_corr_ae.h5py' # wiki_deep_doc2vec_data valid_len = 231 MAP = -1 elif data_name == 'nus_wide_doc2vec': path = './datasets/NUS-WIDE/nus_wide_deep_doc2vec_data_42941.h5py' # pascal_sentence_deep_doc2vec_data valid_len = 5000 MAP = -1 elif data_name == 'MSCOCO_doc2vec': path = './datasets/MSCOCO/MSCOCO_deep_doc2vec_data.h5py' # valid_len = 10000 MAP = -1 elif data_name == 'xmedia': path = './datasets/XMedia&Code/XMediaFeatures.mat' MAP = -1 req_rec, b_wv_matrix = False, False all_data = sio.loadmat(path) A_te = all_data['A_te'].astype('float32') # Features of test set for audio data, MFCC feature A_tr = all_data['A_tr'].astype('float32') # Features of training set for audio data, MFCC feature d3_te = all_data['d3_te'].astype('float32') # Features of test set for 3D data, LightField feature d3_tr = all_data['d3_tr'].astype('float32') # Features of training set for 3D data, LightField feature I_te_CNN = all_data['I_te_CNN'].astype('float32') # Features of test set for image data, CNN feature I_tr_CNN = all_data['I_tr_CNN'].astype('float32') # Features of training set for image data, CNN feature T_te_BOW = all_data['T_te_BOW'].astype('float32') # Features of test set for text data, BOW feature T_tr_BOW = all_data['T_tr_BOW'].astype('float32') # Features of training set for text data, BOW feature V_te_CNN = all_data['V_te_CNN'].astype('float32') # Features of test set for video(frame) data, CNN feature V_tr_CNN = all_data['V_tr_CNN'].astype('float32') # Features of training set for video(frame) data, CNN feature te3dCat = all_data['te3dCat'].reshape([-1]).astype('int64') # category label of test set for 3D data tr3dCat = all_data['tr3dCat'].reshape([-1]).astype('int64') # category label of training set for 3D data teAudCat = all_data['teAudCat'].reshape([-1]).astype('int64') # category label of test set for audio data trAudCat = all_data['trAudCat'].reshape([-1]).astype('int64') # category label of training set for audio data teImgCat = all_data['teImgCat'].reshape([-1]).astype('int64') # category label of test set for image data trImgCat = all_data['trImgCat'].reshape([-1]).astype('int64') # category label of training set for image data teVidCat = all_data['teVidCat'].reshape([-1]).astype('int64') # category label of test set for video(frame) data trVidCat = all_data['trVidCat'].reshape([-1]).astype('int64') # category label of training set for video(frame) data teTxtCat = all_data['teTxtCat'].reshape([-1]).astype('int64') # category label of test set for text data trTxtCat = all_data['trTxtCat'].reshape([-1]).astype('int64') # category label of training set for text data train_data = [I_tr_CNN, T_tr_BOW, A_tr, d3_tr, V_tr_CNN] test_data = [I_te_CNN[0: 500], T_te_BOW[0: 500], A_te[0: 100], d3_te[0: 50], V_te_CNN[0: 87]] valid_data = [I_te_CNN[500::], T_te_BOW[500::], A_te[100::], d3_te[50::], V_te_CNN[87::]] train_labels = [trImgCat, trTxtCat, trAudCat, tr3dCat, trVidCat] test_labels = [teImgCat[0: 500], teTxtCat[0: 500], teAudCat[0: 100], te3dCat[0: 50], teVidCat[0: 87]] valid_labels = [teImgCat[500::], teTxtCat[500::], teAudCat[100::], te3dCat[50::], teVidCat[87::]] if doc2vec: h = h5py.File(path) train_imgs_deep = h['train_imgs_deep'][()].astype('float32') train_imgs_labels = h['train_imgs_labels'][()] train_imgs_labels -= np.min(train_imgs_labels) train_texts_idx = h['train_text'][()].astype('float32') train_texts_labels = h['train_texts_labels'][()] train_texts_labels -= np.min(train_texts_labels) train_data = [train_imgs_deep, train_texts_idx] train_labels = [train_imgs_labels, train_texts_labels] # valid_data = False test_imgs_deep = h['test_imgs_deep'][()].astype('float32') test_imgs_labels = h['test_imgs_labels'][()] test_imgs_labels -= np.min(test_imgs_labels) test_texts_idx = h['test_text'][()].astype('float32') test_texts_labels = h['test_texts_labels'][()] test_texts_labels -= np.min(test_texts_labels) test_data = [test_imgs_deep, test_texts_idx] test_labels = [test_imgs_labels, test_texts_labels] valid_data = [test_data[0][0: valid_len], test_data[1][0: valid_len]] valid_labels = [test_labels[0][0: valid_len], test_labels[1][0: valid_len]] test_data = [test_data[0][valid_len::], test_data[1][valid_len::]] test_labels = [test_labels[0][valid_len::], test_labels[1][valid_len::]] if valid_data: if b_wv_matrix: return train_data, train_labels, valid_data, valid_labels, test_data, test_labels, wv_matrix, MAP else: return train_data, train_labels, valid_data, valid_labels, test_data, test_labels, MAP else: if b_wv_matrix: return train_data, train_labels, test_data, test_labels, wv_matrix, MAP else: return train_data, train_labels, test_data, test_labels, MAP
import pathlib import numpy as np class ConstantRegressor: def fit(self, X, y, eval_data=None, mlflow_log=True): self.mean = y.mean() def predict(self, X): return np.ones(X.shape[0]) * self.mean def save(self, path: pathlib.Path): pass @staticmethod def load(path: pathlib.Path): pass
from skimage import data import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from PIL import Image image = mpimg.imread("1.tif") plt.imshow(image) plt.show()
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() def easy(url_str): import re pattern = re.compile(r':\w+/?') matches = pattern.findall(url_str) for match in matches: var = match[1:-1] var_re = r'(?P<%s>.*)/'%var url_str = url_str.replace(match, var_re) url_str += '$' return url_str urlpatterns = patterns('', url(r'^$', 'config.views.index', name='index'), # url(easy('^project/:id/'), 'project.foo.view_name'), url(r'^admin/', include(admin.site.urls)), )
#!/usr/bin/env python3 import socket import sys HOST = sys.argv[1] PORT = int(sys.argv[2]) s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) while True: txt=input() s.sendall(txt.encode()) data = s.recv(1024) #print("Received:", repr(data), "\n") print(data.decode())
# compatibility with python 2/3 try: basestring except NameError: basestring = str class ExpressionNotFoundError(Exception): """Expression not found error.""" class ExpressionEvaluator(object): """ Runs exressions used by templates. """ __registered = {} @staticmethod def register(name, expressionCallable): """ Register a expressionCallable as expression. """ assert hasattr(expressionCallable, '__call__'), \ "Invalid callable!" ExpressionEvaluator.__registered[name] = expressionCallable @staticmethod def registeredNames(): """ Return a list of registered expressions. """ return ExpressionEvaluator.__registered.keys() @staticmethod def run(expressionName, *args): """ Run the expression and return a value base on the args. """ if expressionName not in ExpressionEvaluator.__registered: raise ExpressionNotFoundError( 'Could not find expression name: "{0}"'.format( expressionName ) ) # executing expression return str(ExpressionEvaluator.__registered[expressionName](*args)) @staticmethod def parseRun(expression): """ Parse and run an expression. An expression must be a string describbing the expression name as first token and the arguments that should be passed to it separated by space (aka bash), for instance: "myexpression arg1 arg2" "sum 1 2" The arguments are always parsed as string, and they should be handled per expression callable bases. """ assert isinstance(expression, basestring), \ "Invalid expression type!" cleanedExpressionEvaluator = list(filter( lambda x: x != '', expression.strip(" ").split(" ") )) expressionName = cleanedExpressionEvaluator[0] expressionArgs = cleanedExpressionEvaluator[1:] return ExpressionEvaluator.run(expressionName, *expressionArgs)
import csv import tweepy from tweepy import OAuthHandler consumer_key = ' ' consumer_secret = ' ' access_token = ' ' access_secret = ' ' auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True)
from topology import * from util import * def make_ini(T, network_name, sim_time, out_f): with open(out_f, 'w') as of: print("[General]", file=of) print("network = {}".format(network_name), file=of) print("record-eventlog = false", file=of) print("result-dir = results_strict_priority", file=of) print("sim-time-limit = {}s".format(sim_time), file=of) print('', file=of) print("**.displayAddresses = true", file=of) print("**.verbose = true", file=of) print('', file=of) # mac address for i in range(T.node_n): print('**.host{}.eth.address = \"{}\"'.format(i, T.host_list[i].rout_addr), file=of) print('', file=of) # parameter of switch print("**.switch*.processingDelay.delay = 1us", file=of) print("**.filteringDatabase.database = xmldoc(\"XML/demo_rout.xml\", \"/filteringDatabases/\")", file=of) print('', file=of) for i in range(8): print("**.switch*.eth[*].queue.tsAlgorithms[{}].typename = \"StrictPriority\"".format(i), file=of) print("**.queues[*].bufferCapacity = 363360b", file=of) print('', file=of) # specify flow creation file for i in range(T.node_n): print("**.host{}.trafGenSchedApp.initialSchedule = \ xmldoc(\"XML/demo_sched.xml\")".format(i), file=of) if __name__ == "__main__": T = parse_topology_file("./5.in") make_ini(T, "./test_ini")
import os import pymongo import logging from flask import Flask from flask_cors import CORS from .jinjia_filters import JJFilters from flask_login import LoginManager from flask_wtf.csrf import CSRFProtect from logging.handlers import WatchedFileHandler app = Flask(__name__) CORS(app) csrf = CSRFProtect(app) app.config['SECRET_KEY'] = os.urandom(24) app.jinja_env.filters['is_odd'] = JJFilters.is_odd app.jinja_env.filters['unix_2_time'] = JJFilters.unix_2_time env = os.environ.get('ENV', 'dev') if env == 'dev': app.config.from_object('config.DevConfig') else: app.config.from_object('config.ProductConfig') db = pymongo.MongoClient(app.config.get("MONGO_URI"), app.config.get("MONGO_PORT"))[app.config.get("MONGO_DB")] if not os.path.exists(app.config['LOG_ROOT_DIR']): os.makedirs(app.config['LOG_ROOT_DIR']) log_path = app.config['LOG_ROOT_DIR'] + '/wz.log' handler = WatchedFileHandler(log_path) handler.setFormatter(logging.Formatter('%(time)s|%(level)s|%(process)d|%(filename)s|%(lineno)s|%(message)s', datefmt='%d/%b/%Y:%H:%M:%S')) app.logger.setLevel(logging.DEBUG) app.logger.addHandler(handler) login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = "/user/login" from app import blueprints from app.Models import UserModel
from bs4 import BeautifulSoup import requests response = requests.get("https://www.empireonline.com/movies/features/best-movies-2/") movie_webpage = (response.text) soup = BeautifulSoup(movie_webpage, "html.parser") # print(soup) title_tags = soup.find_all(name="h3", class_="title") all_titles = [title.text for title in title_tags] print(all_titles) with open("movies.txt", 'a', encoding="utf8") as file: for movie in all_titles[::-1]: file.write(movie+"\n")
# coding=utf-8 import requests; from login.Login import *; if __name__ == "__main__": login = Login() login.login(email='', password='')
#This will take the training data in libsvm format and predict ham or spam on the basis of symbols #using optimized Adaboost Classifier. from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from collections import Counter X_train, y_train = load_svmlight_file('Trainlabels.txt') X_test, y_test = load_svmlight_file('Testlabels.txt',n_features=X_train.shape[1]) bdt = AdaBoostClassifier(DecisionTreeClassifier(), n_estimators=200, algorithm="SAMME") bdt.fit(X_train, y_train) y_ada = bdt.predict(X_test) ada_results_compare = Counter(zip(y_test,y_ada)) print ada_results_compare
import main_module main_module.main() print("Second modules name: {}".format(__name__))
#makes input cfi files for all beamspot scenarios! import os, sys eospath = "/eos/uscms/store/user/skaplan/noreplica/" shortpath = "/store/user/skaplan/noreplica/" for phi in (0,225): for r in range(11): if (phi == 225 and r == 0): continue folder="MinBiasBeamSpotPhi%iR%i_HISTATS/"%(phi,r) fullpath = eospath+folder outfiles = os.listdir(fullpath) outfilesnew=[] for f in outfiles: outfilesnew.append(" '"+shortpath + folder + f + "',") out = open("MinBiasBeamSpotPhi%iR%i"%(phi,r)+"_cfi.py",'w') out.write("import FWCore.ParameterSet.Config as cms\n") out.write("\n") out.write('source = cms.Source("PoolSource",\n') out.write(" fileNames = cms.untracked.vstring(\n") for f in outfilesnew: out.write(f+"\n") out.write(" )\n") out.write("\n") out.write(")\n") out.close()
from bs4.dammit import EntitySubstitution esub = EntitySubstitution() def sanitize_html(title): return esub.substitute_html(title) def sanitize_irc(title): badchars = "\r\n\x01" return "".join(c for c in title if c not in badchars) escapers = { "html": sanitize_html, "irc": sanitize_irc } def escape(title, mode): if not mode: mode = "irc" if mode == "all": for func in list(escapers.values()): title = func(title) return title return escapers.get(mode, lambda title: title)(title)
''' This code is intended to serve as a basic example for a pendulum disturbed by a trolley ''' import warnings warnings.simplefilter("ignore", UserWarning) # import all appropriate modules import numpy as np from scipy.integrate import odeint import Generate_Plots as genplt import InputShaping as shaping import pdb # Define Constants G = 9.81 DEG_TO_RAD = np.pi / 180 # ODE Solver characteristics abserr = 1.0e-9 relerr = 1.0e-9 max_step = 0.01 def response(p, Shaper): ''' Generate the response of a pendulum disturbed by a trolley ''' # Unpack the constraints and initial conditions [Amax,Vmax], m, c, k, StartTime, t_step, t, X0, Distance = p omega = np.sqrt(k/m) omega_hz = omega / (2 * np.pi) zeta = c / (2 * m * omega) #print(roots) m_1 *= m1_error m_2 *= m2_error #Determine the step at which the command is initiated Start_step = np.round((StartTime / t_step)).astype(int) response = np.zeros([len(t),len(X0)]) # Create an unshaped input if isinstance(Shaper,np.ndarray): #pdb.set_trace() in_shape = Shaper elif Shaper == 'ZV': in_shape = shaping.ZV(omega_hz, zeta).shaper elif Shaper == 'ZVD': in_shape = shaping.ZVD(omega_hz,zeta).shaper elif Shaper == 'ZVDD': in_shape = shaping.ZVDD(omega_hz,zeta).shaper elif Shaper == 'UMZV': in_shape = shaping.UMZV(omega_hz,zeta).shaper else: in_shape = np.array([[0.,1]]) # Generate the response response = odeint( eq_motion, X0, t, args=(in_shape,t,k,c,Amax,Vmax,m,Distance), atol=abserr, rtol=relerr, hmax=max_step ) return response,in_shape def eq_motion(X,t,in_shape,t_sys,k,c,Amax,Vmax,m,Distance): ''' Returns the state-space equations of motion for the system. Inputs: X - State variables t - Current system time sys_in - Acceleration input commanded to the system t_sys - total time array for the system. Used to interpolate the current time length - length of the pendulum ''' # Grab the state Variables x,x_dot = X xd_dot = 0. xd = shaping.shaped_input(shaping.step_input,t,in_shape,Distance) # Evaluate the differential equations of motion ODE = [ x_dot, k / m * (x_d - x) + c / m * (xd_dot - x_dot) - G] return ODE
#import sys #input = sys.stdin.readline def solve(): L, R = map(int,input().split()) if L == 0: return (R+1)*(R+2)//2 elif R < L*2: return 0 else: return (R-L*2+1)*(R-L*2+2)//2 def main(): T = int( input()) ANS = [ solve() for _ in range(T)] print("\n".join(map(str, ANS))) if __name__ == '__main__': main()
# Write a python script that will do the following. Rename all files in this folder to abide by a naming convention of data_ ## where ## is an arbitrary number used to define orderering. #You can use the following methods from the os module. # `os.getcwd()` # this will return the path to the current directory python is being executed in # `os.listdir()` # returns a list of files in the current directory # `os.rename(src,dst)` # where src is the source path and dst path of the src and paths are inclusive of filenames # Python code to rename multiple files in a directory or folder # import os import os i = 0 #Function to reanme multiple files def main(): for filename in os.listdir("file"): dst = "g" + str(i) + ".jpg" src = 'file'+ filename dst = 'file'+ dst list = os.listdir('src') # rename() function will rename all the files os.rename(src, dst) i += 1 #calls main for the file if __name__ == 'main': main()
""" ===----Config------------------------------------------------------------------------=== Airbnb Clone Project, config file. Isolating environments in Python: Development/Production/Test. ===----------------------------------------------------------------------------------=== """ from os import environ ENV = environ if 'AIRBNB_ENV' not in ENV: raise Exception("Environment variable AIRBNB_ENV not set\n" "Expected to be 'development', 'production', or 'test'") def setenv(env): switch = { 'production' : { 'debug' : False, 'host' : '0.0.0.0', 'port' : 3000, 'user' : 'airbnb_user_prod', 'db' : 'airbnb_prod', 'password' : ENV.get('AIRBNB_DATABASE_PWD_PROD') }, 'development' : { 'debug' : True, 'host' : 'localhost', 'port' : 3333, 'user' : 'airbnb_user_dev', 'db' : 'airbnb_dev', 'password' : ENV.get('AIRBNB_DATABASE_PWD_DEV') }, 'test' : { 'debug' : False, 'host' : 'localhost', 'port' : 5555, 'user' : 'airbnb_user_test', 'db' : 'airbnb_test', 'password' : ENV.get('AIRBNB_DATABASE_PWD_TEST') } } return switch.get(env) options = setenv(ENV['AIRBNB_ENV']) DEBUG = options['debug'] HOST = options['host'] PORT = options['port'] DATABASE = { 'host': '158.69.78.253', 'user': options['user'], 'database': options['db'], 'port': 3306, 'charset': 'utf8', 'password': options['password'] } # Testing the environment: # print(DEBUG, HOST, PORT) # print(DATABASE)
# coding: utf-8 from django.contrib import admin from models import ApiToken, SpotifyUser class ApiTokenAdmin(admin.ModelAdmin): list_display = ("token", "date_added", "is_active") search_fields = ["token", ] list_filter = ("is_active", ) class SpotifyUserAdmin(admin.ModelAdmin): list_display = ("user_id", "name", "followers") search_fields = ["name", "user_id", ] admin.site.register(ApiToken, ApiTokenAdmin) admin.site.register(SpotifyUser, SpotifyUserAdmin)
from pipeline import Pipeline import argparse import os if __name__== "__main__": parser = argparse.ArgumentParser() parser.add_argument("-s","--sourcePath", help = "Destination for the input folder") parser.add_argument("-d","--destinationPath", help = "Destination for the output folder") #We can add any more arguments as per our need including the sampling rate, hop length and eventually we can create a customizable menu args = parser.parse_args() ## when the user fails to give the destination folder if(args.destinationPath == None): defaultPath = os.path.join(os.path.abspath(os.getcwd()),"extractedFeatures/") if (not(os.path.exists(defaultPath))): os.makedirs(defaultPath) args.destinationPath = defaultPath ## when the destination folder does not exist if(not(os.path.exists(args.destinationPath))): os.makedirs(args.destinationPath) Pipeline = Pipeline(args.sourcePath,args.destinationPath) #we can pass the other arguments here. For now it assuming the default values Pipeline.extractMFCCFeatures() Pipeline.extractMELFeatures()
# coding: utf-8 """Module that contains all user repository Data Scraping logic.""" import requests from .utils import BaseRequest from .exceptions import (InvalidTokenError, RepositoryNameNotFoundError, ApiError, RepositoryIdNotFoundError, ApiRateLimitError) class RepositoryApi(BaseRequest): """Class that has Repository Data Scraping actions.""" def __init__(self, default_access_token=None): """Constructor. Args: default_access_token: The default GitHub access_token If you don't provide an access_token, your number of requests will be limited to 60 requests per hour, acording with GitHub REST API v3. """ self.default_access_token = default_access_token def repository_by_id(self, repository_id, access_token=None): """Return a repository with given repository ID.""" url = "{0}/repositories/{1}{2}" access_token = self.get_token(access_token) token_arg = '' if access_token != '': token_arg = "?access_token={}".format(access_token) response = requests.get( url.format(self.ROOT_API_URL, repository_id, token_arg)) self._check_common_status_code(response, access_token) if response.status_code == requests.codes.not_found: raise RepositoryIdNotFoundError({'repository_id': repository_id}) return response.json() def repository_by_name(self, username, repository_name, access_token=None): """Return a repository with given repository_name and username.""" url = "{0}/repos/{1}/{2}{3}" access_token = self.get_token(access_token) token_arg = '' if access_token != '': token_arg = "?access_token={}".format(access_token) response = requests.get( url.format( self.ROOT_API_URL, username, repository_name, token_arg) ) self._check_common_status_code(response, access_token) if response.status_code == requests.codes.not_found: raise RepositoryNameNotFoundError( {'repository_name': repository_name, 'username': username}) return response.json() def get_all_data(self, repository_id=None, repository_name=None, access_token=None): """Request all repository data from a given repository ID or name.""" data = {} if repository_id: root_data = self.repository_by_id(repository_id, access_token) data['id'] = root_data['id'] data['name'] = root_data['name'] data['private'] = root_data['private'] data['description'] = root_data['description'] data['fork'] = root_data['fork'] data['id'] = root_data['id'] data['created_at'] = root_data['created_at'] data['updated_at'] = root_data['updated_at'] data['pushed_at'] = root_data['pushed_at'] data['homepage'] = root_data['homepage'] data['size'] = root_data['size'] data['stargazers_count'] = root_data['stargazers_count'] data['watchers_count'] = root_data['watchers_count'] data['language'] = root_data['language'] data['has_issues'] = root_data['has_issues'] data['has_projects'] = root_data['has_projects'] data['has_downloads'] = root_data['has_downloads'] data['has_wiki'] = root_data['has_wiki'] data['has_pages'] = root_data['has_pages'] data['forks_count'] = root_data['forks_count'] data['mirror_url'] = root_data['mirror_url'] data['archived'] = root_data['archived'] data['open_issues_count'] = root_data['open_issues_count'] data['forks'] = root_data['forks'] data['open_issues'] = root_data['open_issues'] data['watchers'] = root_data['watchers'] data['default_branch'] = root_data['default_branch'] data['network_count'] = root_data['network_count'] data['subscribers_count'] = root_data['subscribers_count'] data['branches'] = self.get_branches_by_id( repository_id, access_token) data['comments'] = self.get_comments_by_id( repository_id, access_token) data['commits'] = self.get_commits_by_id( repository_id, access_token) data['contents'] = self.get_contents_by_id( repository_id, access_token) data['contributors'] = self.get_contributors_by_id( repository_id, access_token) data['events'] = self.get_events_by_id( repository_id, access_token) data['issues'] = self.get_issues_by_id( repository_id, access_token) data['labels'] = self.get_labels_by_id( repository_id, access_token) data['languages'] = self.get_languages_by_id( repository_id, access_token) data['pulls'] = self.get_pulls_by_id( repository_id, access_token) data['subscribers'] = self.get_subscribers_by_id( repository_id, access_token) data['tags'] = self.get_tags_by_id( repository_id, access_token) return data def commits_by_name(self, username, repository_name, access_token=None): """Return repository commits from a given username. Arguments: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "commits", access_token) def contributors_by_name(self, username, repository_name, access_token=None): """Return repository contributors from a given username. Arguments: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "contributors", access_token) def issues_by_name(self, username, repository_name, access_token=None): """Return repository issues from a given username. Args: username: Github username. repository_name: An existent user's repository name access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "issues", access_token) def events_by_name(self, username, repository_name, access_token=None): """Return repository events from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "events", access_token) def branches_by_name(self, username, repository_name, access_token=None): """Return repository branches from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "branches", access_token) def tags_by_name(self, username, repository_name, access_token=None): """Return repository tags from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "tags", access_token) def languages_by_name(self, username, repository_name, access_token=None): """Return repository languages from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "languages", access_token) def subscribers_by_name(self, username, repository_name, access_token=None): """Return repository subscribers from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "subscribers", access_token) def comments_by_name(self, username, repository_name, access_token=None): """Return repository comments from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "comments", access_token) def contents_by_name(self, username, repository_name, access_token=None): """Return repository contents from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "contents", access_token) def pulls_by_name(self, username, repository_name, access_token=None): """Return repository pulls from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "pulls", access_token) def labels_by_name(self, username, repository_name, access_token=None): """Return repository labels from a given username. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_name( username, repository_name, "labels", access_token) def commits_by_id(self, repository_id, access_token=None): """Return repository commits from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "commits", access_token) def contributors_by_id(self, repository_id, access_token=None): """Return repository contributors from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "contributors", access_token) def issues_by_id(self, repository_id, access_token=None): """Return repository issues from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "issues", access_token) def events_by_id(self, repository_id, access_token=None): """Return repository events from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "events", access_token) def branches_by_id(self, repository_id, access_token=None): """Return repository branches from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "branches", access_token) def tags_by_id(self, repository_id, access_token=None): """Return repository tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id(repository_id, "tags", access_token) def languages_by_id(self, repository_id, access_token=None): """Return languages tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "languages", access_token) def subscribers_by_id(self, repository_id, access_token=None): """Return subscribers tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "subscribers", access_token) def comments_by_id(self, repository_id, access_token=None): """Return comments tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "comments", access_token) def contents_by_id(self, repository_id, access_token=None): """Return contents tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "contents", access_token) def pulls_by_id(self, repository_id, access_token=None): """Return pulls tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "pulls", access_token) def labels_by_id(self, repository_id, access_token=None): """Return labels tags from a given username and repository ID. Args: repository_id: An existent user's repository ID. access_token: GitHub OAuth2 access token. """ return self._complete_request_by_id( repository_id, "labels", access_token) def _complete_request_by_name(self, username, repository_name, complement, access_token): """Complements a repository data request by name. Args: username: Github username. repository_name: An existent user's repository name. access_token: GitHub OAuth2 access token. """ url = "{0}/repos/{1}/{2}/{3}{4}" access_token = self.get_token(access_token) token_arg = '' if access_token != '': token_arg = "?access_token={}".format(access_token) response = requests.get( url.format( self.ROOT_API_URL, username, repository_name, complement, token_arg ) ) self._check_common_status_code(response, access_token) if response.status_code == requests.codes.not_found: raise RepositoryNameNotFoundError( {'repository_name': repository_name, 'username': username}) return response.json() def _complete_request_by_id(self, repository_id, complement, access_token): """Complements a repository data request by ID. Args: repository_id: An existent user's repository ID. complement: A resource to be requested. access_token: GitHub OAuth2 access token. """ url = "{0}/repositories/{1}/{2}{3}" access_token = self.get_token(access_token) token_arg = '' if access_token != '': token_arg = "?access_token={}".format(access_token) response = requests.get( url.format(self.ROOT_API_URL, repository_id, complement, token_arg)) self._check_common_status_code(response, access_token) if response.status_code == requests.codes.not_found: raise RepositoryIdNotFoundError({'repository_id': repository_id}) return response.json() def _check_common_status_code(self, response, access_token): remaining = int(response.headers['X-RateLimit-Remaining']) if response.status_code == requests.codes.forbidden and remaining == 0: raise ApiRateLimitError( {'X-RateLimit-Remaining': remaining, 'X-RateLimit-Limit': response.headers['X-RateLimit-Limit']}) elif response.status_code == requests.codes.unauthorized: raise InvalidTokenError({'access_token': access_token}) elif response.status_code >= 500 and response.status_code <= 509: raise ApiError()
import os import json from shapely.geometry import Polygon from OSMPythonTools.api import Api import pandas as pd from shapely.geometry import Polygon import copy import cv2 import math import shapely.geometry as geom ''' Cretes COCO Annotation using VIA annotation Example VIA annotation format: { "FLAT.213253160.jpg43089":{ "fileref":"", "size":43089, "filename":"FLAT.213253160.jpg", "base64_img_data":"", "file_attributes":{ }, "regions":{ "0":{ "shape_attributes":{ "name":"polygon", "all_points_x":[ 205, 304, 415, 324, 205 ], "all_points_y":[ 40, 394, 362, 39, 40 ] }, "region_attributes":{ "building":"flat" } } } } }, Example COCO annotation format: { "info":{ "contributor":"", "about":"", "date_created":"", "description":"", "url":"", "version":"", "year":2019 }, "categories":[ { "id":100, "name":"building", "supercategory":"building" } ], "images":[ { "id":20289, "file_name":"000000020289.jpg", "width":300, "height":300, "lat":0, "lon":0, zoom=20 } ], "annotations":[ { "id":377545, "image_id":44153, "segmentation":[ [ 152.0, 180.0, 156.0, 176.0, 160.0, 181.0, 156.0, 186.0, 152.0, 180.0 ] ], "area":42.0, "bbox":[ 152.0, 152.0, 28.0, 8.0 ], "category_id":100, "iscrowd":0 } ] } ''' api = Api() sunroof_data = "../data/sunroof_cities.csv" df = pd.read_csv(sunroof_data) # DO NOT CHANGE - USED To train MaskRCNN model "id:0 is background == BG" CATEGORIES_LIST = ["flat","dome", "N", "NNE", "NE", "ENE", "E", "ESE", "SE","SSE", "S", "SSW","SW","WSW", "W", "WNW", "NW", "NNW","tree"] CATEGORIES =[ {"id": i+1, "name": cat, "supercategory": "building" } for i, cat in enumerate(CATEGORIES_LIST) ] CATEGORIES_MAP = dict( (cat["name"], cat["id"]) for cat in CATEGORIES ) print(CATEGORIES_MAP) def get_latlon(wayid): df_sel = df[df["wayid"]==wayid] if len(df_sel) > 0: try: lat = float(df_sel["lat"]) lon = float(df_sel["lon"]) except: lat = float(df_sel.iloc[0]["lat"]) lon = float(df_sel.iloc[0]["lon"]) else: raise Exception("Way ID not found") return lat, lon def get_wayid(filename): try: wayid = int(filename.split(".")[0]) except: wayid = int(filename.split(".")[1]) return wayid def generate_annotation(inputfolder, outfolder): ''' crop the images ''' input_file = os.path.join(inputfolder, "via_region_data.json") output_file = os.path.join(outfolder, "annotation.json") coco = {"info": {"contributor": "stepenlee@umass", "about": "Building Dataset", "date_created": "01/04/2018", "description": "Roof Orientation", "url": "", "version": "1.0", "year": 2018}, "categories":[], "images":[], "annotations":[] } # import the via_region_data.json with open(input_file, 'r') as fp: via_data = json.load(fp) categories = []; images = []; annotations = []; annotation_id = 300000 image_id = 100 width = 512; height = 512; zoom = 20; for i, key in enumerate(via_data.keys()): filename = via_data[key]["filename"] wayid = get_wayid(filename) lat, lon = get_latlon(wayid) # create image obj image_id += 1 image_obj ={"id": image_id, "file_name": filename, "width": width, "height": height, "lat": lat, "lon": lon, zoom:zoom} images.append(image_obj) # create annnotatoins for k, region in enumerate(via_data[key]["regions"].keys()): if (len(via_data[key]["regions"][region]["shape_attributes"]["all_points_x"]) <=2): continue annotation_id += 1 # elimiate the segments or regions not in the bbox xys = zip(via_data[key]["regions"][region]["shape_attributes"]["all_points_x"],via_data[key]["regions"][region]["shape_attributes"]["all_points_y"]) segmentation = [] for x, y in xys: segmentation.append(x) segmentation.append(y) area = geom.Polygon(xys).area annotation_obj = {"id":annotation_id, "area":area, "image_id":image_id, "segmentation":[copy.deepcopy(segmentation)], "iscrowd":0} class_name = via_data[key]["regions"][region]["region_attributes"]["building"] # add annotations annotation_obj["category_id"] = CATEGORIES_MAP[class_name] ## categories_map[class_name] annotations.append(annotation_obj) coco["categories"] = CATEGORIES coco["annotations"] = annotations coco["images"] = images with open(output_file, 'w') as fp: json.dump(coco, fp) print("Saving.", output_file) if __name__ == "__main__": inputfolder = "../data/deeproof-aug/" outfolder = "../data/deeproof-aug/" print("generating annotation for ", inputfolder) generate_annotation(inputfolder + "/test", outfolder + "/test")
import numpy as np import math from scipy.spatial import ConvexHull # "Cross" product as used in UBC-ACM def cross(p1, p2): return p1[0] * p2[1] - p1[1] * p2[0] # Euclidean distance between two points def point_distance(p1, p2): return np.linalg.norm(p1-p2) # Return the rotation of point A around P (default [0, 0]) by an # angle of theta (COUNTER-CLOCKWISE!) def point_rotation(theta, A, P = np.array([0, 0])): sin_t = np.sin(theta) cos_t = np.cos(theta) NP = np.array(A) - np.array(P) NP = np.array([NP[0] * cos_t - NP[1] * sin_t, NP[0] * sin_t + NP[1] * cos_t]) NP = NP + P return NP # Scale the vector PA with P FIXED by factor K # Returns a point A' such that the vector PA' is in the same direction of PA, # with its length multiplied by k def scale_vector(P, A, k): return (A-P)*k + P # Reflect around the X-axis (negate its y coordinate) def refX(point): return [point[0], -point[1]] # Reflect around the Y-axis (negate its x coordinate) def refY(point): return [-point[0], point[1]] # Scale point's coordinates by k def scale(point, k): return [point[0]* k, point[1]*k] # Shift/translate point by x and y coordinate def shift(point, x=0, y=0): return [point[0]+x, point[1]+y] # Value (in radians) of angle APB def angle_between(A, P, B): ap = np.sqrt(np.sum((A-P)**2)) pb = np.sqrt(np.sum((B-P)**2)) return math.acos(np.dot((A-P), (B-P))/(ap*pb)) # Returns true iff there are three collinear points in the set def check_collinearity(points): for a in range(len(points)): for b in range(len(points)): for c in range(len(points)): if (a == b or b == c or a == c): continue if (abs(angle_between(points[a], points[b], points[c])-pi)<0.000001): return True return False # Returns true iff pointset is convex. # NOTE: If there are three collinear points, it will be considered NOT convex. def are_convex(points): return len(points) == len(ConvexHull(points).vertices)
from flask import Flask, redirect, url_for app = Flask(__name__) from app.controllers import auth app.register_blueprint(blueprint=auth.page, url_prefix='/auth') from app.controllers import category app.register_blueprint(blueprint=category.page, url_prefix='') from app.controllers import course app.register_blueprint(blueprint=course.page, url_prefix='')
# Unicode CSV def unicode_csv_reader(unicode_csv_data, dialect=csv.excel, **kwargs): # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader(utf_8_encoder(unicode_csv_data), dialect=dialect, **kwargs) for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: yield [unicode(cell, 'utf-8') for cell in row] def utf_8_encoder(unicode_csv_data): for line in unicode_csv_data: yield line.encode('utf-8') # CSV to JSON for Django def csv2json(data, model, id_column=False, delim=','): data = unicode_csv_reader(data.splitlines(), delimiter=delim) # Get fields from header fields = data.next()[1:] if id_column else data.next() # Create entries dictionary pk = 0 entries = [] # Create entries for row in data: if id_column: pk = row.pop(0) else: pk += 1 entry = {} entry['pk'] = int(pk) entry['model'] = model entry['fields'] = dict(zip(fields, row)) # Convert to correct data types for key, value in entry['fields'].items(): entry['fields'][key] = int(value) if value.isdigit() else value.strip() if value == 'NULL': entry['fields'][key] = None # Append entry to entries list entries.append(entry) # Convert to JSON return json.dumps(entries, indent=4)
from django.template import RequestContext from django.shortcuts import render_to_response, redirect from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from rango.models import Category, Page, UserProfile from rango.forms import CategoryForm, PageForm, UserForm, UserProfileForm from rango.bing_search import run_query from datetime import datetime def urlswap(title): # changes spaces to underscores if ' ' in title: return title.replace(' ','_') return title.replace('_',' ') def get_category_list(): # get all categories cat_list = Category.objects.all() # decode category URLs for cat in cat_list: cat.url = urlswap(cat.name) # return list of category return cat_list def index(request): context = RequestContext(request) # get category list from helper function category_list = get_category_list() # get top viewed pages page_list = Page.objects.order_by('-views')[:5] context_dict = {'cat_list':category_list, 'pages':page_list} if request.session.get('last_visit'): # the session has value for the last visit last_visit_time = request.session.get('last_visit') visits = request.session.get('visits',0) if (datetime.now() - datetime.strptime(last_visit_time[:-7], "%Y-%m-%d %H:%M:%S")).days > 0: request.session['visits'] = visits + 1 request.session['last_visit'] = str(datetime.now()) else: # get returns None, and session does not have value for last visit request.session['last_visit'] = str(datetime.now()) request.session['visits'] = 1 # render and return rendered response back to user return render_to_response('rango/index.html', context_dict, context) def about(request): import random context = RequestContext(request) what = ['happy','clever','shy'] context_dict = {'what': random.choice(what)} # get category list context_dict['cat_list'] = get_category_list() # get number of visits from session context_dict['visits'] = request.session.get('visits') return render_to_response('rango/about.html', context_dict, context) def category(request, category_name_url): # obtain context from HTTP request context = RequestContext(request) result_list = [] if request.method == 'POST': query = request.POST['query'].strip() if query: # run our Bingp function to get the results list! result_list = run_query(query) # change underscores in the category to spaces category_name = urlswap(category_name_url) # create context dictionary we can pass to template rendering # we start by containing the name of category passed by user context_dict = {'category_name': category_name, 'category_name_url': category_name_url, 'result_list': result_list } # get category list context_dict['cat_list'] = get_category_list() try: # can we find category with given name? # if we can't, .get() method raises DoesNotExist exception # so .get() method returns one model instance or raise exception category = Category.objects.get(name=category_name) # retrieve all of associated pages. # note that filter returns >= 1 model instance pages = Page.objects.order_by('-views').filter(category=category) # adds our results list to the template context under name pages. context_dict['pages'] = pages # we also add category object from database to context dictionary # we'll use this in the template to verify that category exists. context_dict['category'] = category except Category.DoesNotExist: # we get here if we didn't find specified category. # don't do anything - template displays "no category" message pass # go render the response and return it to the client. return render_to_response('rango/category.html', context_dict, context) @login_required def add_category(request): # get context from the request context = RequestContext(request) # getting the cat list populated context_dict = {'cat_list': get_category_list()} # HTTP POST? if request.method == 'POST': form = CategoryForm(request.POST) # have we been provided with valid form? if form.is_valid(): # save new category to the database form.save(commit=True) # now call index() view # the user will be shown the homepage return index(request) else: # supplied form contained errors - just print them to terminal print form.errors else: # if request was not POST, display the form to enter details form = CategoryForm() context_dict['form'] = form # bad form (or form details), no form supplied.. # render the form with error messages (if any) return render_to_response('rango/add_category.html', context_dict, context) @login_required def add_page(request, category_name_url): context = RequestContext(request) category_name = urlswap(category_name_url) if request.method == 'POST': form = PageForm(request.POST) # check for valid form fields if form.is_valid(): # this time we can't commit straight away # not all fields are automatically populated page = form.save(commit=False) # retrieve the associated Category object so we can add it # wrap code in try block - check category actually exist try: cat = Category.objects.get(name=category_name) page.category = cat except Category.DoesNotExist: # if we get here, category does not exist # go back and render add category form as way of saying # category does not exist return render_to_response('rango/add_category.html', {}, context) # also create a default value for number of views page.views = 0 # with this we can save our new model instance page.save() # now that page is saved, display category instead return category(request, category_name_url) else: print form.errors else: form = PageForm() context_dict = {'category_name_url': category_name_url, 'category_name': category_name, 'form': form} # getting the cat list populated context_dict['cat_list'] = get_category_list() return render_to_response('rango/add_page.html', context_dict, context) @login_required def profile(request): context = RequestContext(request) context_dict = {'cat_list': get_category_list()} u = User.objects.get(username=request.user) try: up = UserProfile.objects.get(user=u) except: up = None context_dict['user'] = u context_dict['userprofile'] = up return render_to_response('rango/profile.html', context_dict, context) def track_url(request): context = RequestContext(request) url = '/rango/' # check for page_id if request.method == 'GET': if 'page_id' in request.GET: # get page_id page_id = request.GET['page_id'] try: # try to get page using page_id page = Page.objects.get(id=page_id) # increment page view page.views = page.views + 1 # get page url for redirection url = page.url # save new changes page.save() except Page.DoesNotExist: pass # redirect to url return redirect(url) def register(request): # like before, get request context context = RequestContext(request) # a boolean value for telling template whether registration was successful # set false initially. code changes value to true when registration succeed registered = False # if it's a HTTP POST, we're interested in processing form data if request.method == 'POST': # attempt to grab information from raw form information # note we make use of both UserForm and UserProfileForm user_form = UserForm(data=request.POST) profile_form = UserProfileForm(data=request.POST) # if two forms are valid... if user_form.is_valid() and profile_form.is_valid(): # save user's form data to the database user = user_form.save() # now we hash the password with set_password method # once hashed, we can update the user object user.set_password(user.password) user.save() # now sort out the UserProfile instance # since we need to set user attribute ourselvs we set commit=False # this delays saving model until ready to avoid integrity problems profile = profile_form.save(commit=False) profile.user = user # did the user provide a profile picture? # if so, we need to get it from input form, put it in UserProfile model if 'picture' in request.FILES: profile.picture = request.FILES['picture'] # now we save the UserProfile instance profile.save() # update our variable to tell template registration successful registered = True # invalid form or forms - mistakes or something else? # print problems to terminal # they'll be shown to user else: print user_form.errors, profile_form.errors # not a HTTP POST so we render our form using two ModelForm instances # these forms be blank, ready for user input else: user_form = UserForm() profile_form = UserProfileForm() # render the template depending on the context return render_to_response( 'rango/register.html', {'user_form': user_form, 'profile_form': profile_form, 'registered': registered}, context) def user_login(request): # like before get context for the user's request context = RequestContext(request) # context dictionary to be filled context_dict = {} # if request is HTTP POST, try pull out relevant information if request.method == 'POST': # gather username and password provided by user # this information is obtained from login form username = request.POST['username'] password = request.POST['password'] # use Django machinery to attempt to see the username/password # combination is valid - a User object is returned if it is user = authenticate(username=username, password=password) # if we have User object, details are correct # if none (Python's way of representing absence of value), no user # with matching credentials found if user: # is account active? it could been disabled if user.is_active: # if account is valid and active, we can log user in # we'll send user back to homepage login(request, user) url = '/rango/' if 'next' in request.POST: url = request.POST['next'] return redirect(url) else: # an inactive account was used - no logging in! context_dict['error'] = 'Your Rango account is disabled.' else: # bad login details were provided. so we can't log user in print "Invalid login details: {0}, {1}".format(username, password) context_dict['error'] = 'Invalid login details supplied.' # request is not a HTTP POST, so display login form # this scenario would most likely be HTTP GET #else: # this removed after exercises # no context variables to pass to template system, hence # blank dictionary object.. if 'next' in request.GET: context_dict['next'] = request.GET['next'] return render_to_response('rango/login.html', context_dict, context) @login_required def restricted(request): context = RequestContext(request) context_dict = {'message':"Since you're logged in, you can see this text!"} # getting the cat list populated context_dict['cat_list'] = get_category_list() return render_to_response('rango/restricted.html', context_dict, context) @login_required def user_logout(request): # since we know user is logged in, we can just log them out. logout(request) # take user back to homepage return redirect('/rango/') def search(request): context = RequestContext(request) result_list = [] if request.method == 'POST': query = request.POST['query'].strip() if query: # run our Bingp function to get the results list! result_list = run_query(query) # getting the cat list populated context_dict = {'cat_list': get_category_list(), 'result_list': result_list } return render_to_response('rango/search.html', context_dict, context)
from datetime import datetime from django.http import HttpResponse from django.shortcuts import render import requests from bs4 import BeautifulSoup from django.template.defaultfilters import safe from pytz import timezone import pandas as pd # Create your views here. # Grabs the text def get_text(company): page = requests.get('https://finance.yahoo.com/quote/' + company + '?p=' + company).text return page def home(request): result = '' # if we submit form then all attributes will be stored here if 'company' in request.GET: # Scraper for yahoo finance company = request.GET.get('company') page = get_text(company) soup = BeautifulSoup(page, 'html.parser') table = soup.find( class_='D(ib) W(1/2) Bxz(bb) Pend(12px) Va(t) ie-7_D(i) smartphone_D(b) smartphone_W(100%) smartphone_Pend(0px) ' 'smartphone_BdY smartphone_Bdc($seperatorColor)') table2 = soup.find(class_='D(ib) W(1/2) Bxz(bb) Pstart(12px) Va(t) ie-7_D(i) ie-7_Pos(a) smartphone_D(b) ' 'smartphone_W(100%) smartphone_Pstart(0px) smartphone_BdB smartphone_Bdc($seperatorColor)') # Current stock price (constantly changing) and EST date/time of retrieval current_stock_price = soup.find(class_='Trsdu(0.3s) Fw(b) Fz(36px) Mb(-4px) D(ib)').get_text() tz = timezone('EST') date_time = datetime.now(tz) # names is a list containing the names of the metric; # values is a list containing the values of the associated metric names = table.find_all(class_='C($primaryColor) W(51%)') values = table.find_all(class_='Ta(end) Fw(600) Lh(14px)') names2 = table2.find_all(class_='C($primaryColor) W(51%)') values2 = table2.find_all(class_='Ta(end) Fw(600) Lh(14px)') metric_names1 = [name.get_text() for name in names] metric_values1 = [value.get_text() for value in values] metric_names2 = [name2.get_text() for name2 in names2] metric_values2 = [value2.get_text() for value2 in values2] metric_names = metric_names1 + metric_names2 metric_values = metric_values1 + metric_values2 metric_names = ["Date and Time", "Current Stock Price"] + metric_names metric_values = [str(date_time), current_stock_price] + metric_values table_dict = {} for i in range(len(metric_names)): table_dict[metric_names[i]] = metric_values[i] # print(table_dict) stock_data = pd.DataFrame({ 'name': metric_names, 'value': metric_values }) result = stock_data.to_html(header=False, index=False) return render(request, 'main/results.html', {'result': result}) else: return render(request, 'main/home.html') def recApp(request): # We can likely put our algorithm for the recommendation system here # or in a helper method return render(request, 'main/recApp.html') def about(request): # Just render the html if we want an about page return render(request, 'main/about.html') def results(request): return render(request, 'main/results.html') def tickers(request): alphaResult = '' # Scraper for tickers page = requests.get('https://stockanalysis.com/stocks/') soup = BeautifulSoup(page.content, 'html.parser') table = soup.find(class_='no-spacing') tickers_companies = table.find_all("a") my_data =[tick.get_text().lower() for tick in tickers_companies] my_tickers = [data.partition('-')[0].strip() for data in my_data] my_companies = [data.partition('-')[2].strip() for data in my_data] ticker_table = pd.DataFrame({ 'ticker_symbol': my_tickers, 'company_name': my_companies }) if 'ticker' in request.GET: ticker = request.GET.get('ticker') result1 = ticker_table[ticker_table['company_name'] == ticker.lower()]['ticker_symbol'].to_string() # Only get the alpha characters for char in result1: if char.isalpha(): alphaResult += char return render(request, 'main/ticker.html', {'result': alphaResult})
def main(): name = 'Lijun' print('The name is', name) name = name + ' Red' print('New name is', name) main() def main(): count = 0 my_string = input('Enter a sentence: ') for ch in my_string: if ch=='T' or ch=='t': count +=1 print(f'Letter T appears {count} times.') main()
import socket s = socket.socket() s.connect(("localhost",3500)) str = input("Say Something : ") while str!="exit": s.send(str.encode()) data=s.recv(1024) data=data.decode() print("Server : ",data) s1=input("Enter response : ") s.send(s1.encode()) s.close()
# Generated by Django 3.2.4 on 2021-07-06 14:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pay', '0007_forms_made_by'), ] operations = [ migrations.AlterField( model_name='forms', name='made_on', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='forms', name='order_id', field=models.CharField(default=1, max_length=100, unique=True), preserve_default=False, ), ]
# Generated by Django 3.0.2 on 2020-04-02 09:14 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('obsapp', '0021_auto_20200401_1723'), ] operations = [ migrations.AddField( model_name='product', name='is_active', field=models.BooleanField(default=True), ), migrations.AlterField( model_name='notificationz', name='notificationtime', field=models.DateTimeField(default=datetime.datetime(2020, 4, 2, 14, 44, 15, 666344)), ), migrations.AlterField( model_name='requestexchange', name='datetimeofrequest', field=models.DateTimeField(default=datetime.datetime(2020, 4, 2, 14, 44, 15, 665343)), ), ]
import random import time palavras = ('casa', 'abelha', 'cachueira', 'porta', 'mesa', 'lixeira', 'cadeado', 'guarda') sorteio_palavras = random.choice(palavras) # Pegando palavras aleatorias letras = [] tentantiva = 5 acertou = False print('='*20 + ' JOGO DA FORCA ' + '='*20 + '\n') print('Sorteando um palavra...') time.sleep(1.5) # Criando um pequeno cronometro print(f'A palavra sorteada possui {len(sorteio_palavras)} letras\n') # Fazendo um for para substiruir as letras sortiadas por traços for i in range(0, len(sorteio_palavras)): letras.append('-') # Laço de repetição que executara enquanto while acertou == False: enter_letras = str(input('Entre com uma letra: ')) # Pecorre a palavra sorteada e inserir a letra acertada for i in range(0, len(sorteio_palavras)): if enter_letras == sorteio_palavras[i]: letras[i] = enter_letras print(letras[i]) acertou = True # Pecorre a palavra sorteada e conpara se ainda existe algum taço # Caso tenha contunua o laço for x in range(0, len(sorteio_palavras)): if letras[x] == '-': acertou = False # OBS -> Ao entra nessas linhas do codigo a intenção é que a cada letra errada o numero de # tentativas seja - 1, o que realmente acontece, porem tambem as tentativas estão sendo subtraidas # caso a letra estejam certas. if enter_letras == sorteio_palavras: tentantiva = tentantiva else: print(f'Você possui {tentantiva} Tentativas.') tentantiva -= 1 # Comparando as tentativas if tentantiva <= 0: print('enforcado') print(letras) break
import json import pytest from share.transform.chain import ctx from share.transformers.v1_push import V1Transformer class TestV1Transformer: @pytest.mark.parametrize('input, expected', [ ({ "contributors": [{ "name": "Roger Movies Ebert", "sameAs": ["https://osf.io/thing"], "familyName": "Ebert", "givenName": "Roger", "additionalName": "Danger", "email": "rogerebert@example.com" }, { "name": "Roger Madness Ebert" }], "languages": ["eng"], "description": "This is a thing", "providerUpdatedDateTime": "2014-12-12T00:00:00Z", "freeToRead": { "startDate": "2014-09-12", "endDate": "2014-10-12" }, "licenses": [{ "uri": "http://www.mitlicense.com", "startDate": "2014-10-12T00:00:00Z", "endDate": "2014-11-12T00:00:00Z" }], "publisher": { "name": "Roger Ebert Inc", "email": "roger@example.com" }, "sponsorships": [{ "award": { "awardName": "Participation", "awardIdentifier": "http://example.com" }, "sponsor": { "sponsorName": "Orange", "sponsorIdentifier": "http://example.com/orange" } }], "title": "Interesting research", "version": {"versionId": "someID"}, "uris": { "canonicalUri": "http://example.com/document1", "providerUris": [ "http://example.com/document1uri1", "http://example.com/document1uri2" ] } }, { '@type': 'creativework', 'date_updated': '2014-12-12T00:00:00+00:00', 'description': 'This is a thing', 'language': 'eng', 'identifiers': [ {'@type': 'workidentifier', 'uri': 'http://example.com/document1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri2'}, ], 'related_agents': [{ '@type': 'creator', 'cited_as': 'Roger Movies Ebert', 'order_cited': 0, 'agent': { '@type': 'person', 'name': 'Roger Movies Ebert', 'related_agents': [], 'identifiers': [ {'@type': 'agentidentifier', 'uri': 'http://osf.io/thing'}, {'@type': 'agentidentifier', 'uri': 'mailto:rogerebert@example.com'} ], }, }, { '@type': 'creator', 'cited_as': 'Roger Madness Ebert', 'order_cited': 1, 'agent': { '@type': 'person', 'name': 'Roger Madness Ebert', 'related_agents': [], 'identifiers': [] } }, { '@type': 'publisher', 'cited_as': 'Roger Ebert Inc', 'agent': { '@type': 'organization', 'name': 'Roger Ebert Inc', 'related_agents': [], 'identifiers': [ {'@type': 'agentidentifier', 'uri': 'mailto:roger@example.com'}, ] } }, { '@type': 'funder', 'awards': [ { '@type': 'throughawards', 'award': {'@type': 'award', 'name': 'Participation', 'uri': 'http://example.com'} } ], 'cited_as': 'Orange', 'agent': { '@type': 'organization', 'name': 'Orange', 'identifiers': [ {'@type': 'agentidentifier', 'uri': 'http://example.com/orange'}, ] } }], 'subjects': [], 'tags': [], 'title': 'Interesting research', }), ({ "contributors": [], "languages": ["eng"], "description": "This is a thing", "providerUpdatedDateTime": "2014-12-12T00:00:00Z", "title": "Interesting research", "uris": { "canonicalUri": "http://example.com/document1", "providerUris": [ "http://example.com/document1uri1", "http://example.com/document1uri2", "http://example.com/document1uri2", 'http://example.com/document1', ] } }, { '@type': 'creativework', 'date_updated': '2014-12-12T00:00:00+00:00', 'description': 'This is a thing', 'language': 'eng', 'identifiers': [ {'@type': 'workidentifier', 'uri': 'http://example.com/document1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri2'}, ], 'related_agents': [], 'subjects': [], 'tags': [], 'title': 'Interesting research', }), ({ "contributors": [], "languages": ["eng"], "description": "This is a thing", "providerUpdatedDateTime": "2014-12-12T00:00:00Z", "title": "Interesting research", "otherProperties": [{"name": "status", "properties": {"status": "deleted"}}], "uris": { "canonicalUri": "http://example.com/document1", "providerUris": [ 'http://example.com/document1', "http://example.com/document1uri1", "http://example.com/document1uri2", "http://example.com/document1uri2", ] } }, { '@type': 'creativework', 'date_updated': '2014-12-12T00:00:00+00:00', 'description': 'This is a thing', 'is_deleted': True, 'language': 'eng', 'identifiers': [ {'@type': 'workidentifier', 'uri': 'http://example.com/document1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri1'}, {'@type': 'workidentifier', 'uri': 'http://example.com/document1uri2'}, ], 'related_agents': [], 'subjects': [], 'tags': [], 'title': 'Interesting research', }) ]) def test_normalize(self, input, expected): ctx.clear() _, root_ref = V1Transformer({}).do_transform(json.dumps(input), clean_up=False) actual = self.reconstruct(ctx.pool.pop(root_ref)) assert expected == actual def reconstruct(self, document, extra=False): for key, val in tuple(document.items()): if isinstance(val, dict) and key != 'extra': related = ctx.pool.pop(val, None) if related: document[key] = self.reconstruct(related, extra=extra) else: document.pop(key) if isinstance(val, list): document[key] = [self.reconstruct(ctx.pool.pop(v), extra=extra) for v in val] del document['@id'] if not extra: document.pop('extra', None) return document
import multiprocessing import platform import subprocess import sys import os from conans.model.version import Version from conans.util.log import logger from conans.client.tools import which _global_output = None def args_to_string(args): if not args: return "" if sys.platform == 'win32': return subprocess.list2cmdline(args) else: return " ".join("'" + arg.replace("'", r"'\''") + "'" for arg in args) def cpu_count(): try: env_cpu_count = os.getenv("CONAN_CPU_COUNT", None) return int(env_cpu_count) if env_cpu_count else multiprocessing.cpu_count() except NotImplementedError: _global_output.warn("multiprocessing.cpu_count() not implemented. Defaulting to 1 cpu") return 1 # Safe guess def detected_architecture(): # FIXME: Very weak check but not very common to run conan in other architectures if "64" in platform.machine(): return "x86_64" elif "86" in platform.machine(): return "x86" return None # DETECT OS, VERSION AND DISTRIBUTIONS class OSInfo(object): """ Usage: (os_info.is_linux) # True/False (os_info.is_windows) # True/False (os_info.is_macos) # True/False (os_info.is_freebsd) # True/False (os_info.is_solaris) # True/False (os_info.linux_distro) # debian, ubuntu, fedora, centos... (os_info.os_version) # 5.1 (os_info.os_version_name) # Windows 7, El Capitan if os_info.os_version > "10.1": pass if os_info.os_version == "10.1.0": pass """ def __init__(self): self.os_version = None self.os_version_name = None self.is_linux = platform.system() == "Linux" self.linux_distro = None self.is_windows = platform.system() == "Windows" self.is_macos = platform.system() == "Darwin" self.is_freebsd = platform.system() == "FreeBSD" self.is_solaris = platform.system() == "SunOS" if self.is_linux: import distro self.linux_distro = distro.id() self.os_version = Version(distro.version()) version_name = distro.codename() self.os_version_name = version_name if version_name != "n/a" else "" if not self.os_version_name and self.linux_distro == "debian": self.os_version_name = self.get_debian_version_name(self.os_version) elif self.is_windows: self.os_version = self.get_win_os_version() self.os_version_name = self.get_win_version_name(self.os_version) elif self.is_macos: self.os_version = Version(platform.mac_ver()[0]) self.os_version_name = self.get_osx_version_name(self.os_version) elif self.is_freebsd: self.os_version = self.get_freebsd_version() self.os_version_name = "FreeBSD %s" % self.os_version elif self.is_solaris: self.os_version = Version(platform.release()) self.os_version_name = self.get_solaris_version_name(self.os_version) @property def with_apt(self): return self.is_linux and self.linux_distro in \ ("debian", "ubuntu", "knoppix", "linuxmint", "raspbian") @property def with_yum(self): return self.is_linux and self.linux_distro in \ ("centos", "redhat", "fedora", "pidora", "scientific", "xenserver", "amazon", "oracle", "rhel") @property def with_pacman(self): if self.is_linux: return self.linux_distro == "arch" elif self.is_windows and which('uname.exe'): uname = subprocess.check_output(['uname.exe', '-s']).decode() return uname.startswith('MSYS_NT') and which('pacman.exe') return False @staticmethod def get_win_os_version(): """ Get's the OS major and minor versions. Returns a tuple of (OS_MAJOR, OS_MINOR). """ import ctypes class _OSVERSIONINFOEXW(ctypes.Structure): _fields_ = [('dwOSVersionInfoSize', ctypes.c_ulong), ('dwMajorVersion', ctypes.c_ulong), ('dwMinorVersion', ctypes.c_ulong), ('dwBuildNumber', ctypes.c_ulong), ('dwPlatformId', ctypes.c_ulong), ('szCSDVersion', ctypes.c_wchar * 128), ('wServicePackMajor', ctypes.c_ushort), ('wServicePackMinor', ctypes.c_ushort), ('wSuiteMask', ctypes.c_ushort), ('wProductType', ctypes.c_byte), ('wReserved', ctypes.c_byte)] os_version = _OSVERSIONINFOEXW() os_version.dwOSVersionInfoSize = ctypes.sizeof(os_version) retcode = ctypes.windll.Ntdll.RtlGetVersion(ctypes.byref(os_version)) if retcode != 0: return None return Version("%d.%d" % (os_version.dwMajorVersion, os_version.dwMinorVersion)) @staticmethod def get_debian_version_name(version): if not version: return None elif version.major() == "8.Y.Z": return "jessie" elif version.major() == "7.Y.Z": return "wheezy" elif version.major() == "6.Y.Z": return "squeeze" elif version.major() == "5.Y.Z": return "lenny" elif version.major() == "4.Y.Z": return "etch" elif version.minor() == "3.1.Z": return "sarge" elif version.minor() == "3.0.Z": return "woody" @staticmethod def get_win_version_name(version): if not version: return None elif version.major() == "5.Y.Z": return "Windows XP" elif version.minor() == "6.0.Z": return "Windows Vista" elif version.minor() == "6.1.Z": return "Windows 7" elif version.minor() == "6.2.Z": return "Windows 8" elif version.minor() == "6.3.Z": return "Windows 8.1" elif version.minor() == "10.0.Z": return "Windows 10" @staticmethod def get_osx_version_name(version): if not version: return None elif version.minor() == "10.13.Z": return "High Sierra" elif version.minor() == "10.12.Z": return "Sierra" elif version.minor() == "10.11.Z": return "El Capitan" elif version.minor() == "10.10.Z": return "Yosemite" elif version.minor() == "10.9.Z": return "Mavericks" elif version.minor() == "10.8.Z": return "Mountain Lion" elif version.minor() == "10.7.Z": return "Lion" elif version.minor() == "10.6.Z": return "Snow Leopard" elif version.minor() == "10.5.Z": return "Leopard" elif version.minor() == "10.4.Z": return "Tiger" elif version.minor() == "10.3.Z": return "Panther" elif version.minor() == "10.2.Z": return "Jaguar" elif version.minor() == "10.1.Z": return "Puma" elif version.minor() == "10.0.Z": return "Cheetha" @staticmethod def get_freebsd_version(): return platform.release().split("-")[0] @staticmethod def get_solaris_version_name(version): if not version: return None elif version.minor() == "5.10": return "Solaris 10" elif version.minor() == "5.11": return "Solaris 11" def cross_building(settings, self_os=None, self_arch=None): self_os = self_os or platform.system() self_arch = self_arch or detected_architecture() os_setting = settings.get_safe("os") arch_setting = settings.get_safe("arch") platform_os = {"Darwin": "Macos"}.get(self_os, self_os) if os_setting and platform_os != os_setting: return True if arch_setting and self_arch != arch_setting: return True return False try: os_info = OSInfo() except Exception as exc: logger.error(exc) _global_output.error("Error detecting os_info")
import os import numpy from pydub import AudioSegment if __name__ == '__main__': audioPath = 'D:/PythonProjects_Data/CMU_MOSEI/WAV_16000/' labelPath = 'D:/PythonProjects_Data/CMU_MOSEI/Step1_StartEndCut/' savePath = 'D:/PythonProjects_Data/CMU_MOSEI/Step2_AudioCut/' if not os.path.exists(savePath): os.makedirs(savePath) for fileName in os.listdir(labelPath): print('Treating', fileName) startEndTicket = numpy.reshape( numpy.genfromtxt(fname=os.path.join(labelPath, fileName), dtype=float, delimiter=','), [-1, 3]) wavFile = AudioSegment.from_file(file=os.path.join(audioPath, fileName.replace('csv', 'wav'))) for counter in range(numpy.shape(startEndTicket)[0]): wavFile[int(startEndTicket[counter][-2] * 1000):int(startEndTicket[counter][-1] * 1000)].export( os.path.join(savePath, fileName.replace('.csv', '_%02d.wav' % counter)), format='wav') # exit()
""" Crie um programa que leia vários números inteiros pelo teclado. O programa só vai parar quando o usuário digitar o valor 999, que é a condição de parada. No final, mostre quantos números foram digitados e qual foi a soma entre eles. """ n = c = s = 0 while True: n = int(input('Digite um número: ')) if n == 999: break c += 1 s += n print(f'A soma dos {c} números vale {s}')
# This is the api for object oriented interface import numpy as np from math import pi from scipy import interpolate # The function assumes uniform field def curl_2D(ufield, vfield, clat, dlambda, dphi, planet_radius=6.378e+6): """ Assuming regular latitude and longitude [in degree] grid, compute the curl of velocity on a pressure level in spherical coordinates. """ ans = np.zeros_like((ufield)) ans[1:-1, 1:-1] = (vfield[1:-1, 2:] - vfield[1:-1, :-2])/(2.*dlambda) - \ (ufield[2:, 1:-1] * clat[2:, np.newaxis] - ufield[:-2, 1:-1] * clat[:-2, np.newaxis])/(2.*dphi) ans[0, :] = 0.0 ans[-1, :] = 0.0 ans[1:-1, 0] = ((vfield[1:-1, 1] - vfield[1:-1, -1]) / (2. * dlambda) - (ufield[2:, 0] * clat[2:] - ufield[:-2, 0] * clat[:-2]) / (2. * dphi)) ans[1:-1, -1] = ((vfield[1:-1, 0] - vfield[1:-1, -2]) / (2. * dlambda) - (ufield[2:, -1] * clat[2:] - ufield[:-2, -1] * clat[:-2]) / (2. * dphi)) ans[1:-1, :] = ans[1:-1, :] / planet_radius / clat[1:-1, np.newaxis] return ans class BarotropicField(object): """ An object that deals with barotropic (2D) wind and/or PV fields :param xlon: Longitude array in degree with dimension *nlon*. :type xlon: sequence of array_like :param ylat: Latitutde array in degree, monotonically increasing with dimension *nlat* :type ylat: sequence of array_like :param area: Differential area at each lon-lat grid points with dimension (nlat,nlon). If 'area=None': it will be initiated as area of uniform grid (in degree) on a spherical surface. :type area: sequence of array_like :param dphi: Differential length element along the lat grid with dimension nlat. :type dphi: sequence of array_like :param pv_field: Absolute vorticity field with dimension [nlat x nlon]. If 'pv_field=None': pv_field is expected to be computed with u,v,t field. :type pv_field: sequence of array_like :returns: an instance of the object BarotropicField :example: >>> barofield1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) """ def __init__(self, xlon, ylat, pv_field, area=None, dphi=None, n_partitions=None, planet_radius=6.378e+6): """Create a windtempfield object. **Arguments:** *xlon* Longitude array in degree with dimension [nlon]. *ylat* Latitutde array in degree, monotonically increasing with dimension [nlat]. *area* Differential area at each lon-lat grid points with dimension [nlat x nlon]. If None, it will be initiated as: 2.*pi*Earth_radius**2 *(np.cos(ylat[:,np.newaxis]*pi/180.)*dphi)/float(nlon) * np.ones((nlat,nlon)). This would be problematic if the grids are not uniformly distributed in degree. *dphi* Differential length element along the lat grid with dimension nlat. *pv_field* Absolute vorticity field with dimension [nlat x nlon]. If none, pv_field is expected to be computed with u,v,t field. """ self.xlon = xlon self.ylat = ylat self.clat = np.abs(np.cos(np.deg2rad(ylat))) self.nlon = xlon.size self.nlat = ylat.size self.planet_radius = planet_radius if dphi is None: self.dphi = pi/(self.nlat-1) * np.ones((self.nlat)) else: self.dphi = dphi if area is None: self.area = 2.*pi*planet_radius**2*(np.cos(ylat[:, np.newaxis]*pi/180.)*self.dphi[:, np.newaxis])/float(self.nlon)*np.ones((self.nlat, self.nlon)) else: self.area = area self.pv_field = pv_field if n_partitions is None: self.n_partitions = self.nlat else: self.n_partitions = n_partitions def equivalent_latitudes(self): """ Compute equivalent latitude with the *pv_field* stored in the object. :returns: an numpy array with dimension (nlat) of equivalent latitude array. :example: >>> barofield1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) >>> eqv_lat = barofield1.equivalent_latitudes() """ from hn2016_falwa import basis pv_field = self.pv_field area = self.area ylat = self.ylat planet_radius = self.planet_radius self.eqvlat, dummy = basis.eqvlat(ylat, pv_field, area, self.n_partitions, planet_radius=planet_radius) return self.eqvlat def lwa(self): """ Compute the finite-amplitude local wave activity based on the *equivalent_latitudes* and the *pv_field* stored in the object. :returns: an 2-D numpy array with dimension (nlat,nlon) of local wave activity values. :example: >>> barofield1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) >>> eqv_lat = barofield1.equivalent_latitudes() # This line is optional >>> lwa = barofield1.lwa() """ from hn2016_falwa import basis if self.eqvlat is None: self.eqvlat = self.equivalent_latitudes(self) lwa_ans, dummy = basis.lwa(self.nlon, self.nlat, self.pv_field, self.eqvlat, self.planet_radius * self.clat * self.dphi) return lwa_ans # === Next is a class of 3D objects === class QGField(object): """ An object that deals with barotropic (2D) wind and/or PV fields :param xlon: Longitude array in degree with dimension (*nlon*). :type xlon: sequence of array_like :param ylat: Latitutde array in degree, monotonically increasing with dimension (*nlat*) :type ylat: sequence of array_like :param zlev: Pseudoheight array in meters, monotonically increasing with dimension (*nlev*) :type zlev: sequence of array_like :param u_field: Zonal wind field in meters, with dimension (*nlev*,*nlat*,*nlon*). :type u_field: sequence of array_like :param v_field: Meridional wind field in meters, with dimension (*nlev*,*nlat*,*nlon*). :type v_field: sequence of array_like :param t_field: Temperature field in Kelvin, with dimension (*nlev*,*nlat*,*nlon*). :type t_field: sequence of array_like :param qgpv_field: Quasi-geostrophic potential vorticity field in 1/second, with dimension (*nlev*,*nlat*,*nlon*). If u_field, v_field and t_field are input, qgpv_field can be using the method compute_qgpv. :type qgpv_field: sequence of array_like :param area: Differential area at each lon-lat grid points with dimension (*nlat*,*nlon*). If 'area=None': it will be initiated as area of uniform grid (in degree) on a spherical surface. :type area: sequence of array_like :param dphi: Differential length element along the lat grid with dimension (*nlat*). :type dphi: sequence of array_like :param pv_field: Absolute vorticity field with dimension [nlat x nlon]. If 'pv_field=None': pv_field is expected to be computed with u,v,t field. :type pv_field: sequence of array_like :returns: an instance of the object BarotropicField :example: >>> qgfield1 = QGField(xlon, ylat, np.array([240.]), u, qgpv_field=QGPV) """ def __init__(self, xlon, ylat, zlev, u_field, v_field=None, t_field=None, qgpv_field=None, area=None, dphi=None, n_partitions=None, rkappa=287./1004., planet_radius=6.378e+6, scale_height=7000.): """Create a windtempfield object. **Arguments:** *xlon* Longitude array in degree with dimension [nlon]. *ylat* Latitutde array in degree, monotonically increasing with dimension [nlat]. *zlev* Pseudoheight array in meters, monotonically increasing with dimension [nlev]. *u_field* Zonal wind field in meters, with dimension [nlev x nlat x nlon]. *v_field* Meridional wind field in meters, with dimension [nlev x nlat x nlon]. *t_field* Temperature field in Kelvin, with dimension [nlev x nlat x nlon]. *qgpv_field* Quasi-geostrophic potential vorticity field in 1/second, with dimension [nlev x nlat x nlon]. If u_field, v_field and t_field are input, qgpv_field can be using the method compute_qgpv. *area* Differential area at each lon-lat grid points with dimension [nlat x nlon]. If None, it will be initiated as: 2.*pi*Earth_radius**2 *(np.cos(ylat[:,np.newaxis]*pi/180.)*dphi)/float(nlon) * np.ones((nlat,nlon)). This would be problematic if the grids are not uniformly distributed in degree. *dphi* Differential length element along the lat grid with dimension nlat. *n_partitions* Number of partitions used to compute equivalent latitude. If not given, it will be assigned nlat. """ self.xlon = xlon self.ylat = ylat self.zlev = zlev self.clat = np.abs(np.cos(np.deg2rad(ylat))) self.nlon = xlon.size self.nlat = ylat.size self.nlev = zlev.size self.planet_radius = planet_radius if dphi is None: self.dphi = pi/(self.nlat-1) * np.ones((self.nlat)) else: self.dphi = dphi if area is None: self.area = 2.*pi*planet_radius**2*(np.cos(ylat[:, np.newaxis]*pi/180.)*self.dphi[:, np.newaxis])/float(self.nlon)*np.ones((self.nlat, self.nlon)) else: self.area = area self.qgpv_field = qgpv_field if n_partitions is None: self.n_partitions = self.nlat else: self.n_partitions = n_partitions # First, check if the qgpv_field is present print('check self.qgpv_field') # print self.qgpv_field if (qgpv_field is None) & (v_field is None): raise ValueError('qgpv_field is missing.') elif (qgpv_field is None): print('Compute QGPV field from u and v field.') # === Obtain potential temperature field === if t_field: self.pt_field = t_field[:, :, :] * \ np.exp(rkappa * zlev[:, np.newaxis, np.newaxis]/scale_height) # Interpolation f_Thalf = interpolate.interp1d(zlev, self.pt_field.mean(axis=-1), axis=0) zlev_half = np.array([zlev[0] + 0.5*(zlev[1]-zlev[0])]*i \ for i in range(zlev.size * 2 + 1)) self.pt_field_half = f_Thalf(zlev_half) # dim = [2*nlev+1,nlat] print('self.pt_field_half.shape') print(self.pt_field_half.shape) def equivalent_latitudes(self, domain_size='half_globe'): # Has to be changed since it is qgpv. # Use half-globe? """ Compute equivalent latitude with the *pv_field* stored in the object. :param domain_size: domain of grids to be used to compute equivalent latitude. It can he 'half_globe' or 'full_globe'. :type domain_size: string :returns: an numpy array with dimension (*nlev*,*nlat*) of equivalent latitude array. :example: >>> qgfield1 = QGField(xlon, ylat, np.array([240.]), u, qgpv_field=QGPV) >>> qgfield_eqvlat = qgfield1.equivalent_latitudes(domain_size='half_globe') """ def eqv_lat_core(ylat, vort, area, n_points): vort_min = np.min([vort.min(), vort.min()]) vort_max = np.max([vort.max(), vort.max()]) q_part_u = np.linspace(vort_min, vort_max, n_points, endpoint=True) aa = np.zeros(q_part_u.size) # to sum up area vort_flat = vort.flatten() # Flatten the 2D arrays to 1D area_flat = area.flatten() # Find equivalent latitude: inds = np.digitize(vort_flat, q_part_u) for i in np.arange(0, aa.size): # Sum up area in each bin aa[i] = np.sum(area_flat[np.where(inds == i)]) aq = np.cumsum(aa) y_part = aq/(2*pi*planet_radius**2) - 1.0 lat_part = np.arcsin(y_part)*180/pi q_part = np.interp(ylat, lat_part, q_part_u) return q_part area = self.area ylat = self.ylat planet_radius = self.planet_radius self.eqvlat = np.zeros((self.nlev, self.nlat)) for k in range(self.nlev): pv_field = self.qgpv_field[k, ...] if domain_size == 'half_globe': nlat_s = int(self.nlat/2) qref = np.zeros(self.nlat) # --- Southern Hemisphere --- # qref1 = eqv_lat_core(ylat[:nlat_s],vort[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=planet_radius) qref[:nlat_s] = eqv_lat_core(ylat[:nlat_s], pv_field[:nlat_s,:], area[:nlat_s, :], nlat_s) # --- Northern Hemisphere --- pv_field_inverted = -pv_field[::-1, :] # Added the minus sign, but gotta see if NL_North is affected qref2 = eqv_lat_core(ylat[:nlat_s], pv_field_inverted[:nlat_s,:], area[:nlat_s, :], nlat_s) #qref2 = eqvlat(ylat[:nlat_s],vort2[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=planet_radius) qref[-nlat_s:] = -qref2[::-1] elif domain_size == 'full_globe': qref = eqv_lat_core(ylat, pv_field, area, self.nlat, planet_radius=planet_radius) else: raise ValueError('Domain size is not properly specified.') self.eqvlat[k, :] = qref return self.eqvlat def lwa(self): """ Compute the finite-amplitude local wave activity on each pseudoheight layer based on the *equivalent_latitudes* and the *qgpv_field* stored in the object. :returns: an 3-D numpy array with dimension (*nlev*,*nlat*,*nlon*) of local wave activity values. :example: >>> qgfield = QGField(xlon, ylat, np.array([240.]), u, qgpv_field=QGPV) >>> qgfield_lwa = qgfield.lwa() """ try: self.eqvlat except: self.eqvlat = self.equivalent_latitudes(domain_size='half_globe') lwact = np.zeros((self.nlev, self.nlat, self.nlon)) for k in range(self.nlev): pv_field = self.qgpv_field[k, :, :] for j in np.arange(0, self.nlat-1): vort_e = pv_field[:, :]-self.eqvlat[k, j] vort_boo = np.zeros((self.nlat, self.nlon)) vort_boo[np.where(vort_e[:, :] < 0)] = -1 vort_boo[:j+1, :] = 0 vort_boo[np.where(vort_e[:j+1, :] > 0)] = 1 lwact[k, j, :] = np.sum(vort_e*vort_boo * self.planet_radius * self.clat[:, np.newaxis] * self.dphi[:, np.newaxis], axis=0) return lwact def main(): from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt # === List of tests === test_2D = False test_3D = True # === Testing the 2D object === if test_2D: data_path = '../examples/barotropic_vorticity.nc' readFile = Dataset(data_path, mode='r') abs_vorticity = readFile.variables['absolute_vorticity'][:] xlon = np.linspace(0, 360., 512, endpoint=False) ylat = np.linspace(-90, 90., 256, endpoint=True) nlon = xlon.size nlat = ylat.size Earth_radius = 6.378e+6 dphi = (ylat[2]-ylat[1])*pi/180. area = 2.*pi*Earth_radius**2 * (np.cos(ylat[:, np.newaxis]*pi/180.) * dphi)/float(nlon) * np.ones((nlat, nlon)) cc1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) # area computed in the class assumed uniform grid # Compute equivalent latitudes cc1_eqvlat = cc1.equivalent_latitudes() # Compute equivalent latitudes cc1_lwa = cc1.lwa() # --- Color axis for plotting LWA --- # LWA_caxis = np.linspace(0, cc1_lwa.max(), 31, endpoint=True) # --- Plot the abs. vorticity field, LWA and equivalent-latitude relationship and LWA --- # fig = plt.subplots(figsize=(14, 4)) plt.subplot(1, 3, 1) # Absolute vorticity map c = plt.contourf(xlon, ylat, cc1.pv_field, 31) cb = plt.colorbar(c) cb.formatter.set_powerlimits((0, 0)) cb.ax.yaxis.set_offset_position('right') cb.update_ticks() plt.title('Absolute vorticity [1/s]') plt.xlabel('Longitude (degree)') plt.ylabel('Latitude (degree)') plt.subplot(1, 3, 2) # LWA (full domain) plt.contourf(xlon, ylat, cc1_lwa, LWA_caxis) plt.colorbar() plt.title('Local Wave Activity [m/s]') plt.xlabel('Longitude (degree)') plt.ylabel('Latitude (degree)') plt.subplot(1, 3, 3) # Equivalent-latitude relationship Q(y) plt.plot(cc1_eqvlat, ylat, 'b', label='Equivalent-latitude relationship') plt.plot(np.mean(cc1.pv_field, axis=1), ylat, 'g', label='zonal mean abs. vorticity') plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.ylim(-90, 90) plt.legend(loc=4, fontsize=10) plt.title('Equivalent-latitude profile') plt.ylabel('Latitude (degree)') plt.xlabel('Q(y) [1/s] | y = latitude') plt.tight_layout() plt.show() # === Testing the 2D object === if test_3D: print('Test QGField') u_QGPV_File = Dataset('../examples/u_QGPV_240hPa_2012Oct28to31.nc', mode='r') # --- Read in longitude and latitude arrays --- # xlon = u_QGPV_File.variables['longitude'][:] ylat = u_QGPV_File.variables['latitude'][:] clat = np.abs(np.cos(ylat*pi/180.)) # cosine latitude nlon = xlon.size nlat = ylat.size u = u_QGPV_File.variables['U'][0, ...] QGPV = u_QGPV_File.variables['QGPV'][0, ...] u_QGPV_File.close() print(u.shape) print(QGPV.shape) cc2 = QGField(xlon, ylat, np.array([240.]), u, qgpv_field=QGPV) # area computed in the class assumed uniform grid cc3 = cc2.lwa() print('cc3 shape') print(cc3.shape) # print 'test empty qgpv fields' # cc4 = QGField(xlon, ylat, np.array([240.]), u) plt.figure(figsize=(8, 3)) c = plt.contourf(xlon, ylat[80:], cc3[0, 80:, :], 31) cb = plt.colorbar(c) cb.formatter.set_powerlimits((0, 0)) cb.ax.yaxis.set_offset_position('right') cb.update_ticks() plt.title('Local Wave Activity at 240hPa [m/s]') plt.xlabel('Longitude (degree)') plt.ylabel('Latitude (degree)') plt.show() if __name__ == "__main__": main()
# Esta é uma tentativa de analisar o método de Newton via programação em python # Definir uma função import math def newton(f, flin, x0, epsilon, maxIter=50): if math.fabs(f(x0))<= epsilon: return x0 print("k \t x0 \t\t f(x0)") k=1 while k<=maxIter: x1=x0-f(x0)/flin(x0) print(" %d \t %e \t %e"%(k,x1,f(x1))) if math.fabs(f(x1))<= epsilon: return x1 x0 = x1 k = k+1 print("ERRO:Número máximo de interações atingido") return x1 if __name__ == "__main__": def f(x): return 5*x**5 - 2*x**4 + 3*x**2 - 8*x - 10 def flin(x): return 25*x**4 - 8*x**3 + 6*x - 8 raiz = newton(f, flin, 1.5, 0.001) print(raiz)
# Simple extended BCubed implementation in Python for clustering evaluation # Copyright 2020 Hugo Hromic, Chris Bowdon # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Extended BCubed algorithm taken from: # Amigo, Enrique, et al. "A comparison of extrinsic clustering evaluation metrics # based on formal constraints." Information retrieval 12.4 (2009): 461-486. """Generate extended BCubed evaluation for clustering.""" """Parallelized versions of functions in bcubed.extended.""" import numpy from multiprocessing import Pool, cpu_count from itertools import repeat from .extended import mult_precision, mult_recall def _p(el1, cdict, ldict): return numpy.mean([mult_precision(el1, el2, cdict, ldict) for el2 in cdict if cdict[el1] & cdict[el2]]) def _r(el1, cdict, ldict): return numpy.mean([mult_recall(el1, el2, cdict, ldict) for el2 in cdict if ldict[el1] & ldict[el2]]) def parallel(function, cdict, ldict, n_processes=None): if n_processes is None: n_processes = max(1, cpu_count() - 2) with Pool(n_processes) as pool: return pool.starmap(function, zip(cdict.keys(), repeat(cdict), repeat(ldict))) def precision(cdict, ldict, n_processes=None): """Computes overall extended BCubed precision for the C and L dicts using multiple processes for parallelism. Parameters ========== cdict: dict(item: set(cluster-ids)) The cluster assignments to be evaluated ldict: dict(item: set(cluster-ids)) The ground truth clustering n_processes: optional integer Number of processes to use (defaults to number of CPU cores - 1) """ p_per_el = parallel(_p, cdict, ldict, n_processes) return numpy.mean(p_per_el) def recall(cdict, ldict, n_processes=None): """Computes overall extended BCubed recall for the C and L dicts using multiple processes for parallelism. Parameters ========== cdict: dict(item: set(cluster-ids)) The cluster assignments to be evaluated ldict: dict(item: set(cluster-ids)) The ground truth clustering n_processes: optional integer Number of processes to use (defaults to number of CPU cores - 1) """ r_per_el = parallel(_r, cdict, ldict, n_processes) return numpy.mean(r_per_el)
import andrimne.config as config import andrimne.logger as logger from andrimne.timer import Timer import logging import sys def main(): timer = Timer() config.read_main_configuration() logger.configure() steps = map(step_import, read_modules()) successful = True for step in steps: print_progress() logger.log_step(step.__name__) if not execute_step(step): successful = False break log_run_completed(successful, timer) sys.exit(0 if successful else 1) def print_progress(): if config.read_or_default('verbosity', 'verbose') == 'verbose': sys.stdout.write('.') def execute_step(step): # noinspection PyBroadException try: result = step.run() if result is None or result is True or result == 0: return True except Exception as e: logging.error(e) return False def log_run_completed(successful, timer): if successful: logging.info('DONE! elapsed time was {}'.format(timer.elapsed())) else: logging.warning('ABORTED! elapsed time was {}'.format(timer.elapsed())) def read_modules(): logging.debug('reading step modules') return config.read('step_modules') def step_import(module_name): logging.debug('importing step \'{}\''.format(module_name)) return __import__('andrimne.steps.{}'.format(module_name), fromlist='andrimne.steps') if __name__ == '__main__': main()
def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ if len(nums) == 0: return [] arr = [] for idx in range(0, len(nums)-1): for val in range(idx+1,len(nums)-1): if nums[idx]+nums[val] == target: arr.append(idx) arr.append(val) return arr
#!/usr/bin/python # -*- coding: utf-8 -*- # @author: yan def hoemwork1(): dictionary = { 'good':'of a favorable character or tendenc', 'none': 'not any such thing or person', 'nice': 'very beautiful' } #长度 print len(dictionary) #keys print dictionary.keys() #values print dictionary.values() #是否在 print dictionary.has_key('good') print dictionary.has_key('bad') #add dictionary['bad'] = 'not very good' #modify dictionary['bad'] = 'failing to reach an acceptable standard' #delete del dictionary['bad'] print dictionary print len(dictionary) #get value print '---------' print dictionary['good'] if dictionary.has_key('bad'): print dictionary['bad'] else: print '没有bad这个词' print '----------' #iterator for key in dictionary.keys(): print key print dictionary[key] print '----------------' def homework2(): print '老爸在看一本英文书' dictionary = { 'abandon':'to give up to the control or influence of another person or agent', 'abase':'to lower in rank, office, prestige, or esteem', 'abash':'to destroy the self-possession or self-confidence of' } print '老爸先查了一个单词 "etiquette"' if dictionary.has_key('etiquette'): print 'etiquette 的意思是 %s' % (dictionary['etiquette']) else: print '老爸没有查到etiquette的意思' del dictionary['abandon'] print '老爸怒了,把含有 "abandon" 一页的单词撕掉了' print '-----------' print '老爸又查了一个单词"abase"' if dictionary.has_key('abase'): print 'abase 的意思是 %s' % (dictionary['abase']) dictionary['abadon'] = 'to give up to the control or influence of another person or agent' print '老爸很开心,又把 "abandon" 加入到了字典里' else: print '老爸没有查到abase的意思' if __name__ == '__main__': hoemwork1() homework2()
from extensions import registry from maltego_trx.entities import Phrase from maltego_trx.maltego import MaltegoMsg, MaltegoTransform from maltego_trx.overlays import OverlayPosition, OverlayType from maltego_trx.transform import DiscoverableTransform @registry.register_transform(display_name="Overlay Example", input_entity="maltego.Person", description='Returns a phrase with overlays on the graph.', output_entities=["maltego.Phrase"]) class OverlayExample(DiscoverableTransform): @classmethod def create_entities(cls, request: MaltegoMsg, response: MaltegoTransform): person_name = request.Value entity = response.addEntity(Phrase, f"Hi {person_name}, nice to meet you!") # Normally, when we create an overlay, we would reference a property name so that Maltego can then use the # value of that property to create the overlay. Sometimes that means creating a dynamic property, but usually # it's better to either use an existing property, or, if you created the Entity yourself, and only need the # property for the overlay, to use a hidden property. Here's an example of using a dynamic property: entity.addProperty('dynamic_overlay_icon_name', displayName="Name for overlay image", value="Champion") entity.addOverlay('dynamic_overlay_icon_name', OverlayPosition.WEST, OverlayType.IMAGE) # You *can* also directly supply the string value of the property, however this is not recommended. Why? If # the entity already has a property of the same ID (in this case, "DE"), then you would in fact be assigning the # value of that property, not the string "DE", which is not the intention. Nevertheless, here's an example: entity.addOverlay('DE', OverlayPosition.SOUTH_WEST, OverlayType.IMAGE) # Overlays can also be an additional field of text displayed on the entity: entity.addProperty("exampleDynamicPropertyName", "Example Dynamic Property", "loose", "Maltego Overlay Testing") entity.addOverlay('exampleDynamicPropertyName', OverlayPosition.NORTH, OverlayType.TEXT) # Or a small color indicator entity.addOverlay('#45e06f', OverlayPosition.NORTH_WEST, OverlayType.COLOUR)
from selenium import webdriver import os import shutil import time import pandas as pd def getWoocommerceOrder(fromdate, todate): options = webdriver.ChromeOptions() prefs = {} prefs['download.default_directory'] = 'C:\\Users\\OEM\\Downloads\\woocommerceOrder' options.add_experimental_option('prefs', prefs) driver = webdriver.Chrome(chrome_options=options, executable_path='chromedriver.exe') driver.get('https://nzkw.com/wp-admin/admin.php?page=wc-order-export') driver.find_element_by_name('username').send_keys('admin') driver.find_element_by_name('password').send_keys('nzkw0800') driver.find_element_by_name('submit_login').click() driver.find_element_by_name('settings[from_date]').clear() driver.find_element_by_name('settings[to_date]').clear() driver.find_element_by_name('settings[from_date]').send_keys(fromdate) driver.find_element_by_name('settings[to_date]').send_keys(todate) filePath = 'C:\\Users\\OEM\\Downloads\\woocommerceOrder\\woocommerceOrders.csv' try: os.remove(filePath) except: print("Error while deleting file ", filePath) time.sleep(2) driver.find_element_by_id('export-btn').click() time.sleep(20) return prefs['download.default_directory'] + '\\woocommerceOrders.csv' def modifyPaymentMethod(children): methods = children['Payment Method'].tolist() for i in range(len(methods)): if methods[i] == 'Direct bank transfer': methods[i] = 'Bank Transfer' elif methods[i] == 'Payment Express': methods[i] = 'Credit Card' children['Payment Method'] = methods def modifyShippingMethod(children): methods = children['Shipping Method Title'].tolist() for i in range(len(methods)): if methods[i] == 'Small Parcel via Courier Post' or methods[i] == 'Box parcels sent via Fastway Courier': methods[i] = 'Post' elif methods[i] == 'Local pickup': methods[i] = 'Collection' children['Shipping Method Title'] = methods def addCompanyName(children): companies = children['Company (Billing)'].tolist() firstnames = children['Customer First Name'].tolist() lastnames = children['Customer Last Name'].tolist() for i in range(len(companies)): if companies[i] is not None: firstnames[i] = firstnames[i] + ' ' + lastnames[i] lastnames[i] = companies[i] children['Customer First Name'] = firstnames children['Customer Last Name'] = lastnames def ProcessOrder(path): children = pd.read_csv(path) children['Order Reference'] = ['nzkw-' + str(ordernumber) for ordernumber in children['Order Reference']] modifyPaymentMethod(children) modifyShippingMethod(children) addCompanyName(children) children.to_csv(path) def uploadToTradevine(path): options = webdriver.ChromeOptions() prefs = {} prefs['download.default_directory'] = 'C:\\Users\\OEM\\Downloads\\woocommerceOrder' options.add_experimental_option('prefs', prefs) driver = webdriver.Chrome(chrome_options=options, executable_path='chromedriver.exe') driver.get('https://nz.tradevine.com/KW-Auto-Parts-Ltd/SalesOrderImport/ImportStep1') driver.find_element_by_id('Item_Email').send_keys('info@nzkw.com') driver.find_element_by_id('Item_SuppliedPassword').send_keys('Nzkw0800466959@') driver.find_element_by_id('signInButton').click() driver.find_element_by_id('ImportFile').send_keys(path) driver.find_element_by_css_selector('.button.with-icon.next span').click() driver.find_element_by_id('Mappings_40__AlternateControlValue').send_keys('GST') driver.find_element_by_css_selector('.button.with-icon.next span').click() driver.find_element_by_css_selector('.button.with-icon.next span').click() time.sleep(20000) def uploadOrder(fromdate, todate): orderPath = 'C:\\Users\\OEM\\Downloads\\woocommerceOrder' if not os.path.exists(orderPath): os.makedirs(orderPath) path = getWoocommerceOrder(fromdate, todate) ProcessOrder(path) uploadToTradevine(path)
import os for root,dir,files in os.walk("E:\Dom\programs\Extractors\Prey\star-citizen-texture-converter-v1-3\Extracted",topdown=False): print(dir)
import numpy as np import sys vocab = {} D = 5 with open("81.jl.out") as f: for line in f.readlines()[:1]: words = line[:-1].strip().split(" ") words = list(filter(lambda x: x != "", words)) for idx in range(len(words)): randd = np.random.randint(1, D + 1) d = min(randd, idx + 1, len(words) - randd - 1) print(d) sys.stdout.write("{}\t".format(words[idx])) for i in range(-d, d + 1): if i != 0: if idx + i < 0: sys.stdout.write("N/A\t") elif idx + i >= len(words): sys.stdout.write("N/A\t") else: sys.stdout.write("{}\t".format(words[idx + i])) sys.stdout.write("\n")
from .xboxcontroller import XboxController from .buzzer import IllegalBuzzer from .differentialdrive import DifferentialDrive from .pca_motor import PCA9685 from .speedcontroller import SpeedController from .speedcontrollergroup import SpeedControllerGroup from .timer import Timer
#!/usr/bin/env python # -*- coding: utf-8 -*- # diagnostic_node # Info: Rosnode zum Testen des CAN-Datentransfers # Input: Sämtliche Signale, die auf dem ROS-Bus liegen # Output: - (nur externer Output der Dummy-Botschaft) # Autor: Christof Kary (christof.kary@evomotiv.de) # Version: 1.0, 04.06.2018 import rospy import numpy as np import time import can import struct from sensor_msgs.msg import Image, CameraInfo from cv_bridge import CvBridge, CvBridgeError from std_msgs.msg import UInt16 from std_msgs.msg import Float64 from autonomous.msg import lane from autonomous.msg import stopsign from autonomous.msg import carcontrol from sensor_msgs.msg import Range NODE_NAME = "diagnostic_node" SUB_TOPIC1 = "/lane_info" # Publisher-Skript: image_lanedetection_node.py SUB_TOPIC2 = "/stop_info" # Publisher-Skript: image_stopsign_node.py SUB_TOPIC3 = "/car_control" # Publisher-Skript: car_control_node.py SUB_TOPIC4 = "/ultrasoundf1" # Publisher-Skript: ROS_1_3.ino SUB_TOPIC5 = "/autonomous/image_raw" # Publisher-Skript: image_lanedetection_node.py SUB_TOPIC6 = "/control_esc" # Publisher-Skript: esc_control_node.py SUB_TOPIC7 = "/control_steering" # Publisher-Skript: PID-Controller (siehe launch-File) QUEUE_SIZE = 1 spur = lane() stopper = stopsign() controller = carcontrol() #lane_right = np.int64(0) #lane_left = np.int64(0) #lane_abw = np.int64(0) #lane_status= np.int64(0) #lane_radius= np.float64(0) #eng_rpm = np.uint16(0) #steer_angle= np.uint16(0) straightee = [] cha = 0 stra = 0 bus = can.interface.Bus(bustype='socketcan', channel='can0', bitrate=500000) # Initialisiert den CAN-Bus mit 500 kBit/s # Message definieren und bei jedem Durchlauf Nutzdaten leeren, ansonsten werden Nutzdaten in andere Botschaften geschrieben reset_msg = can.Message(arbitration_id = 0x00, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) lane_msg_1 = can.Message(arbitration_id = 0x10, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) lane_msg_2 = can.Message(arbitration_id = 0x11, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) stop_msg = can.Message(arbitration_id = 0x20, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) eng_msg = can.Message(arbitration_id = 0x30, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) us_msg = can.Message(arbitration_id = 0x40, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) stat_img_info_msg = can.Message(arbitration_id = 0x50, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) stat_pid_info_msg_1 = can.Message(arbitration_id = 0x51, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) stat_pid_info_msg_2 = can.Message(arbitration_id = 0x52, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) #----------------------------------------------------------------------------------------------------------------------- # Initialisierung des Knotens und der abbonierten Topics def diagnosticnode(NODE_NAME, SUB_TOPIC1, SUB_TOPIC2, SUB_TOPIC3, SUB_TOPIC4, SUB_TOPIC5, SUB_TOPIC6): rospy.init_node(NODE_NAME, anonymous=True) #rate = rospy.Rate(25) #publish Rate wird auf 25 Hz gesetzt, da Kamera maximal 25 Bilder/s liefert rospy.Subscriber(SUB_TOPIC1, lane, callback1) #subscribe to Spurerkennung rospy.Subscriber(SUB_TOPIC2, stopsign, callback2) #subscribe to Stoppschild rospy.Subscriber(SUB_TOPIC3, carcontrol, callback3) #subscribe to Motordrehzahl+Lenkwinkel rospy.Subscriber(SUB_TOPIC4, Range, callback4) #subscribe to Ultraschallsensor rospy.Subscriber(SUB_TOPIC5, Image, callback5) #subscribe to Rohbild rospy.Subscriber(SUB_TOPIC6, UInt16, callback6) #subscribe to Motorsteuerung (Längsregelung) #while not rospy.is_shutdown(): #rate.sleep() # Schleife entsprechend der publish rate, um Wiederholungsfrequenz einzuhalten rospy.spin() #----------------------------------------------------------------------------------------------------------------------- # Routine fuer Signaldaten zur Spurerkennung def callback1(lane_data): # Schreibt Signaldaten in log-file im Verzeichnis /home/nvidia/.ros/log/... #rospy.loginfo("right: %s", lane_data.right) #rospy.loginfo("left: %s", lane_data.left) #rospy.loginfo("Abweichung: %s", lane_data.abw) #rospy.loginfo("Erkennung: %s", lane_data.erkennung) #rospy.loginfo("Radius: %s", lane_data.radius) # Signaldaten muessen zuerst in Byte-Array gewandelt werden lane_right = struct.pack(">H", lane_data.right) # Little Endian Format, unsigned short Variable (2 Byte) lane_left = struct.pack(">H", lane_data.left) # Little Endian Format, unsigned short Variable (2 Byte) lane_abw = struct.pack(">h", lane_data.abw) # Little Endian Format, signed short Variable (2 Byte) (Eigentlich signed long, aber Aenderungen nur in 2 Byte) lane_status= struct.pack(">?", lane_data.erkennung) # Little Endian Format, bool Variable (1 Byte) lane_radius= struct.pack(">f", lane_data.radius) # Little Endian Format, float Variable (4 Byte) # Message definieren und bei jedem Durchlauf Nutzdaten leeren, ansonsten werden Nutzdaten in andere Botschaften geschrieben # Byte-Arrays im Motorolla-Format dem CAN-Frame zuweisen for i in reversed(range(0, len(lane_right))): # Uebergabe der Signalwerte in CAN-Nutzdaten lane_msg_1.data[i+4] = lane_left[i] # Spur links in Byte 2...3 (vlnr) lane_msg_1.data[i+6] = lane_right[i] # Spur rechts in Byte 0...1 (vlnr) for i in reversed(range(0, len(lane_radius))): # Uebergabe der Signalwerte in CAN-Nutzdaten lane_msg_1.data[i] = lane_radius[i] # Radius in Byte 4...7 for i in reversed(range(0, len(lane_abw))): # Uebergabe der Signalwerte in CAN-Nutzdaten lane_msg_2.data[i+6] = lane_abw[i] # Abweichung zur berechneten Spurmitte (vlnr) lane_msg_2.data[5] = lane_status # CAN-Frame auf Bus senden #send_on_can(bus, lane_msg) bus.send(lane_msg_1) bus.send(lane_msg_2) #----------------------------------------------------------------------------------------------------------------------- # Routine fuer Signaldaten zur Stoppschilderkennung def callback2(stop_data): # Schreibt Signaldaten in log-file im Verzeichnis /home/nvidia/.ros/log/... #rospy.loginfo("stop_data: %s", stop_data) # Signaldaten muessen zuerst in Byte-Array gewandelt werden stop_status = struct.pack(">?", stop_data.erkennung) # Little Endian Format, bool Variable (1 Byte) stop_breite = struct.pack(">B", stop_data.breite_px) # Little Endian Format, unsigned char Variable (1 Byte) stop_hoehe = struct.pack(">B", stop_data.hoehe_px) # Little Endian Format, unsigned char Variable (1 Byte) stop_posx = struct.pack(">H", stop_data.posx_px) # Little Endian Format, unsigned short Variable (2 Byte) stop_posy = struct.pack(">H", stop_data.posy_px) # Little Endian Format, unsigned short Variable (2 Byte) # Message definieren und bei jedem Durchlauf Nutzdaten leeren, ansonsten werden Nutzdaten noch in andere Botschaften geschrieben #stop_msg = can.Message(arbitration_id = 0x40, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) # Byte-Arrays im Motorola-Format dem CAN-Frame zuweisen stop_msg.data[1] = stop_status # Status Stoppschild erkannt / nicht erkannt stop_msg.data[2] = stop_hoehe # Hoehe in px des erkannten Stoppschilds stop_msg.data[3] = stop_breite # Breite in px des erkannten Stoppschilds for i in reversed(range(0, len(stop_posx))): # Uebergabe der Signalwerte in CAN-Nutzdaten stop_msg.data[i+6] = stop_posx[i] # horizontale Position im Bild in px stop_msg.data[i+4] = stop_posy[i] # vertikale Position im Bild in px # CAN-Frame auf Bus senden #send_on_can(bus, stop_msg) bus.send(stop_msg) #----------------------------------------------------------------------------------------------------------------------- # Routine fuer Signaldaten zur Motor- und Servosteuerung def callback3(eng_data): # Schreibt Signaldaten in log-file im Verzeichnis /home/nvidia/.ros/log/... #rospy.loginfo("eng_data: %s", eng_data) # Signaldaten muessen zuerst in Byte-Array gewandelt werden eng_rpm = struct.pack(">H", eng_data.esc) # Little Endian Format, unsigned short Variable (2 Byte) steer_angle = struct.pack(">H", eng_data.servo) # Little Endian Format, unsigned short Variable (2 Byte) # Message definieren und bei jedem Durchlauf Nutzdaten leeren, ansonsten werden Nutzdaten noch in andere Botschaften geschrieben #eng_msg = can.Message(arbitration_id = 0x50, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) # Byte-Arrays im Motorola-Format dem CAN-Frame zuweisen for i in reversed(range(0, len(eng_rpm))): # Uebergabe der Signalwerte in CAN-Nutzdaten eng_msg.data[i+4] = steer_angle[i] # Lenkwinkel in Nutzdaten eng_msg.data[i+6] = eng_rpm[i] # Motordrehzahl in Nutzdaten # CAN-Frame auf Bus senden #send_on_can(bus, eng_msg) bus.send(eng_msg) #----------------------------------------------------------------------------------------------------------------------- # Routine fuer Signaldaten des Ultraschallsensors def callback4(ultraschall_front): # Schreibt Signaldaten in log-file im Verzeichnis /home/nvidia/.ros/log/... #rospy.loginfo("US_data: %s", ultraschall_front.max_range) # Signaldaten muessen zuerst in Byte-Array gewandelt werden us_front_entfernung = struct.pack(">f", ultraschall_front.range) # Little Endian Format, float Variable (4 Byte) (wird in "ROS_1_3.ino" angelegt) us_front_min_range = struct.pack(">H", ultraschall_front.min_range+50) # Little Endian Format, unsigned short Variable (2 Byte) us_front_max_range = struct.pack(">H", ultraschall_front.max_range) # Little Endian Format, unsigned short Variable (2 Byte) # Message definieren und bei jedem Durchlauf Nutzdaten leeren, ansonsten werden Nutzdaten noch in andere Botschaften geschrieben #us_msg = can.Message(arbitration_id = 0x60, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) # Byte-Arrays im Motorola-Format dem CAN-Frame zuweisen for i in reversed(range(0, len(us_front_min_range))): # Uebergabe der Signalwerte in CAN-Nutzdaten us_msg.data[i] = us_front_max_range[i] # minimaler Abstand in Byte 6...7 us_msg.data[i+2] = us_front_min_range[i] # maximaler Abstand in Byte 4...5 for i in reversed(range(0, len(us_front_entfernung))): # Uebergabe der Signalwerte in CAN-Nutzdaten us_msg.data[i+4] = us_front_entfernung[i] # Entfernung zum Objekt in cm in Byte 0...3 # CAN-Frame auf Bus senden bus.send(us_msg) #----------------------------------------------------------------------------------------------------------------------- # Enthaelt aktuell nur den Lenkwinkel, dieser wird aber bereits auch in /car_control uebertragen # Fuer spaetere Erweiterungen def callback5(image_data): #rospy.loginfo("img_data: %s", image_data) test = True #----------------------------------------------------------------------------------------------------------------------- # Enthaelt aktuell nur die Motordrehzahl, diese wird aber bereits auch in /car_control uebertragen # Fuer spaetere Erweiterungen def callback6(esc_data): #rospy.loginfo("esc_data: %s", esc_data) test = True #----------------------------------------------------------------------------------------------------------------------- #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #----------------------------------------------------------------------------------------------------------------------- def reset_send(bus): #reset_msg = can.Message(arbitration_id = 0x00, data = [0, 0, 0, 0, 0, 0, 0, 0], extended_id = False) rospy.sleep(0.05) bus.send(reset_msg) #----------------------------------------------------------------------------------------------------------------------- # Statische Infos werden zu Beginn ausgelesen und 1x versendet, aendern sich ueber die Programmlaufzeit nicht def static_img_infos(): rospy.sleep(0.05) img_device = rospy.get_param("/autonomous/uvc_camera/device") img_fps = rospy.get_param("/autonomous/uvc_camera/fps") img_width = rospy.get_param("/autonomous/uvc_camera/width") img_height = rospy.get_param("/autonomous/uvc_camera/height") # Signaldaten muessen zuerst in Byte-Array gewandelt werden camera_fps = struct.pack(">H", img_fps) # Little Endian Format, unsigned short Variable (2 Byte) camera_width = struct.pack(">H", img_width) # Little Endian Format, unsigned short Variable (2 Byte) camera_height = struct.pack(">H", img_height) # Little Endian Format, unsigned short Variable (2 Byte) # Byte-Arrays im Motorola-Format dem CAN-Frame zuweisen for i in reversed(range(0, len(camera_width))): # Uebergabe der Signalwerte in CAN-Nutzdaten stat_img_info_msg.data[i+6] = camera_width[i] # Bildbreite in Pixel (x-Richtung) in Byte 0...1 stat_img_info_msg.data[i+4] = camera_height[i] # Bildhoehe in Pixel (y-Richtung) in Byte 2...3 stat_img_info_msg.data[i+2] = camera_fps[i] # Bildwiederholungsrate pro Sekunde in Byte 4...5 # CAN-Frame auf Bus senden bus.send(stat_img_info_msg) #----------------------------------------------------------------------------------------------------------------------- # Statische Infos werden zu Beginn ausgelesen und 1x versendet, aendern sich ueber die Programmlaufzeit nicht def static_pid_infos(): rospy.sleep(0.05) pid_Kd = rospy.get_param("/steering_pid/Kd") pid_Ki = rospy.get_param("/steering_pid/Ki") pid_Kp = rospy.get_param("/steering_pid/Kp") pid_lower_limit = rospy.get_param("/steering_pid/lower_limit") pid_upper_limit = rospy.get_param("/steering_pid/upper_limit") pid_windup_limit = rospy.get_param("/steering_pid/windup_limit") pid_max_freq = rospy.get_param("/steering_pid/max_loop_frequency") # Signaldaten muessen zuerst in Byte-Array gewandelt werden pid_Kd = struct.pack(">f", pid_Kd) # Little Endian Format, float Variable (4 Byte) pid_Ki = struct.pack(">f", pid_Ki) # Little Endian Format, float Variable (4 Byte) pid_Kp = struct.pack(">f", pid_Kp) # Little Endian Format, float Variable (4 Byte) pid_lower_limit = struct.pack(">b", pid_lower_limit) # Little Endian Format, signed char Variable (1 Byte) pid_upper_limit = struct.pack(">b", pid_upper_limit) # Little Endian Format, signed char Variable (1 Byte) pid_windup_limit = struct.pack(">b", pid_windup_limit) # Little Endian Format, signed char Variable (1 Byte) pid_max_freq = struct.pack(">b", pid_max_freq) # Little Endian Format, signed char Variable (1 Byte) # Byte-Arrays im Motorola-Format dem CAN-Frame zuweisen for i in reversed(range(0, len(pid_Kd))): # Uebergabe der Signalwerte in CAN-Nutzdaten stat_pid_info_msg_1.data[i+4] = pid_Kd[i] # D-Anteil (Differenzierer) des PID-Reglers in Byte 0...3 stat_pid_info_msg_1.data[i] = pid_Ki[i] # I-Anteil (Integrierer) des PID-Reglers in Byte 4...7 stat_pid_info_msg_2.data[i+4] = pid_Kp[i] # P-Anteil (Proportional) des PID-Reglers in Byte 0...3 stat_pid_info_msg_2.data[3] = pid_lower_limit[i] # Untere Begrenzung des PID-Reglers in Byte 4 stat_pid_info_msg_2.data[2] = pid_upper_limit[i] # Obere Begrenzung des PID-Reglers in Byte 5 stat_pid_info_msg_2.data[1] = pid_windup_limit[i] # Windup-Begrenzung des PID-Reglers in Byte 6 stat_pid_info_msg_2.data[0] = pid_max_freq[i] # Maximale Reglerfrequenz in Byte 7 # CAN-Frame auf Bus senden bus.send(stat_pid_info_msg_1) rospy.sleep(0.05) bus.send(stat_pid_info_msg_2) #----------------------------------------------------------------------------------------------------------------------- #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #----------------------------------------------------------------------------------------------------------------------- def shutdown_routine(): reset_send(bus) time.sleep(1) bus.shutdown() rospy.loginfo("Shutting down node %s", NODE_NAME) # Main-Routine, wird nach Initialisierung der Preamble ausgefuehrt def main(): global bla # Warte auf empfangene Botschaft ueber den Bus for msg in bus: # Pruefe, ob es sich um Diagnose-Startanweisung handelt, falls nicht, ignoriere Botschaft, falls ja, starte Diagnose-Knoten if msg.arbitration_id == 0x7FF and msg.data[0] == 0x01: # 0x7FF entspricht hoechster maximaler ID, da 2^11 IDs moeglich try: reset_send(bus) static_img_infos() static_pid_infos() diagnosticnode(NODE_NAME, SUB_TOPIC1, SUB_TOPIC2, SUB_TOPIC3, SUB_TOPIC4, SUB_TOPIC5, SUB_TOPIC6) rospy.loginfo("Diagnose-Modus gestartet!") for msg in bus: if msg.arbitration_id == 0x7FF and msg.data[0] == 0x00: print "Test3" rospy.loginfo("Diagnose-Modus beendet!") #rospy.signal_shutdown("Diagnose shutdown") shutdown_routine() except KeyboardInterrupt: rospy.loginfo("Shutting down node %s", NODE_NAME) #reset_send(bus) #time.sleep(1) #bus.shutdown() #bla.unregister() #shutdown_routine() #rospy.spin() #while not rospy.is_shutdown(): # if msg.arbitration_id == 0x7FF and msg.data[0] == 0x00: # 0x7FF entspricht hoechster maximaler ID, da 2^11 IDs moeglich # data = 0x00 beendet Diagnose-Node wieder, wenn er aktiv ist, ansonsten wird 0x00 ignoriert # print "Test3" # rospy.loginfo("Diagnose-Modus beendet!") # rospy.signal_shutdown("Diagnose shutdown") #rospy.unregister() #shutdown_routine() #rospy.signal_shutdown("Diagnose-Modus beendet!") if __name__ == '__main__': main()
def init_api(api): base_url = '/supply' from . import resources api.add_resource(resources.SupplyResource, f'{base_url}') api.add_resource(resources.SpecificSupplyResource, f'{base_url}/<int:item_id>')
#!/usr/bin/env python '''Execution script for DDR3 controller simulation. PSU ECE 585 Winter'16 final project. ''' __author__ = "Daniel Collins" __credits__ = ["Daniel Collins", "Alex Varvel", "Jonathan Waldrip"] __version__ = "0.3.5" __email__ = "daniel.e.collins1@gmail.com" import platform import os import sys import subprocess import itertools import time import shlex # system information system = platform.system() cwd = os.path.abspath(os.path.join(os.path.abspath(__file__),os.pardir)) top = os.path.abspath(os.path.join(cwd,os.pardir)) sv_dir = os.path.abspath(os.path.join(top, "test/SVdesign")) # workaround - redhat systems on PSU don't have python2.7 installed # -catch breath here- # so I cloned the argparse repo (which is in the STL in 2.7) argp_dir = os.path.abspath(os.path.join(top, '../argparse')) sys.path.insert(0, argp_dir) import argparse # status indicator bar = itertools.cycle(['-','/','|','\\']) def build_models(log, compile_cpp, compile_sv): '''Compiles the C++ and System Verilog DDR3 controller models.''' if system == 'Linux': if compile_cpp == True: write(log, "\n----------------------\n") write(log, "Compiling C++ model...\n") write(log, "----------------------\n") cmd = "make clean" write(log, cmd + '\n') clean = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log, cwd=top) while clean.poll() is None: status = status_spin(bar) if clean.returncode != 0: write(log, " ERROR: C++ make clean failed! See logs.\n") sys.exit(1) cmd = "make" write(log, cmd + '\n') build = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log, cwd=top) while build.poll() is None: status = status_spin(bar) if build.returncode != 0: write(log, " ERROR: C++ make failed! See logs.\n") sys.exit(1) write(log, "\n") if compile_sv == True: write(log, "\n---------------------\n") write(log, "Compiling SV model...\n") write(log, "---------------------\n") cmd = "vlib work" write(log, cmd + '\n') build = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log, cwd=sv_dir) while build.poll() is None: status = status_spin(bar) if build.returncode != 0: write(log, " ERROR: vlib work failed! See logs.\n") sys.exit(1) cmd = "vlog -sv -mfcu Definitions.pkg InputDecoder.sv Queue.sv OutputEncoder.sv Top.sv ../SVtestbench/Testbench.sv +define+POLICY=OPEN" write(log, cmd + '\n') build = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log, cwd=sv_dir) while build.poll() is None: status = status_spin(bar) if build.returncode != 0: write(log, " ERROR: vlog compilation failed! See logs.\n") sys.exit(1) write(log, "\n") else: write(log, "Unsupported operating system\n") sys.exit(1) def generate_expected_results(log, inFile, outFile): '''Generates expected output from System Verilog golden model.''' if system == 'Linux': write(log, "\n-----------------------\n") write(log, "Runing SV simulation \n") write(log, " for expected results \n") write(log, "-----------------------\n") input_str = "-gINPUT_FILE=" + inFile output_str = "-gOUTPUT_FILE=" + outFile + ".sv" cmd = "vsim -do \"run -all\" -c " + input_str + " " + output_str + " Testbench" write(log, cmd +'\n') build = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log, cwd=sv_dir) while build.poll() is None: status = status_spin(bar) if build.returncode != 0: write(log, " ERROR: SV sim failed! See logs.\n") sys.exit(1) else: write(log, "Unsupported operating system\n") sys.exit(1) def run_ddr3Sim(log, inFile, outFile): '''Executes ddr3Sim C++ model with specified input file.''' if system == 'Linux': write(log, "\n-------------------------\n") write(log, "Running C++ simulation...\n") write(log, "-------------------------\n") prog = os.path.join(top, "bin/ddr3Sim") cmd = prog + " -i " + inFile + " -o " + outFile write(log, cmd +'\n') sim = subprocess.Popen(shlex.split(cmd), stdout=log, stderr=log) while sim.poll() is None: status = status_spin(bar) if sim.returncode != 0: write(log, " ERROR: C++ sim failed! See logs.\n") sys.exit(1) else: write(log, "Unsupported operating system\n") sys.exit(1) def check_input_completed(log, inFile, outFile): '''Checks that all CPU requests in the input file have corresponding \ commands in the output file.''' # Check that every input request line # has a corresponding 'output' from each model. requests = open(inFile, 'r') cppFile = open(outFile, 'r') reqLines = requests.readlines() addrFound = [None for _ in range(len(reqLines))] cppLines = cppFile.readlines() # get indicies of all RD/WR commands cmdIdx = [i for i, cmd in enumerate(cppLines) if cmd.split()[1] == 'RD' or cmd.split()[1] == 'WR'] write(log, "\n-------------------------\n") write(log, "Verifying output contains\n") write(log, " all input addresses...\n") write(log, "-------------------------\n") # for every input cpu request for i in range(len(reqLines)): # decode address reqLine = reqLines[i] reqFields = reqLine.split() row = int(reqFields[0],16) >> 17 bank = (int(reqFields[0],16) >> 14) & 0x7 col = (int(reqFields[0],16) >> 3) & 0x7ff # search outputs for corresponding RD/WR command for j in cmdIdx: cppFields = cppLines[j].split() # if we find a match that hasn't been hit before if int(cppFields[2],16) == bank and int(cppFields[3],16) == col and addrFound[i] == None: # mark this line as already searched addrFound[i] = True continue # if None is in the list, we didn't find all input addresses :( if None in addrFound: write(log, " ERROR: at least one address from input not found in output!\n") for i, req in enumerate(addrFound): if req == None: write(log, ' Missing request from line ' + str(i) + ' -- '+ reqLines[i]) return 1 else: write(log, " PASS: all input addresses accounted for in output file\n") return 0 def diff_cmds(log, cppFile, svFile): '''Compares the output from the C++ and SV models.''' write(log, "\n-----------------------\n") write(log, "Diffing output files...\n") write(log, "-----------------------\n") clean_pass = True cppFile = open(cppFile, 'r') svFile = open(svFile, 'r') cppLines = cppFile.readlines() svLines = svFile.readlines() if len(cppLines) != len(svLines): write(log, "WARNING: unequal command count between expected and actual results\n") write(log, str(len(cppLines)) + " != " + str(len(svLines)) + '\n') clean_pass = False for cppLine, svLine in zip(cppLines, svLines): cppFields = cppLine.split() svFields = svLine.split() if int(cppFields[0]) != int(svFields[0]): write(log, " ERROR: critical mismatch in timing output\n") write(log, cppFields[0] + " != " + svFields[0] + '\n') clean_pass = False if cppFields[1] != svFields[1]: write(log, " ERROR: mismatch in command output!\n") write(log, cppFields[1] + " != " + svFields[1] + '\n') clean_pass = False if ''.join(cppFields[2:]) != ''.join(svFields[2:]): write(log, " ERROR: mismatch in address output!\n") write(log, ''.join(cppFields[2:]) + " != " + ''.join(svFields[2:]) + '\n') clean_pass = False if clean_pass == True: write(log, " PASS: no diff detected in simlulation vs model\n") return 0 else: return 1 def write(filename, data): '''Writes to stdout and file, much like the unix Tee program.''' filename.write(data) filename.flush() sys.stdout.write(data) sys.stdout.flush() def status_spin(bar): '''Spinning command line bar indicating background work.''' sys.stdout.write(bar.next()) sys.stdout.flush() sys.stdout.write('\b') time.sleep(.20) def main(): '''ddr3Sim execution entry point.''' # options parser = argparse.ArgumentParser(description='Execution script for DDR3 controller simulation.') req = parser.add_argument_group("required arguments") req.add_argument("-i", "--inFile", dest="inFile", \ required=True, help="Input file containing CPU requests.") req.add_argument("-o", "--outFile", dest="outFile", \ required=True, help="Output file containing memory commands.") parser.add_argument("-l", "--logFile", dest="log_name", \ default="ddr3Sim_test.log", help="Log file name.") parser.add_argument("-cc", "--compile-cpp", action='store_true', \ dest="compile_cpp", help="Compile C++ model before execution.") parser.add_argument("-cv", "--compile-sv", action='store_true', \ dest="compile_sv", help="Compile SV model before execution.") parser.add_argument("-nc", "--no-exec-cpp", action='store_true', \ dest="no_exec_cpp", help="Do not execute cpp model.") parser.add_argument("-nv", "--no-exec-sv", action='store_true', \ dest="no_exec_sv", help="Do not execute sv model.") parser.add_argument("-d", "--do-not-check", action='store_true', \ dest="do_not_check_output", help="Do not compare output of models.") args = parser.parse_args() logFile = open(args.log_name, 'w') inFile = os.path.abspath(args.inFile) outFile = os.path.abspath(args.outFile) write(logFile, "Input file: " + inFile + '\n') write(logFile, "Output file: " + outFile + '\n') # build models if need be build_models(logFile, args.compile_cpp, args.compile_sv) # execution if not args.no_exec_sv: generate_expected_results(logFile, inFile, outFile) if not args.no_exec_cpp: run_ddr3Sim(logFile, inFile, outFile) # spot check if simulation has any obvious errors svFile = outFile + ".sv" rc1 = check_input_completed(logFile, inFile, outFile) rc2 = 0 if not args.do_not_check_output: rc2 = diff_cmds(logFile, outFile, svFile) if rc1 != 0 or rc2 != 0: write(logFile, "\n ERROR: something failed. See logs.\n") else: write(logFile, "\n PASS: no errors detected.\n") sys.exit(0) if __name__ == "__main__": main()
class Solution: def divide(self, dividend: int, divisor: int) -> int: INT_MAX = 2 ** 31 - 1 INT_MIN = -2 ** 31 def div(a, b): a = -a if a < 0 else a b = -b if b < 0 else b if a < b: return 0 count = 1 tb = b while tb + tb < a: count += count tb += tb return count + div(a - tb, b) if dividend == 0: return 0 # if divisor == 1: # return dividend # if divisor == -1: # return -dividend if dividend > INT_MIN else INT_MAX sign = False if (dividend < 0 and divisor > 0) or (dividend > 0 and divisor < 0) else True res = div(dividend, divisor) if sign: return res if res <= INT_MAX else INT_MAX else: return -res if __name__ == '__main__': s = Solution() res = s.divide(-2147483648, -1) print(res)
from django.contrib import admin from django import forms from userena.utils import get_user_model from userena.admin import UserenaAdmin from userena import settings as userena_settings from accounts.models import (Account, AccountReminding, InTheLoopSchedule, VenueAccount, VenueType, AccountTax, AccountTaxCost) from home.admin import FusionExportableAdmin class AccountAdmin(admin.ModelAdmin): fields = ('user', 'tax_origin_confirmed', 'not_from_canada', 'website') class VenueAccountAdmin(FusionExportableAdmin): list_display = ('venue_name', 'venue_address', 'city_name', 'venue_phone', 'venue_email', 'venue_fax', 'venue_site') export_formats = ( (u'CSV', u','), ) def formfield_for_manytomany(self, db_field, request=None, **kwargs): if db_field.name == 'types': kwargs['widget'] = forms.CheckboxSelectMultiple kwargs['help_text'] = '' return db_field.formfield(**kwargs) def venue_name(self, object): return object.venue.name def venue_address(self, object): return object.venue.address def city_name(self, object): return object.venue.city.name def venue_phone(self, object): return object.phone def venue_email(self, object): return object.email def venue_fax(self, object): return object.fax def venue_site(self, object): return object.site venue_name.short_description = 'Venue' venue_address.short_description = 'Address' city_name.short_description = 'City' venue_phone.short_description = 'Phone' venue_email.short_description = 'Email' venue_fax.short_description = 'Fax' venue_site.short_description = 'Web site' city_name.admin_order_field = 'venue__city' def queryset(self, request): # Prefetch related objects return super(VenueAccountAdmin, self).queryset(request).select_related('venue') class CityFusionUserAdmin(UserenaAdmin): list_display = ('username', 'email', 'first_name', 'last_name', 'is_staff', 'is_active', 'date_joined', 'last_login') admin.site.unregister(Account) admin.site.register(Account, AccountAdmin) admin.site.register(AccountReminding) admin.site.register(AccountTax) admin.site.register(AccountTaxCost) admin.site.register(InTheLoopSchedule) admin.site.register(VenueType) admin.site.register(VenueAccount, VenueAccountAdmin) if userena_settings.USERENA_REGISTER_USER: try: admin.site.unregister(get_user_model()) except admin.sites.NotRegistered: pass admin.site.register(get_user_model(), CityFusionUserAdmin)
def GetPDFName(lhapdf_id, add_extension=True): if lhapdf_id == 11000: pdfname = "CT10nlo" elif lhapdf_id == 10550: pdfname = "cteq66" elif lhapdf_id == 10042: pdfname = "cteq6l1" else: print("LHAPDF ID {} not known.".format(lhapdf_id)) exit(1) if add_extension: pdfname += ".LHgrid" return pdfname
""" RPG-lite Discord Bot """ import os import discord from discord.ext import commands bot = commands.Bot(command_prefix='/') @bot.event async def on_ready(): await bot.change_presence(activity=discord.Game('Test Active')) @bot.command() @commands.bot_has_permissions(manage_messages=True) async def clear(ctx, amount=999): await ctx.channel.purge(limit=amount+1) bot.load_extension('cogs.character_ops') bot.run(os.getenv('TOKEN'))
import uuid from sqlalchemy.dialects.postgresql import UUID from .base import db from .mixins.base import BaseMixin class Card(BaseMixin, db.Model): __tablename__ = 'card' title = db.Column(db.Text, nullable=False) description = db.Column(db.Text, nullable=False) comments = db.relationship('Comment', backref='card', lazy=True) list_id = db.Column(UUID(as_uuid=True), db.ForeignKey('list.id'), nullable=False) owner_id = db.Column(UUID(as_uuid=True), db.ForeignKey('user.id'), nullable=False) def __init__(self, title, description, position): self.title = title self.description = description def __repr__(self): return '<Card %r>' % self.title
import pyodbc from validator import Validator as validator validator = validator() class Customer: def __init__(self): self.__customerId="" self.__customerName="" self.__customerAddress="" self.__customerPhoneNumber="" def searchAllCustomers(self,cursor): try: cursor.execute('SELECT * FROM dbo.Customer') dash = '-' * 75 print(dash) print('{:>7s}{:>30s}{:>35s}'.format("Id", "Name", "Phone Number")) print(dash) for row in cursor: print('{:>7s}{:>30s}{:>30s}'.format(str(row[0]), row[1], row[3])) except: print ("Something went wrong.!! Contact the administrator.!") def searchCustomerByName(self,cursor): try: name = input("Please enter the Customer Name") args = ['%'+name+'%'] sql = 'SELECT c.customer_id, c.customer_name, c.customer_phone FROM Customer c WHERE c.customer_name LIKE ?' cursor.execute(sql,args) resultSet = cursor.fetchall() if(len(resultSet) != 0): dash = '-'*75 print(dash) print('{:>7s}{:>30s}{:>35s}'.format("Id", "Name","Phone Number")) print(dash) for row in resultSet: print('{:>7s}{:>30s}{:>30s}'.format(row[0], row[1], row[2])) else: print("No Customer found with that name.!") except: print("Something went wrong.!! Contact the administrator.!") def addCustomer(self, databse, cursor): try: self.__customerName = input("Enter name of Customer.") mname = self.__customerName while not validator.nameValidate(mname): mname = input("Enter name of Customer.") self.__customerName = mname self.__customerPhoneNumber = input("Enter Customer Phone Number.") addr = self.__customerPhoneNumber while not validator.numberValidate(addr): addr = input("Enter Customer Phone Number.") self.__customerPhoneNumber = addr print("Enter customer address.") street = input("Enter street") bldng = input("Enter building/house name") room = input("Enter room no/house no") county = input("Enter county name") areacode = input("Enter area code") self.__customerAddress = "<Address><Street>" + street + "</Street><Building>" + bldng + "</Building><RoomNo>" + room + "</RoomNo><County>" + county + "</County><AreaCode>" + areacode + "</AreaCode></Address>" databse.insertCustomerRecord(self.__customerName,self.__customerAddress,self.__customerPhoneNumber) print("Customer Record added successfully..!") except: print ("Something went wrong.!! Contact the administrator.!") def updateCustomer(self, database, cursor): try: name = input("Enter name of the Customer.") args = ['%'+name+'%'] sql = 'SELECT * FROM dbo.Customer WHERE customer_name LIKE ?' cursor.execute(sql,args) dash = '-' * 75 result = cursor.fetchall() if len(result) != 0: print("Customer found with name entered.! ") print(dash) print('{:>7s}{:>30s}{:>35s}'.format("Id", " Customer Name", " Customer Phone Number")) print(dash) for row in result: print('{:>7s}{:>30s}{:>30s}'.format(row[0], row[1], row[3])) self.__customerId = input("Enter the Customer Id which needs to be updated") self.__customerName = input("Enter Same or New Name of the Customer.") mname = self.__customerName while not validator.nameValidate(mname): mname = input("Enter Same or New Name of the Customer.") self.__customerName = mname self.__customerPhoneNumber = input("Enter Customer New or Same Phone Number.") addr = self.__customerPhoneNumber while not validator.numberValidate(addr): addr = input("Enter Customer Phone Number.") self.__customerPhoneNumber = addr print("Enter Customer address.") street = input("Enter street") bldng = input("Enter building/house name") room = input("Enter room no/house no") county = input("Enter county name") areacode = input("Enter area code") self.__customerAddress = "<Address><Street>" + street + "</Street><Building>" + bldng + "</Building><RoomNo>" + room + "</RoomNo><County>" + county + "</County><AreaCode>" + areacode + "</AreaCode></Address>" database.updateCustomerRecord(self.__customerId, self.__customerName, self.__customerAddress, self.__customerPhoneNumber) print("Customer Record Updated Successfully.!") else: print("No Customer found with that name.!") except: print("Something went wrong.!! Contact the administrator.!")
#!/usr/bin/env python import numpy as np import corr, time, struct, sys, logging, socket import h5py import matplotlib.pyplot as plt import hittite roach = '192.168.42.65' print('Connecting to server %s... '%(roach)), fpga = corr.katcp_wrapper.FpgaClient(roach) time.sleep(0.2) if fpga.is_connected(): print 'ok\n' else: print 'ERROR connecting to server %s.\n'%(roach) exit() # setup initial parameters #numTones=2048 #combCoeff = np.zeros((1024,numTones)) + 1j*np.zeros((1024,numTones)) #combCoeffSingle = np.zeros(numTones) + 1j*np.zeros(numTones) def defCoeffs14(): real = '0100000000000000' imag = '0000000000000000' coeff0 = (real + imag) coeff0 = int(coeff0,2) coeffArray = np.ones(1024,'I')*coeff0 coeffStr = struct.pack('>1024I',*coeffArray) fpga.write('c1_0',coeffStr) time.sleep(0.5) fpga.write('c1_1',coeffStr) time.sleep(0.5) fpga.write('c1_2',coeffStr) time.sleep(0.5) fpga.write('c1_3',coeffStr) time.sleep(0.5) fpga.write('c1_4',coeffStr) time.sleep(0.5) fpga.write('c1_5',coeffStr) time.sleep(0.5) fpga.write('c1_6',coeffStr) time.sleep(0.5) fpga.write('c1_7',coeffStr) time.sleep(0.5) fpga.write('c4_0',coeffStr) time.sleep(0.5) fpga.write('c4_1',coeffStr) time.sleep(0.5) fpga.write('c4_2',coeffStr) time.sleep(0.5) fpga.write('c4_3',coeffStr) time.sleep(0.5) fpga.write('c4_4',coeffStr) time.sleep(0.5) fpga.write('c4_5',coeffStr) time.sleep(0.5) fpga.write('c4_6',coeffStr) time.sleep(0.5) fpga.write('c4_7',coeffStr) def defCoeffs23(combCoeffSingle): coeff2 = -1*(combCoeffSingle[0:1024]) coeff3 = -1*(np.power(combCoeffSingle[1024:2048],-1)) coeff3 = np.nan_to_num(coeff3) coeffs2 = ["" for i in range(1024)] coeffs2r = ["" for i in range(1024)] coeffs2i = ["" for i in range(1024)] coeffs3 = ["" for i in range(1024)] coeffs3r = ["" for i in range(1024)] coeffs3i = ["" for i in range(1024)] #print coeff2.real for i in range (0,1024): coeffs2r[i] = np.binary_repr(np.int16(coeff2[i].real*2**14),16) coeffs2i[i] = np.binary_repr(np.int16(coeff2[i].imag*2**14),16) coeffs3r[i] = np.binary_repr(np.int16(coeff3[i].real*2**14),16) coeffs3i[i] = np.binary_repr(np.int16(coeff3[i].imag*2**14),16) coeffs2[i] = (coeffs2r[i] + coeffs2i[i]) coeffs3[i] = (coeffs3r[i] + coeffs3i[i]) coeffs2[i] = int(coeffs2[i],2) coeffs3[i] = int(coeffs3[i],2) coeffArray2 = np.ones(1024,'L')*coeffs2 coeffArray3 = np.ones(1024,'L')*coeffs3 coeffStr2 = struct.pack('>1024L',*coeffArray2) coeffStr3 = struct.pack('>1024L',*coeffArray3) tmp = np.roll(coeffArray2[0:128],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_0',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128:128*2],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_1',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*2:128*3],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_2',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*3:128*4],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_3',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*4:128*5],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_4',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*5:128*6],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_5',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*6:128*7],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_6',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray2[128*7:128*8],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c2_7',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[0:128],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_0',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128:128*2],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_1',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*2:128*3],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_2',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*3:128*4],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_3',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*4:128*5],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_4',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*5:128*6],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_5',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*6:128*7],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_6',tmp_write) time.sleep(0.5) tmp = np.roll(coeffArray3[128*7:128*8],-2) tmp_write = struct.pack('>128L',*tmp) fpga.write('c3_7',tmp_write) time.sleep(0.5) #fpga.write('c2_7',coeffStr2[127::-1]) #time.sleep(0.5) #fpga.write('c2_6',coeffStr2[(127+128):127:-1]) #time.sleep(0.5) #fpga.write('c2_5',coeffStr2[(127+128*2):(127+128):-1]) #time.sleep(0.5) #fpga.write('c2_4',coeffStr2[(127+128*3):(127+128*2):-1]) #time.sleep(0.5) #fpga.write('c2_3',coeffStr2[(127+128*4):(127+128*3):-1]) #time.sleep(0.5) #fpga.write('c2_2',coeffStr2[(127+128*5):(127+128*4):-1]) #time.sleep(0.5) #fpga.write('c2_1',coeffStr2[(127+128*6):(127+128*5):-1]) #time.sleep(0.5) #fpga.write('c2_0',coeffStr2[(127+128*7):(127+128*6):-1]) #time.sleep(0.5) # tmp = coeffArray2[0:128] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_0',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128:128*2] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_1',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*2:128*3] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_2',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*3:128*4] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_3',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*4:128*5] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_4',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*5:128*6] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_5',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*6:128*7] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_6',tmp_write) # time.sleep(0.5) # tmp = coeffArray2[128*7:128*8] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c2_7',tmp_write) # time.sleep(0.5) # # tmp = coeffArray3[0:128] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_0',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128:128*2] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_1',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*2:128*3] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_2',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*3:128*4] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_3',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*4:128*5] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_4',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*5:128*6] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_5',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*6:128*7] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_6',tmp_write) # time.sleep(0.5) # tmp = coeffArray3[128*7:128*8] # tmp_write = struct.pack('>128L',*tmp) # fpga.write('c3_7',tmp_write) # time.sleep(0.5) # fpga.write('c3_0',coeffStr3[0:128]) # time.sleep(0.5) # fpga.write('c3_1',coeffStr3[128:128*2]) # time.sleep(0.5) # fpga.write('c3_2',coeffStr3[128*2:128*3]) # time.sleep(0.5) # fpga.write('c3_3',coeffStr3[128*3:128*4]) # time.sleep(0.5) # fpga.write('c3_4',coeffStr3[128*4:128*5]) # time.sleep(0.5) # fpga.write('c3_5',coeffStr3[128*5:128*6]) # time.sleep(0.5) # fpga.write('c3_6',coeffStr3[128*6:128*7]) # time.sleep(0.5) # fpga.write('c3_7',coeffStr3[128*7:128*8]) # time.sleep(0.5) # def populateSingle(combCoeff): numTones = 2048 combCoeffSingle = np.zeros(numTones) + 1j*np.zeros(numTones) for toneIter in range(0,numTones-2): if toneIter < 1024: #combCoeffSingle[toneIter] = combCoeff[1023-toneIter,toneIter+1] #combCoeffSingle[1023-toneIter] = combCoeff[toneIter,1024-toneIter] combCoeffSingle[1023-toneIter] = combCoeff[1023-toneIter,toneIter+1] #print "index:" + str(1023-toneIter) + " read1: " + str(1023 - toneIter) + " read2: " + str(toneIter+1) else: combCoeffSingle[toneIter] = combCoeff[toneIter-1023,toneIter+1] #print combCoeffSingle[toneIter] return combCoeffSingle def readFiles(): filename = 'combCoeff.h5' f_data = h5py.File(filename,'r') f_key = f_data.keys()[0] #print f_data.keys() #combCoeff = list(f_data[f_key]) combCoeff = np.array(f_data[f_key]) return combCoeff combCoeff = readFiles() #plt.imshow(combCoeff.real) #plt.plot(combCoeff[1,:].real) #plt.show() #print combCoeff[1025,100] combCoeffSingle = populateSingle(combCoeff) #plt.plot(combCoeffSingle.real) #plt.plot(combCoeffSingle.imag) #plt.show() defCoeffs14() defCoeffs23(combCoeffSingle)
# Generated by Django 2.2.4 on 2019-08-17 20:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('base', '0025_auto_20190817_2017'), ] operations = [ migrations.AlterField( model_name='pypartner', name='created_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='pypartner_created_by', to=settings.AUTH_USER_MODEL), ), ]
price = float(input('Actual price: ')) promotionPrice = price-price*0.05; print('Promotion price: ',promotionPrice)
import pytest from multiplication_tables import multiplication_tables def test_two_by_two(): assert multiplication_tables(2, 2) == [[1, 2], [2, 4]] def test_three_by_four(): assert multiplication_tables(3, 4) == [[1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12]]
""" Purpose of this script is to train the model with kfold cross validation. The evaluation metric is MSE and Pearson correlation. Input: CSV file, train_list Output: sav file (saved model), CSV file (PCC and MSE) """ import time #time.sleep(15/60*60*60) import pandas as pd import pickle import os import datetime from random import Random from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.layers import LeakyReLU from sklearn.metrics import mean_squared_error from scipy.stats import pearsonr # Variables num_fold = 5 seed = 50 range_value = 0.15 ## Hidden layers parameter #hidden_layer = 3 #hidden_unit = "75%" #512 # No of units in each hidden units hidden_activation = "sigmoid" # Activation function for each hidden layer output_activation = LeakyReLU(alpha = 1.0) output_activation_1 = "Leaky ReLU" dropout_rate = 0.2 hidden_layer_list = [2,3,4] epoch_list = [10, 15, 20] ## Learning rate parameters optimizer = "Adam" loss_function = "mean_squared_error" #epoch = 10 batch_size = None # Chose a value such as the remainder of len(train)%batch_size == 0 else leave as None save_model = False letter_list = ["C1-P"] for letter in letter_list: #main_folder = r'C:\Users\User\Desktop\B factor' main_folder = r'D:\PHML B factor estimation\02 Project' subfolder_input = r'02 Topology Application\02 Topological features representation\ML inputs - Counts of points at interval\%s' %letter subfolder_list = r'00 Basic information' subfolder_output_model = r'03 ML models\05 ANN\Trained models - Counts' subfolder_output_results = r'03 ML models\05 ANN\Results - Counts' writer = pd.ExcelWriter(os.path.join(main_folder, subfolder_output_results, str(datetime.datetime.today().date()) + " ANN results - Counts %s 3 - %s.xlsx" %(range_value, letter))) # List of input files path_input = os.path.join(main_folder, subfolder_input) input_files = [f for f in os.listdir(path_input) if f.endswith(".csv")] input_files = [f for f in input_files if "_0.5_" in f or "_1.0_" in f or "_1.5_" in f ] input_files = [f for f in input_files if f.startswith("%s_35_35" %letter) or f.startswith("%s_40_40" %letter) or f.startswith("%s_45_45" %letter)] # Initial lists atoms, bin_sizes, bin_nums, euclidean_distances, filtration_distances = [], [], [], [], [] num_folds, seeds = [], [] hidden_layers, hidden_units, hidden_activations, output_activations = [], [], [], [] optimizers, epochs, batch_sizes, dropout_rates = [], [], [], [] mse_train, mse_cv, pcc_train, pcc_cv = [], [], [], [] for file in input_files: _, euclidean_distance, filtration_distance, _, _ = file.split("_") euclidean_distance, filtration_distance = int(euclidean_distance), int(float(filtration_distance)) if filtration_distance <= euclidean_distance: # Read train list path_list = os.path.join(main_folder, subfolder_list, r'Train_list') train_list = open(path_list, "r").read().split("\n")[:-1] # Read the input data path_files = os.path.join(path_input, file) data = pd.read_csv(path_files) # Extract the train set criteria = data.iloc[:, -1].str.strip(" ").isin(train_list) data_set = data[criteria] data_set.reset_index(inplace = True, drop = True) # Dataset details file = file.strip(".csv") atom, euclidean_distance, filtration_distance, bin_size, bin_num = file.split("_") euclidean_distance, filtration_distance = int(euclidean_distance), int(float(filtration_distance)) bin_size, bin_num = float(bin_size), int(bin_num) # kFold cross validation limit = round(len(train_list)/num_fold) train_index, cv_index = [], [] for i in range(num_fold): Random(seed).shuffle(train_list) train_list_split = train_list[:limit] train_index_temp = data_set.iloc[:, -1].str.strip(" ").isin(train_list_split) cv_index_temp = ~data_set.iloc[:, -1].str.strip(" ").isin(train_list_split) train_index.append(train_index_temp) cv_index.append(cv_index_temp) # Split the dataset into x and y data data_set = data_set.iloc[:, :-1] data_x, data_y = data_set.iloc[:,:-1], data_set.iloc[:, -1] for hidden_layer in hidden_layer_list: for epoch in epoch_list: # Train model for i in range(num_fold): print(datetime.datetime.now(), "\tANN - Training %s \tkFold = %d" %(file, i+1)) # Extract train and cv set train_x, train_y = data_x.loc[train_index[i]], data_y[train_index[i]] cv_x, cv_y = data_x.loc[cv_index[i]], data_y[cv_index[i]] # Normalization ## Normalization parameters mean_train = train_x.mean(axis = 0) std_train = train_x.std(axis = 0).replace(0,1) # Replace 0 with 1 to prevent nan values ## Normalizing data train_x = (train_x - mean_train)/std_train cv_x = (cv_x - mean_train)/std_train # No of hidden units == 0.75 of input nodes input_nodes = train_x.shape[1] hidden_unit = round(0.75*input_nodes) print("Layers: %s \tUnits: %s \tBatch: %s \tEpoch: %s \tDropout: %s" %(hidden_layer, hidden_unit, batch_size, epoch, dropout_rate)) # Create ANN model clf = Sequential() clf.add(Dense(hidden_unit, input_dim = input_nodes, batch_size = batch_size)) clf.add(Activation(hidden_activation)) clf.add(Dropout(rate = dropout_rate)) ## Add in the 2nd hidden layers onwards if hidden_layer >= 2: for j in range(2, hidden_layer + 1): clf.add(Dense(hidden_unit)) clf.add(Activation(hidden_activation)) clf.add(Dropout(dropout_rate)) ## Output layer clf.add(Dense(1)) clf.add(Activation(output_activation)) ## Compile the learning rate clf.compile(optimizer = optimizer, loss = loss_function) # Training clf.fit(train_x, train_y, batch_size = batch_size, epochs = epoch, verbose = 0) y_pred = clf.predict(train_x) y_pred = y_pred.reshape(len(y_pred)) mse_train.append(mean_squared_error(train_y, y_pred)) pcc_train.append(pearsonr(y_pred, train_y)[0]) # Predict values y_pred = clf.predict(cv_x) y_pred = y_pred.reshape(len(y_pred)) # Calculate MSE and PCC mse_cv.append(mean_squared_error(cv_y, y_pred)) pcc_cv.append(pearsonr(y_pred, cv_y)[0]) # Save the trained model if save_model: model_filename = os.path.join(main_folder, subfolder_output_model, file + "_model_%s" %(i+1) + ".sav") pickle.dump(clf, open(model_filename, "wb")) # Print the latest results print("MSE train: %.5f \tPCC train: %.3f \nMSE CV: %.5f \tPCC CV: %.3f\n" %(mse_train[-1], pcc_train[-1], mse_cv[-1], pcc_cv[-1])) # Create lists for dataframe print("Creating dataframe details") ## Dataset details atoms.extend([atom]*num_fold) bin_sizes.extend([bin_size]*num_fold) bin_nums.extend([bin_num]*num_fold) euclidean_distances.extend([euclidean_distance]*num_fold) filtration_distances.extend([filtration_distance]*num_fold) ## Model details num_folds.extend([num_fold]*num_fold) seeds.extend([seed]*num_fold) hidden_layers.extend([hidden_layer]*num_fold) hidden_units.extend([hidden_unit]*num_fold) hidden_activations.extend([hidden_activation]*num_fold) output_activations.extend([output_activation_1]*num_fold) optimizers.extend([optimizer]*num_fold) epochs.extend([epoch]*num_fold) batch_sizes.extend([batch_size]*num_fold) dropout_rates.extend([dropout_rate]*num_fold) # Create dataframe output_results = pd.DataFrame({ "Atoms":atoms, "Euclidean distance":euclidean_distances, "Filtration distance":filtration_distances, "Bin size":bin_sizes, "Bin num":bin_nums, "Seed":seeds, "Hidden layers":hidden_layers, "Hidden units":hidden_units, "Hidden activation":hidden_activations, "Output activation":output_activations, "Optimizer":optimizers, "Epoch":epochs, "Batch size":batch_sizes, "Drouput rate":dropout_rates, "MSE_train":mse_train, "MSE_CV":mse_cv, "PCC_train": pcc_train, "PCC_CV":pcc_cv }) # Save dataframe to excel print("Saving results") output_results.to_excel(writer, index = False) writer.save() print("Completed at", datetime.datetime.now())
# Cálculo de passagem com valores diferenciados limiteKm = 200 km = float(input('Digite q quilometragem de sua viagem: ')) # Taxa Viagens curtas taxMin = .5 * km # Taxa viagens longas taxMax = .45 * km print('O valor de sua passagem será R$ {:.2f}'.format(taxMin if km <= 200 else taxMax))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 22 11:35:04 2021 @author: chulke """ import numpy as np import matplotlib.pyplot as plt def randomwalk(largo): pasos=np.random.randint (-1,2,largo) return pasos.cumsum() def graficar(): N = 100000 i=0 fig = plt.figure() lista = [] while i<12: caminata = randomwalk(N) lista.append(caminata) plt.subplot(2, 1, 1) # define la figura de arriba plt.plot(caminata) plt.title('12 Caminatas random') plt.xlabel('Tiempo') plt.ylabel('Distancia al origen') i += 1 alejado = [] for i in lista: alejado.append(max(abs(i))) index_alejado = alejado.index(max(alejado)) index_menos_alejado = alejado.index(min(alejado)) plt.subplot(2, 2, 3) plt.plot(lista[index_alejado]) plt.title('Caminata que mas se aleja') ax = plt.gca() # gca es 'get current axis' ó 'tomar eje actual' ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.subplot(2, 2, 4) plt.plot(lista[index_menos_alejado]) plt.title('Caminata que menos se aleja') plt.show() if __name__ == '__main__': graficar()
from api import app from api.user_list_api import user_list_api app.register_blueprint(user_list_api) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)
import pathlib import numpy as np import pandas as pd import mlflow from tqdm.notebook import tqdm from sklearn.model_selection import KFold def regression_cv(features, labels, model_factory, metric, folds, mlflow_tags, artifacts_dir, random_state): train_results = {} test_results = {} train_folds_errors = [] test_folds_errors = [] with mlflow.start_run(tags=({'stage': 'evaluation', **mlflow_tags})) as evaluation_run: mlflow.log_params({ 'n_splits': folds, 'cv_random_state': random_state }) # create splitter if random_state is not None: folder = KFold(n_splits=folds, shuffle=True, random_state=random_state) else: folder = KFold(n_splits=folds, shuffle=False) for fold_idx, indices in tqdm(enumerate(folder.split(features, labels)), total=folder.n_splits): with mlflow.start_run(nested=True, tags={'fold': fold_idx}) as fold_run: train_idx, test_idx = indices train_fold_features = features.iloc[train_idx] train_fold_target = labels.iloc[train_idx] test_fold_features = features.iloc[test_idx] test_fold_target = labels.iloc[test_idx] # train model = model_factory() model.fit(train_fold_features, train_fold_target, eval_data=(test_fold_features, test_fold_target), mlflow_log=True) fold_model_path = pathlib.Path(artifacts_dir) / fold_run.info.run_id / 'evaluation_models' / f'fold_{fold_idx}' fold_model_path.mkdir(parents=True, exist_ok=True) model.save(fold_model_path) # predict train_pred = model.predict(train_fold_features) test_pred = model.predict(test_fold_features) # fold error fold_train_error = metric(train_fold_target, train_pred) fold_test_error = metric(test_fold_target, test_pred) train_folds_errors.append(fold_train_error) test_folds_errors.append(fold_test_error) # store prediction append_array(train_results, 'fold', [fold_idx] * len(train_idx)) append_array(train_results, 'sample_idx', train_idx) append_array(train_results, 'pred', train_pred) append_array(train_results, 'true', train_fold_target) append_array(train_results, 'fold_error', [fold_train_error] * len(train_idx)) append_array(test_results, 'fold', [fold_idx] * len(test_idx)) append_array(test_results, 'sample_idx', test_idx) append_array(test_results, 'pred', test_pred) append_array(test_results, 'true', test_fold_target) append_array(test_results, 'fold_error', [fold_test_error] * len(test_idx)) print(f'Fold #{fold_idx}: test = {fold_test_error:0.5f}, train = {fold_train_error:0.5f}') # mlflow log mlflow.log_metrics({ 'test_err': fold_test_error, 'train_err': fold_train_error }) folds_stat_df = pd.DataFrame({'fold': range(len(train_folds_errors)), 'train': train_folds_errors, 'test': test_folds_errors}) train_results_df = pd.DataFrame(train_results) test_results_df = pd.DataFrame(test_results) print(f'Test error: {folds_stat_df["test"].mean():0.5f} ({folds_stat_df["test"].std():0.5f}),' + f'Train error: {folds_stat_df["train"].mean():0.5f} ({folds_stat_df["train"].std():0.5f})') # mlflow log mlflow.log_metrics({ 'test_err': folds_stat_df["test"].mean(), 'test_err_std': folds_stat_df["test"].std(), 'train_err': folds_stat_df["train"].mean(), 'train_err_std': folds_stat_df["train"].std() }) artifacts_path = pathlib.Path(artifacts_dir) / evaluation_run.info.run_id artifacts_path.mkdir(parents=True, exist_ok=True) train_results_df.to_csv(artifacts_path / 'evaluation_train.csv.zip', index=False) test_results_df.to_csv(artifacts_path / 'evaluation_test.csv.zip', index=False) mlflow.log_artifacts(artifacts_dir) return train_results_df, test_results_df, folds_stat_df def append_array(dictionary, key, array): if key not in dictionary: dictionary[key] = array else: dictionary[key] = np.concatenate((dictionary[key], array))
# Generated by Django 2.0.7 on 2019-01-14 17:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('basedata', '0058_auto_20190114_1708'), ] operations = [ migrations.AlterField( model_name='device', name='total_price', field=models.DecimalField(blank=True, decimal_places=2, default=0, max_digits=9, max_length=8, null=True, verbose_name='金额'), ), ]