text
stringlengths
8
6.05M
from django.contrib import admin from models import Women_Warriors #PART 6.4 see the line above, don't forget to tell the page from where it is supposed to pull!! I forgot about this line and was getting into hella errors. Super important. admin.site.register(Women_Warriors) #PART 6.5 You are telling the admin site, 'hey, little app here, you are going to refer to the modles I have set up for this specific app from the models called Powerful_Warriors" Remember, you are doing this from the
import random random_integer = random.randint(1, 10) print(random_integer)
''' Created on 11/mar/2014 @author: isiu ''' from xml.dom.minidom import parseString #all these imports are standard on most modern python implementations def readXml(filename): #open the xml file for reading: file = open(filename,'r') #convert to string: data = file.read() file.close() #parse the xml you got from the file dom = parseString(data) #retrieve the first xml tag (<tag>data</tag>) that the parser finds with name tagName: xmlTagP = dom.getElementsByTagName('partenza') xmlTagP += dom.getElementsByTagName('ingresso') dict = {} for partenza in xmlTagP: prevcdb = partenza.getAttribute('prevcdb') name = partenza.getAttribute('name') #print name #print prevcdb xmlTagPCDB = partenza.getElementsByTagName('cdb') listcdb = [] for cdb in xmlTagPCDB: value = cdb.firstChild.data qdev = cdb.getAttribute('q_dev') listcdb.append((value,qdev)) #print value if not prevcdb in dict: dict[prevcdb] = [listcdb] else: lis = dict[prevcdb] lis.append(listcdb) #print dict return dict
''' A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. ''' # -*- coding: utf-8 -* def f(n): _len = 0 d = 0 for i in range(1, n): r = recurringCycles(i) if r > _len: _len = r d = i print(d) def recurringCycles(n): remainders = [1] numerator = 1 while True: remainder = numerator * 10 % n numerator = remainder if remainder == 0: return 0 elif remainder in remainders: return len(remainders) - remainders.index(remainder) else: remainders.append(remainder) f(1000)
# Generated by Django 2.2.4 on 2020-12-26 09:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('whcapp', '0003_comment'), ] operations = [ migrations.RenameField( model_name='comment', old_name='user_comment', new_name='user', ), migrations.RemoveField( model_name='comment', name='post_comment', ), migrations.AddField( model_name='comment', name='post', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='m_comments', to='whcapp.Post'), preserve_default=False, ), ]
def NumberChooser(number): if number == 0: return "ゼロ" elif len(str(number)) == 1: return Unit(number) elif len(str(number)) == 2: return Dozens(number) elif len(str(number)) == 3: return Hundreds(number) elif len(str(number)) == 4: return Thousands(number) elif len(str(number)) == 5: return TenOfThousands(number) elif len(str(number)) == 6: return HundredThousands(number) elif len(str(number)) == 7: return Million(number) elif len(str(number)) == 8: return TensOfMillions(number) elif len(str(number)) == 9: return HundredMillions(number) elif len(str(number)) == 10: return Billions(number) elif len(str(number)) == 11: return TensOfBillions(number) elif len(str(number)) == 12: return HundredBillions(number) def Unit(number): if number == 0: return "" elif number == 1: return "いち" elif number == 2: return "に" elif number == 3: return "さん" elif number == 4: return "よん" elif number == 5: return "ご" elif number == 6: return "ろく" elif number == 7: return "なな" elif number == 8: return "はち" elif number == 9: return "きゅう" def Dozens(number): if number < 10: return Unit(number) BackDigit = number % 10 FrontDigit = number//10 if FrontDigit == 1: return "じゅう" + Unit(BackDigit) else: return Unit(FrontDigit) + "じゅう" + Unit(BackDigit) def Hundreds(number): if number < 100: return Dozens(number) BackDigit = number % 100 FrontDigit = number//100 if FrontDigit == 1: return "ひゃく" + Dozens(BackDigit) elif FrontDigit == 3: return "さんびゃく" + Dozens(BackDigit) elif FrontDigit == 6: return "ろっぴゃく" + Dozens(BackDigit) elif FrontDigit == 8: return "はっぴゃく" + Dozens(BackDigit) else: return Unit(FrontDigit) + "ひゃく" + Dozens(BackDigit) def Thousands(number): if number < 1000: return Hundreds(number) BackDigit = number % 1000 FrontDigit = number//1000 if FrontDigit == 1: return "せん" + Hundreds(BackDigit) elif FrontDigit == 3: return "さんぜん" + Hundreds(BackDigit) elif FrontDigit == 8: return "はっせん" + Hundreds(BackDigit) else: return Unit(FrontDigit) + "せん" + Hundreds(BackDigit) def TenOfThousands(number): if number < 10000: return Thousands(number) BackDigit = number % 10000 FrontDigit = number//10000 return Unit(FrontDigit) + "まん" + Thousands(BackDigit) def HundredThousands(number): if number < 100000: return TenOfThousands(number) BackDigit = number % 10000 FrontDigit = number//10000 return Dozens(FrontDigit) + "まん" + Thousands(BackDigit) # def Million(number): if number < 1000000: return HundredThousands(number) BackDigit = number % 10000 FrontDigit = number//10000 return Hundreds(FrontDigit) + "まん" + Thousands(BackDigit) def TensOfMillions(number): if number < 10000000: return Million(number) BackDigit = number % 10000 FrontDigit = number//10000 return Thousands(FrontDigit) + "まん" + Thousands(BackDigit) def HundredMillions(number): if number < 100000000: return TensOfMillions(number) BackDigit = number % 100000000 FrontDigit = number//100000000 return Unit(FrontDigit) + "おく" + TensOfMillions(BackDigit) def Billions(number): if number < 100000000: return TensOfMillions(number) BackDigit = number % 100000000 FrontDigit = number//100000000 return Dozens(FrontDigit) + "おく" + TensOfMillions(BackDigit) def TensOfBillions(number): if number < 100000000: return TensOfMillions(number) BackDigit = number % 100000000 FrontDigit = number//100000000 return Hundreds(FrontDigit) + "おく" + TensOfMillions(BackDigit) def HundredBillions(number): if number < 100000000: return TensOfMillions(number) BackDigit = number % 100000000 FrontDigit = number//100000000 return Thousands(FrontDigit) + "おく" + TensOfMillions(BackDigit) print("Enter number to convert: ") integer = int(input()) print(NumberChooser(integer)) # for i in range(1,1000000): # print(i, NumberChooser(i))
from django.contrib import admin from .models import Topic, Video, Question, Pdf, Query, Comment class TopicAdmin(admin.ModelAdmin): list_display = ('id', 'topicName') list_display_links = ('id', 'topicName') list_filter = ('id',) search_fields = ('topicName',) list_per_page = 10 class VideoAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'key', 'topic') list_display_links = ('id', 'title') list_filter = ('topic', ) search_fields = ('title', 'key', 'channelName', 'id') list_per_page = 25 class QuestionAdmin(admin.ModelAdmin): list_display = ('id', 'question', 'topic') list_display_links = ('id', 'question') list_filter = ('topic',) search_fields = ('question', 'id') list_per_page = 25 class PdfAdmin(admin.ModelAdmin): list_display = ('id', 'topic', 'file') list_display_links = ('id', 'topic') list_filter = ('topic',) search_fields = ('file', 'id') class QueryAdmin(admin.ModelAdmin): list_display = ('id', 'question', 'topic', 'user', 'date') list_display_links = ('id', 'question') list_filter = ('topic', 'date') search_fields = ('question', 'id') class CommentAdmin(admin.ModelAdmin): list_display = ('id', 'comment', 'query', 'user', 'date') list_display_links = ('id', 'comment') list_filter = ('query', 'date') search_fields = ('comment', 'id') admin.site.register(Topic, TopicAdmin) admin.site.register(Video, VideoAdmin) admin.site.register(Question, QuestionAdmin) admin.site.register(Pdf, PdfAdmin) admin.site.register(Query, QueryAdmin) admin.site.register(Comment, CommentAdmin)
from django.urls import path from .views import create_user,activate,forgot_password_mail,reset_password,change_password,teacher_details from django.conf.urls import url app_name = 'contacts' urlpatterns = [ path('/signup',create_user,name='signup'), url(r'^activate/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', activate, name='activate'), path('/resetmail',forgot_password_mail,name='resetmail'), url(r'^resetmail/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', reset_password, name='reset'), path('/changepassword',change_password,name='change_password'), path('/teacher/<int:pk>',teacher_details,name="teacher"), ]
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import TestCase, main from os import close, remove from os.path import basename, join from tempfile import mkstemp from qiita_core.util import qiita_test_checker import qiita_db as qdb @qiita_test_checker() class ReferenceTests(TestCase): def setUp(self): self.name = "Fake Greengenes" self.version = "13_8" fd, self.seqs_fp = mkstemp(suffix="_seqs.fna") close(fd) fd, self.tax_fp = mkstemp(suffix="_tax.txt") close(fd) fd, self.tree_fp = mkstemp(suffix="_tree.tre") close(fd) _, self.db_dir = qdb.util.get_mountpoint('reference')[0] self._clean_up_files = [] def tearDown(self): for f in self._clean_up_files: remove(f) def test_create(self): """Correctly creates the rows in the DB for the reference""" # Check that the returned object has the correct id obs = qdb.reference.Reference.create( self.name, self.version, self.seqs_fp, self.tax_fp, self.tree_fp) self.assertEqual(obs.id, 3) # Check that the information on the database is correct with qdb.sql_connection.TRN: qdb.sql_connection.TRN.add( "SELECT * FROM qiita.reference WHERE reference_id=3") obs = qdb.sql_connection.TRN.execute_fetchindex() self.assertEqual(obs[0][1], self.name) self.assertEqual(obs[0][2], self.version) seqs_id = obs[0][3] tax_id = obs[0][4] tree_id = obs[0][5] # Check that the filepaths have been correctly added to the DB with qdb.sql_connection.TRN: sql = """SELECT * FROM qiita.filepath WHERE filepath_id=%s OR filepath_id=%s OR filepath_id=%s""" qdb.sql_connection.TRN.add(sql, [seqs_id, tax_id, tree_id]) obs = qdb.sql_connection.TRN.execute_fetchindex() exp_seq = "%s_%s_%s" % (self.name, self.version, basename(self.seqs_fp)) exp_tax = "%s_%s_%s" % (self.name, self.version, basename(self.tax_fp)) exp_tree = "%s_%s_%s" % (self.name, self.version, basename(self.tree_fp)) exp = [[seqs_id, exp_seq, 10, '0', 1, 6, 0], [tax_id, exp_tax, 11, '0', 1, 6, 0], [tree_id, exp_tree, 12, '0', 1, 6, 0]] self.assertEqual(obs, exp) def test_sequence_fp(self): ref = qdb.reference.Reference(1) exp = join(self.db_dir, "GreenGenes_13_8_97_otus.fasta") self.assertEqual(ref.sequence_fp, exp) def test_taxonomy_fp(self): ref = qdb.reference.Reference(1) exp = join(self.db_dir, "GreenGenes_13_8_97_otu_taxonomy.txt") self.assertEqual(ref.taxonomy_fp, exp) def test_tree_fp(self): ref = qdb.reference.Reference(1) exp = join(self.db_dir, "GreenGenes_13_8_97_otus.tree") self.assertEqual(ref.tree_fp, exp) def test_tree_fp_empty(self): ref = qdb.reference.Reference(2) self.assertEqual(ref.tree_fp, '') if __name__ == '__main__': main()
#!env python3 # -*- coding: utf-8 -*- class Clock: def __init__(self, hour): self._hour = hour self._ampm = "am" @property def hour(self): return self._hour @hour.setter def hour(self, value): self._hour = value % 12 self._ampm = "am" if value <= 12 else "pm" @property def ampm(self): return self._ampm obj = Clock(11) print(obj.hour, obj.ampm) obj.hour = 13 print(obj.hour, obj.ampm)
import pickle from scipy import sparse as sp def matrix_equal(m1: sp.csr_matrix, m2: sp.csr_matrix): return (m1 != m2).nnz == 0 def _structure_equal(s1, s2): for m1, m2 in zip(s1, s2): yield matrix_equal(m1, m2) def structure_equal(s1, s2): if len(s1) != len(s2): return False return all(_structure_equal(s1, s2)) def is_structure_known(known_structures, structure): for idx, (s2, usages) in enumerate(known_structures): if structure_equal(structure, s2): known_structures[idx] = (s2, usages + 1) return True return False DATA_SET_PATH = 'C:\\workspace\\ucca-4-bpm\\ucca4bpm\\data\\transformed\\ucca-output.pickle' with open(DATA_SET_PATH, 'rb') as f: data = pickle.load(f) structures = data['adjacencies'] known_structures = [] for i, structure in enumerate(structures): print(f'Structure {i}/{len(structures)} analyzed.') if not is_structure_known(known_structures, structure): known_structures.append((structure, 1)) print(f'Got {len(known_structures)} types of matrices, usage below:') for structure, usage in known_structures: print(f'{usage}')
from skimage import io, img_as_ubyte import numpy as np from os import listdir from os.path import isfile, join from utilities import * import warnings import png mypath = './data_relabelled/' outputdir = './img_nodupes_test' onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] with warnings.catch_warnings(): warnings.simplefilter("ignore") io.use_plugin('freeimage') for f in onlyfiles: if f=="labels.csv": continue with open("{}/exceptions.txt".format(outputdir), 'w') as exceptfile: print("Loading image: {}".format(f)) arr = np.load(mypath+ f, mmap_mode='r') try: io.imsave('{}/{}.png'.format(outputdir, f[:-4]), arr) #with open('{}/{}.png'.format(outputdir, f[:-4]), 'wb') as pngfile: # writer = png.Writer(width=arr.shape[1], height=arr.shape[0], bitdepth=16, greyscale=True) # arr2list = arr.tolist() # writer.write(pngfile, arr2list) except: err_msg = "Error when converting file {}. File not processed.".format(f) print(err_msg) exceptfile.write(err_msg + "\n")
class Solution(object): def convert(self, s, numRows): """ :type s: str :type numRows: int :rtype: str """ result = [] for row in range(numRows): go_down = False next_index = row while next_index < len(s): result.append(s[next_index]) if (go_down and row != 0) or (not go_down and row != numRows - 1): go_down = not go_down if go_down: next_index += (numRows - row - 1) * 2 else: next_index += row * 2 import string return string.join(result, '') import unittest class TestSolution(unittest.TestCase): def test_solution(self): print Solution().convert('A', 1) #PAHNAPLSIIGYIR
from bfimpl.bfunc import generateId PATTERN = """//Start:Declarations int sub_%ID%(%ARGS%); //Stop:Declarations //Start:Definitions int sub_%ID%(%ARGS%) { int retval; retval = %EXPRESSION%; return retval; } //Stop:Definitions """ def generate(n): identification = generateId() arguments = "" subtraction = "" for i in range(0, n): arguments += "int arg%d, " % (i + 1) subtraction += "arg%d - " % (i + 1) subtraction = subtraction[:-2] arguments = arguments[:-2] code = PATTERN code = code.replace("%ID%", identification) code = code.replace("%ARGS%", arguments) code = code.replace("%EXPRESSION%", subtraction) return "sub_%s" % identification, code
# -*- coding: utf-8 -*- from Itinerary import Itinerary from AirportAtlas import AirportAtlas from AircraftList import AircraftList from CurrencyList import CurrencyList from CurrencyRateList import CurrencyRateList from itertools import permutations import sys from tkinter import messagebox class ItineraryList: def __init__(self,Data): self.__routelist=self.loadData(Data) def loadData(self,Data): numofairports=len(Data)-1 #minus one because last index is aircraftcode airportlist=[] for i in range(numofairports): #seperates airports from aircraft airportlist.append(Data[i]) aircraftcode=Data[numofairports] cheapestroutelist,mincost,cheapestroutedist,shortestroutelist,shortestroutecost,shortestroutedist=ItineraryList.calculationForFiveRoutes(self,airportlist,aircraftcode) self.obj1=Itinerary(cheapestroutelist,mincost,cheapestroutedist,shortestroutelist,shortestroutecost,shortestroutedist,Data[5]) def getCheapestRouteList(self): return self.obj1.getCheapestRouteList() def getMinCost(self): return self.obj1.getMinCost() def getCheapestRouteDist(self): return self.obj1.getCheapestRouteDist() def getShortestRouteList(self): return self.obj1.getShortestRouteList() def getShortestRouteCost(self): return self.obj1.getShortestRouteCost() def getShortestRouteDist(self): return self.obj1.getShortestRouteDist() def getAircraft(self): return self.obj1.getAircraft() def permutations(homeairport,airportlist): possairportlist=list(permutations(airportlist)) routelist=[] for row in possairportlist: row=list(row) row.insert(0,homeairport) row.insert(len(row),homeairport) routelist.append(row) return routelist def calculationForFiveRoutes(self,airportlist,aircraftcode): """ The main code of the project. Takes the list of the airports and aircraft given by the user, eliminates all the impossible routes and with trial and error finds the optimum route. Returns the cheapest route, minimum cost, distance of the optimum route and the impossible routes distance. cheapestroutelist,mincost,routedist,impossible_routes_distancefuel **Parameters**\n ----------\n airportlist: A list consists of 5 airports (IATA codes) taken as an input from the user. aircraftcode: The aircraft's code which will carry on the itinerary. **Returns**\n -------\n cheapestroutelist: The sequence of airports regarding to the optimum route. mincost: The cost of the itinerary. routedist: THe total distance of the itinerary. impossible_routes_distancefuel: The list of the impossible routes. """ homeairport=airportlist.pop(0) routelist=ItineraryList.permutations(homeairport,airportlist) cheapestroutelist,mincost,routedist,bestroutelist,cost1,bestroute,impossible_routes_fullrefuel=ItineraryList.fullrefuel(airportlist,routelist,aircraftcode) cheapestroutelistopt,mincostopt,routedistopt,impossible_routes_distancefuel=ItineraryList.distancerefuel(airportlist,routelist,aircraftcode) if mincostopt<mincost: mincost=mincostopt cheapestroutelist=cheapestroutelistopt routedist=routedistopt if len(impossible_routes_fullrefuel)==24 and len(impossible_routes_distancefuel)==24: #if all possible routes=(4!)*2 are impossible print ... messagebox.showinfo("Impossible route", "This plane cannot complete the specified routes please change the plane or routes") elif len(impossible_routes_fullrefuel)==24: mincost=mincostopt cheapestroutelist=cheapestroutelistopt routedist=routedistopt else: return cheapestroutelist,mincost,routedist,bestroutelist,cost1,bestroute def fullrefuel(airportlist,routelist,aircraftcode): #finds shortest and cheapest routes by full refuel try: aircraft=AircraftList('aircraft.csv') except FileNotFoundError: messagebox.showinfo("Loading error aircraft.csv file", "Unable to load 'aircraft.csv' file please make sure this file and aircraft.csv located on the same file and filename is 'aircraft.csv'") sys.exit(0) try: airport=AirportAtlas('airport.csv') except FileNotFoundError: messagebox.showinfo("Loading error airport.csv file", "Unable to load 'airport.csv' file please make sure this file and airport.csv located on the same file and filename is 'airport.csv'") sys.exit(0) try: countrycurr=CurrencyList('countrycurrency.csv') except FileNotFoundError: messagebox.showinfo("Loading error countrycurrency.csv file", "Unable to load 'countrycurrency.csv' file please make sure this file and countrycurrency.csv located on the same file and filename is 'countrycurrency.csv'") sys.exit(0) try: currencyrate=CurrencyRateList('currencyrates.csv') except FileNotFoundError: messagebox.showinfo("Loading error currencyrates.csv file", "Unable to load 'currencyrates.csv' file please make sure this file and currencyrates.csv located on the same file and filename is 'currencyrates.csv'") sys.exit(0) # some initial assignments initialaircraftrange=aircraft.getAircraftRange(aircraftcode) aircraftrange=initialaircraftrange bestroute=10**10 mincost=10**10 tobefueled=0 cost=0 indx=0 currrate=0 impossible_routes_fullrefuel=[] control=0 #for controling the impossible routes for j in range(len(routelist)): totalcost=0 totalroute=0 control=0 #sets control back to zero for k in range(len(airportlist)+1): distance=airport.distanceBetweenAirports(routelist[j][k],routelist[j][k+1]) totalroute+=distance if routelist[j][k]==routelist[j][k+1]: #plane can visit one airport twice but departure and arrival cant be same airport control=1 if distance>aircraftrange: tobefueled=initialaircraftrange-aircraftrange where=airport.getAirportCountry(routelist[j][k]) iseuro=countrycurr.getCurrencyCode(where) currrate=currencyrate.getCurrencyRate(iseuro) cost=tobefueled*currrate aircraftrange+=tobefueled totalcost+=cost if distance>aircraftrange: #still distance is bigger than range even when gas tank is full control=1 #if control is 1 bestroute and cheapest is not calculated indx+=1 aircraftrange=aircraftrange-distance totalroute1=totalroute aircraftrange=initialaircraftrange #================COMPARING=============================== if control == 0: if bestroute>totalroute: bestroute=totalroute bestroutelist=routelist[j] cost1=totalcost if mincost>totalcost: mincost=totalcost cheapestroutelist=routelist[j] routedist=totalroute1 #========================================================= else: impossible_routes_fullrefuel.append(routelist[j]) # for counting impossible routes bestroutelist=0 totalroute=0 cost1=0 if len(impossible_routes_fullrefuel)==24: cheapestroutelist=0 mincost=10**10 routedist=0 bestroutelist=0 cost1=10**10 bestroute=0 return cheapestroutelist,mincost,routedist,bestroutelist,cost1,bestroute,impossible_routes_fullrefuel else: return cheapestroutelist,mincost,routedist,bestroutelist,cost1,bestroute,impossible_routes_fullrefuel def distancerefuel(airportlist,routelist,aircraftcode): #Doing a small optimization by checking whether fully refueling or refueling enough for only that leg's distance is cheaper try: aircraft=AircraftList('aircraft.csv') except FileNotFoundError: messagebox.showinfo("Loading error aircraft.csv file", "Unable to load 'aircraft.csv' file please make sure this file and aircraft.csv located on the same file and filename is 'aircraft.csv'") sys.exit(0) try: airport=AirportAtlas('airport.csv') except FileNotFoundError: messagebox.showinfo("Loading error airport.csv file", "Unable to load 'airport.csv' file please make sure this file and airport.csv located on the same file and filename is 'airport.csv'") sys.exit(0) try: countrycurr=CurrencyList('countrycurrency.csv') except FileNotFoundError: messagebox.showinfo("Loading error countrycurrency.csv file", "Unable to load 'countrycurrency.csv' file please make sure this file and countrycurrency.csv located on the same file and filename is 'countrycurrency.csv'") sys.exit(0) try: currencyrate=CurrencyRateList('currencyrates.csv') except FileNotFoundError: messagebox.showinfo("Loading error currencyrates.csv file", "Unable to load 'currencyrates.csv' file please make sure this file and currencyrates.csv located on the same file and filename is 'currencyrates.csv'") sys.exit(0) initialaircraftrange=aircraft.getAircraftRange(aircraftcode) aircraftrange=initialaircraftrange mincost=10**10 totalcostopt=0 indx=0 currrate=0 impossible_routes_distancefuel=[] control=0 for j in range(len(routelist)): totalroute=0 totalcostopt=0 control=0 for k in range(len(airportlist)+1): distance=airport.distanceBetweenAirports(routelist[j][k],routelist[j][k+1]) totalroute+=distance if routelist[j][k]==routelist[j][k+1]: control=1 if distance>aircraftrange:# refuel enough to complete this leg where=airport.getAirportCountry(routelist[j][k]) iseuro=countrycurr.getCurrencyCode(where) currrate=currencyrate.getCurrencyRate(iseuro) if distance<initialaircraftrange: tobefueledopt=distance-aircraftrange costopt=tobefueledopt*currrate aircraftrange+=tobefueledopt totalcostopt+=costopt if distance>aircraftrange: #still distance is bigger than range even when gas tank is full control=1 #if control is 1 bestroute and cheapest is not calculated indx+=1 aircraftrange=aircraftrange-distance totalroute1=totalroute aircraftrange=initialaircraftrange if control == 0: #=======================COMPARING====================== if mincost>totalcostopt: mincost=totalcostopt cheapestroutelist=routelist[j] routedist=totalroute1 #================================================== else: impossible_routes_distancefuel.append(routelist[j]) # for counting impossible routes bestroutelist=0 totalroute=0 cost1=0 if len(impossible_routes_distancefuel)==24: cheapestroutelist=0 mincost=10**10 routedist=0 return cheapestroutelist,mincost,routedist,impossible_routes_distancefuel else: return cheapestroutelist,mincost,routedist,impossible_routes_distancefuel
import os from dotenv import load_dotenv load_dotenv() DISPLAY_NAME = os.getenv('display_name') SENDER_EMAIL = os.getenv('sender_email') PASSWORD = os.getenv('password') try: assert DISPLAY_NAME assert SENDER_EMAIL assert PASSWORD except AssertionError: print('Please set up credentials!') else: print('Credentials loaded successfully')
#!/usr/bin/env python3 """Processes errors for pyincapsula Handles all error that might occur with pyincapsula and returns a JSON breakdown of what the error is. See github for more information byond the description and details the error message returns error -- Exception thrown by the script data -- Extra data needed to diagnose the error (Default: None) """ import json import requests def errorProcess(error, data=None): if type(error) is NameError: outError = { 'error':0, 'description':'Required argument not provided', 'details':str(data)+' was not provided' } elif type(error) is AssertionError: outError = { 'error':0, 'description':'Required argument not provided', 'details':str(data)+' was not provided or is incorrect' } elif type(error) is ValueError: if data == 'int': outError = { 'error':5, 'description':'A non-integer value was pass when an integer' 'was required', 'details':error } if data == 'str': outError = { 'error':5, 'description':'A non-string value was pass when an string' 'was required', 'details':error } elif type(error) is ConnectionError: outError = { 'error':1, 'description':'Connection error.', 'details':error } elif type(error) is TimeoutError: outError = { 'error':2, 'description':'Connection timed-out.', 'details':error } elif type(error) is requests.exceptions.HTTPError: outError = { 'error':3, 'description':'HTTP Exception', 'details':error } elif type(error) is EnvironmentError: outError = { 'error':4, 'description':data, 'details':error } else: outError = { 'error':99, 'description':'Unknown Error', 'details':error } return json.dumps(outError)
''' File defining the global constants ''' FRAMES_PER_SAMPLE = 100 # number of frames forming a chunk of data SAMPLING_RATE = 8000 FRAME_SIZE = 256 NEFF = 129 # effective FFT points # amplification factor of the waveform sig AMP_FAC = 10000 MIN_AMP = 10000 # TF bins smaller than THRESHOLD will be # considered inactive THRESHOLD = 40 # embedding dimention EMBBEDDING_D = 40 # prams for pre-whitening GLOBAL_MEAN = 44 GLOBAL_STD = 15.5 # feed forward dropout prob P_DROPOUT_FF = 0.5 # recurrent dropout prob P_DROPOUT_RC = 0.2 N_HIDDEN = 300 LEARNING_RATE = 1e-3 MAX_STEP = 2000000 TRAIN_BATCH_SIZE = 128
import tensorflow as tf from tensorflow import keras from tensorflow.keras import backend as K class FullyConvNets(keras.layers.Layer): def __init__(self, nb_filters=128, **kwargs): super(FullyConvNets, self).__init__(**kwargs) self.conv1 = keras.Sequential([ keras.layers.Conv1D(nb_filters, 8, 1, padding='same', kernel_initializer='he_normal'), # keras.layers.BatchNormalization(), keras.layers.Activation('relu') ]) self.conv2 = keras.Sequential([ keras.layers.Conv1D(nb_filters*2, 5, 1, padding='same', kernel_initializer='he_normal'), # keras.layers.BatchNormalization(), keras.layers.Activation('relu') ]) self.conv3 = keras.Sequential([ keras.layers.Conv1D(nb_filters, 3, 1, padding='same', kernel_initializer='he_normal'), # keras.layers.BatchNormalization(), keras.layers.Activation('relu') ]) def call(self, inputs, **kwargs): x = self.conv1(inputs) x = self.conv2(x) x = self.conv3(x) return x def FCN(init, input_shape): # input_shape: [batch_size, time_steps, nb_time_series] x = keras.layers.Input(input_shape) y = FullyConvNets(init.CNNFilters)(x) y = keras.layers.GlobalAveragePooling1D()(y) # y = keras.layers.Dropout(0.1)(y) y = keras.layers.Dense(init.FeatDims)(y) if init.task == 'classification': y = keras.layers.Activation('softmax')(y) model = keras.models.Model(inputs=x, outputs=y) return model
import unittest import cupy from cupy import testing from cupyx.scipy import sparse import numpy import pytest @testing.parameterize(*testing.product({ 'format': ['csr', 'csc'], 'density': [0.1, 0.4, 0.9], 'dtype': ['float32', 'float64', 'complex64', 'complex128'], 'n_rows': [25, 150], 'n_cols': [25, 150] })) @testing.with_requires('scipy>=1.4.0') @testing.gpu class TestIndexing(unittest.TestCase): def _run(self, maj, min=None, flip_for_csc=True, compare_dense=False): a = sparse.random(self.n_rows, self.n_cols, format=self.format, density=self.density) if self.format == 'csc' and flip_for_csc: tmp = maj maj = min min = tmp # None is not valid for major when minor is not None maj = slice(None) if maj is None else maj # sparse.random doesn't support complex types # so we need to cast a = a.astype(self.dtype) expected = a.get() maj_h = maj.get() if isinstance(maj, cupy.ndarray) else maj min_h = min.get() if isinstance(min, cupy.ndarray) else min if min is not None: actual = a[maj, min] expected = expected[maj_h, min_h] else: actual = a[maj] expected = expected[maj_h] if compare_dense: actual = actual.toarray() expected = expected.toarray() if sparse.isspmatrix(actual): actual.sort_indices() expected.sort_indices() testing.assert_array_equal( actual.indptr, expected.indptr) testing.assert_array_equal( actual.indices, expected.indices) testing.assert_array_equal( actual.data, expected.data) actual = actual.toarray() expected = expected.toarray() testing.assert_array_equal(actual, expected) @staticmethod def _get_index_combos(idx): return [dict['arr_fn'](idx, dtype=dict['dtype']) for dict in testing.product({ "arr_fn": [numpy.array, cupy.array], "dtype": [numpy.int32, numpy.int64] })] # 2D Slicing def test_major_slice(self): self._run(slice(5, 9)) self._run(slice(9, 5)) def test_major_all(self): self._run(slice(None)) def test_major_scalar(self): self._run(10) self._run(-10) self._run(numpy.array(10)) self._run(numpy.array(-10)) self._run(cupy.array(10)) self._run(cupy.array(-10)) def test_major_slice_minor_slice(self): self._run(slice(1, 5), slice(1, 5)) self._run(slice(1, 20, 2), slice(1, 5, 1)) self._run(slice(20, 1, 2), slice(1, 5, 1)) self._run(slice(1, 15, 2), slice(1, 5, 1)) self._run(slice(15, 1, 5), slice(1, 5, 1)) self._run(slice(1, 15, 5), slice(1, 5, 1)) self._run(slice(20, 1, 5), slice(None)) self._run(slice(1, 20, 5), slice(None)) self._run(slice(1, 5, 1), slice(1, 20, 2)) self._run(slice(1, 5, 1), slice(20, 1, 2)) self._run(slice(1, 5, 1), slice(1, 15, 2)) self._run(slice(1, 5, 1), slice(15, 1, 5)) self._run(slice(1, 5, 1), slice(1, 15, 5)) self._run(slice(None), slice(20, 1, 5)) self._run(slice(None), slice(1, 20, 5)) def test_major_slice_minor_all(self): self._run(slice(1, 5), slice(None)) self._run(slice(5, 1), slice(None)) def test_major_slice_minor_scalar(self): self._run(slice(1, 5), 5) self._run(slice(5, 1), 5) self._run(slice(5, 1, -1), 5) self._run(5, slice(5, 1, -1)) def test_major_scalar_minor_slice(self): self._run(5, slice(1, 5)) self._run(numpy.array(5), slice(1, 5)) self._run(cupy.array(5), slice(1, 5)) def test_major_scalar_minor_all(self): self._run(5, slice(None)) self._run(numpy.array(5), slice(None)) def test_major_scalar_minor_scalar(self): self._run(5, 5) self._run(numpy.array(5), numpy.array(5)) self._run(cupy.array(5), cupy.array(5)) def test_major_all_minor_scalar(self): self._run(slice(None), 5) def test_major_all_minor_slice(self): self._run(slice(None), slice(5, 10)) def test_major_all_minor_all(self): self._run(slice(None), slice(None)) def test_ellipsis(self): self._run(Ellipsis, flip_for_csc=False) self._run(Ellipsis, 1, flip_for_csc=False) self._run(1, Ellipsis, flip_for_csc=False) self._run(Ellipsis, slice(None), flip_for_csc=False) self._run(slice(None), Ellipsis, flip_for_csc=False) self._run(Ellipsis, slice(1, None), flip_for_csc=False) self._run(slice(1, None), Ellipsis, flip_for_csc=False) # Major Indexing def test_major_bool_fancy(self): size = self.n_rows if self.format == 'csr' else self.n_cols a = numpy.random.random(size) self._run(cupy.array(a).astype(cupy.bool)) # Cupy self._run(a.astype(numpy.bool)) # Numpy @testing.with_requires('scipy>=1.5.0') def test_major_bool_list_fancy(self): # In older environments (e.g., py35, scipy 1.4), scipy sparse arrays # are crashing when indexed with native Python boolean list. size = self.n_rows if self.format == 'csr' else self.n_cols a = numpy.random.random(size) self._run(a.astype(numpy.bool).tolist()) # List def test_major_fancy_minor_all(self): self._run([1, 5, 4, 2, 5, 1], slice(None)) for idx in self._get_index_combos([1, 5, 4, 2, 5, 1]): self._run(idx, slice(None)) def test_major_fancy_minor_scalar(self): self._run([1, 5, 4, 5, 1], 5) for idx in self._get_index_combos([1, 5, 4, 2, 5, 1]): self._run(idx, 5) def test_major_fancy_minor_slice(self): self._run([1, 5, 4, 5, 1], slice(1, 5)) self._run([1, 5, 4, 5, 1], slice(5, 1, 1)) for idx in self._get_index_combos([1, 5, 4, 5, 1]): self._run(idx, slice(5, 1, 1)) for idx in self._get_index_combos([1, 5, 4, 5, 1]): self._run(idx, slice(1, 5)) # Minor Indexing def test_major_all_minor_bool(self): size = self.n_cols if self.format == 'csr' else self.n_rows a = numpy.random.random(size) self._run(slice(None), cupy.array(a).astype(cupy.bool)) # Cupy self._run(slice(None), a.astype(numpy.bool)) # Numpy @testing.with_requires('scipy>=1.5.0') def test_major_all_minor_bool_list(self): # In older environments (e.g., py35, scipy 1.4), scipy sparse arrays # are crashing when indexed with native Python boolean list. size = self.n_cols if self.format == 'csr' else self.n_rows a = numpy.random.random(size) self._run(slice(None), a.astype(numpy.bool).tolist()) # List def test_major_slice_minor_bool(self): size = self.n_cols if self.format == 'csr' else self.n_rows a = numpy.random.random(size) self._run(slice(1, 10, 2), cupy.array(a).astype(cupy.bool)) # Cupy self._run(slice(1, 10, 2), a.astype(numpy.bool)) # Numpy @testing.with_requires('scipy>=1.5.0') def test_major_slice_minor_bool_list(self): # In older environments (e.g., py35, scipy 1.4), scipy sparse arrays # are crashing when indexed with native Python boolean list. size = self.n_cols if self.format == 'csr' else self.n_rows a = numpy.random.random(size) self._run(slice(1, 10, 2), a.astype(numpy.bool).tolist()) # List def test_major_all_minor_fancy(self): self._run(slice(None), [1, 5, 2, 3, 4, 5, 4, 1, 5]) self._run(slice(None), [0, 3, 4, 1, 1, 5, 5, 2, 3, 4, 5, 4, 1, 5]) self._run(slice(None), [1, 5, 4, 5, 2, 4, 1]) for idx in self._get_index_combos([1, 5, 4, 5, 2, 4, 1]): self._run(slice(None), idx, compare_dense=True) def test_major_slice_minor_fancy(self): self._run(slice(1, 10, 2), [1, 5, 4, 5, 2, 4, 1], compare_dense=True) for idx in self._get_index_combos([1, 5, 4, 5, 2, 4, 1]): self._run(slice(1, 10, 2), idx, compare_dense=True) def test_major_scalar_minor_fancy(self): self._run(5, [1, 5, 4, 1, 2], compare_dense=True) for idx in self._get_index_combos([1, 5, 4, 1, 2]): self._run(5, idx, compare_dense=True) # Inner Indexing def test_major_fancy_minor_fancy(self): for idx in self._get_index_combos([1, 5, 4]): self._run(idx, idx) self._run([1, 5, 4], [1, 5, 4]) maj = self._get_index_combos([2, 0, 10, 0, 2]) min = self._get_index_combos([9, 2, 1, 0, 2]) for (idx1, idx2) in zip(maj, min): self._run(idx1, idx2) self._run([2, 0, 10, 0], [9, 2, 1, 0]) maj = self._get_index_combos([2, 0, 2]) min = self._get_index_combos([2, 1, 1]) for (idx1, idx2) in zip(maj, min): self._run(idx1, idx2) self._run([2, 0, 2], [2, 1, 2]) # Bad Indexing def test_bad_indexing(self): with pytest.raises(IndexError): self._run("foo") with pytest.raises(IndexError): self._run(2, "foo") with pytest.raises(ValueError): self._run([1, 2, 3], [1, 2, 3, 4]) with pytest.raises(IndexError): self._run([[0, 0], [1, 1]])
from flask_restful import Resource from flask_restful import abort from flask_restful import marshal_with, marshal from flask_restful import fields from flask_restful import reqparse from app.db import dbs from app.models.user import User import re from datetime import datetime from app.resources.auth import validate_protected_action_permission_jwt, validate_login_jwt, get_login_jwt user_fields = { 'id': fields.Integer, 'firstname': fields.String, 'lastname': fields.String, 'nickname': fields.String, 'birthday': fields.DateTime, 'size': fields.Float, 'sex': fields.String, 'email': fields.String, 'administrator': fields.Boolean, 'moderator': fields.Boolean, 'uri': fields.Url('area', absolute=True), 'time_created': fields.DateTime, 'time_updated': fields.DateTime } parser = reqparse.RequestParser() parser.add_argument('firstname') parser.add_argument('lastname') parser.add_argument('nickname') parser.add_argument('birthday') parser.add_argument('password') parser.add_argument('size', type=float) parser.add_argument('sex') parser.add_argument('email', required=True, help="Email cannot be blank!") parser.add_argument('installAdmin', type=bool) promotion_parser = reqparse.RequestParser() promotion_parser.add_argument('promoteToAdmin', type=bool) promotion_parser.add_argument('promoteToMod', type=bool) sexes = [None, 'male', 'female'] class UserResource(Resource): @marshal_with(user_fields, envelope='data') def get(self, id): user = dbs.query(User).filter(User.id == id).first() if not user: abort(404, message="(Code 001) User {} doesn't exist".format(id)) if user.birthday: user.birthday = datetime.combine(user.birthday, datetime.min.time()) # Can't marshall date, only datetime return user @validate_protected_action_permission_jwt def delete(self, id, **kwargs): if kwargs['protected_action_permission'] != 'delete': abort(401, message='(Code 025) Wrong permissions!') user = dbs.query(User).filter(User.id == id).first() if not user: abort(404, message="(Code 002) User {} doesn't exist".format(id)) dbs.delete(user) dbs.commit() return {}, 204 @validate_protected_action_permission_jwt @validate_login_jwt def put(self, id, **kwargs): parsed_args = parser.parse_args() if not (parsed_args['nickname'] or (parsed_args['firstname'] and parsed_args['lastname'])): abort(400, message="(Code 003) Either a nickname or a firstname and lastname need to be given!") if not re.match(r"[^@]+@[^@]+\.[^@]+", parsed_args['email']): abort(400, message="(Code 004) Email field is invalid!") if not parsed_args['sex'] in sexes: abort(400, message="(Code 027) Invalid sex!") user = dbs.query(User).filter(User.id == id).first() if not user: abort(404, message="(Code 080) User {} doesn't exist".format(id)) if kwargs['user'].email != user.email: abort(401, message="(Code 005) Unauthorized!") user.firstname = parsed_args['firstname'] user.lastname = parsed_args['lastname'] user.nickname = parsed_args['nickname'] user.size = parsed_args['size'] user.sex = parsed_args['sex'] user.birthday = datetime.strptime(parsed_args['birthday'], '%Y-%m-%d') if parsed_args[ 'birthday'] else None if user.email != parsed_args['email']: # Changing the email address needs special permissions if kwargs['protected_action_permission'] != 'put': abort(401, message='(Code 006) Unauthorized!') else: user.email = parsed_args['email'] generate_refreshed_jwt = True else: generate_refreshed_jwt = False if parsed_args['password']: # So does changing the password if kwargs['protected_action_permission'] != 'put': abort(401, message='(Code 007) Unauthorized!') else: user.password = parsed_args['password'] dbs.add(user) dbs.commit() if user.birthday: user.birthday = datetime.combine(user.birthday, datetime.min.time()) # Can't marshall date, only datetime marshalled_response = marshal(user, user_fields, envelope='data') # When email changed, the login JWT is now invalid and a new one has to be sent if generate_refreshed_jwt: marshalled_response['refreshedJWT'] = get_login_jwt(user.email) return marshalled_response, 201 class UserListResource(Resource): @marshal_with(user_fields, envelope='data') def get(self): users = dbs.query(User).all() for user in users: if user.birthday: user.birthday = datetime.combine(user.birthday, datetime.min.time()) return users @marshal_with(user_fields, envelope='data') def post(self): parsed_args = parser.parse_args() # If there is not admin in the system yet, an admin can be created this way. This will only work for the first # admin in the system! is_admin = False if parsed_args['installAdmin']: if not dbs.query(User).filter(User.administrator).all(): is_admin = True else: abort(401, message="(Code 036) Falsely attempted to create initial administrator!") if not (parsed_args['nickname'] or (parsed_args['firstname'] and parsed_args['lastname'])): abort(400, message="(Code 008) Either a nickname or a firstname and lastname need to be given!") if not re.match(r"[^@]+@[^@]+\.[^@]+", parsed_args['email']): abort(400, message="(Code 009) Email field is invalid!") if not parsed_args['password']: abort(400, message="(Code 010) Password cannot be blank!") if not parsed_args['sex'] in sexes: abort(400, message="(Code 026) Invalid sex!") birthday = datetime.strptime(parsed_args['birthday'], '%Y-%m-%d') if parsed_args[ 'birthday'] else None user = User(firstname=parsed_args['firstname'], lastname=parsed_args['lastname'], nickname=parsed_args['nickname'], birthday=birthday, size=parsed_args['size'], sex=parsed_args['sex'], email=parsed_args['email'], password=parsed_args['password'], administrator=is_admin, moderator=is_admin) dbs.add(user) dbs.commit() if user.birthday: user.birthday = datetime.combine(user.birthday, datetime.min.time()) # Can't marshall date, only datetime return user, 201 class PromotionResource(Resource): @marshal_with(user_fields, envelope='data') @validate_login_jwt def put(self, id, **kwargs): parsed_args = promotion_parser.parse_args() user = dbs.query(User).filter(User.id == id).first() if not user: abort(404, message="(Code 037) User {} doesn't exist".format(id)) if parsed_args['promoteToAdmin']: if user.administrator: abort(404, message="(Code 040) User is already an administrator!") else: if kwargs['user'].administrator: user.administrator = True user.moderator = True else: abort(401, message="(Code 038) Unauthorized!") if parsed_args['promoteToMod']: if user.administrator: abort(404, message="(Code 041) User is already an administrator!") elif user.moderator: abort(404, message="(Code 042) User is already a moderator!") else: if kwargs['user'].moderator or kwargs['user'].administrator: user.moderator = True else: abort(401, message="(Code 039) Unauthorized!") dbs.add(user) dbs.commit() return user, 201
# Copyright (c) 2012--2014 King's College London # Created by the Software Development Team <http://soft-dev.org/> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from __future__ import print_function try: import cPickle as pickle except: import pickle import time, os from grammar_parser.gparser import Parser, Nonterminal, Terminal, Epsilon, IndentationTerminal from syntaxtable import SyntaxTable, FinishSymbol, Reduce, Accept, Shift from stategraph import StateGraph from constants import LR0, LALR from astree import AST, TextNode, BOS, EOS from ip_plugins.plugin import PluginManager import logging Node = TextNode def printc(text, color): print("\033[%sm%s\033[0m" % (color, text)) def printline(start): start = start.next_term l = [] while True: l.append(start.symbol.name) if start.lookup == "<return>" or isinstance(start, EOS): break start = start.next_term return "".join(l) class IncParser(object): """ The incremental parser """ def __init__(self, grammar=None, lr_type=LR0, whitespaces=False, startsymbol=None): if grammar: logging.debug("Parsing Grammar") parser = Parser(grammar, whitespaces) parser.parse() filename = "".join([os.path.dirname(__file__), "/../pickle/", str(hash(grammar) ^ hash(whitespaces)), ".pcl"]) try: logging.debug("Try to unpickle former stategraph") f = open(filename, "r") start = time.time() self.graph = pickle.load(f) end = time.time() logging.debug("unpickling done in %s", end-start) except IOError: logging.debug("could not unpickle old graph") logging.debug("Creating Stategraph") self.graph = StateGraph(parser.start_symbol, parser.rules, lr_type) logging.debug("Building Stategraph") self.graph.build() logging.debug("Pickling") pickle.dump(self.graph, open(filename, "w")) if lr_type == LALR: self.graph.convert_lalr() logging.debug("Creating Syntaxtable") self.syntaxtable = SyntaxTable(lr_type) self.syntaxtable.build(self.graph) self.stack = [] self.ast_stack = [] self.all_changes = [] self.undo = [] self.last_shift_state = 0 self.validating = False self.last_status = False self.error_node = None self.whitespaces = whitespaces self.status_by_version = {} self.errornode_by_version = {} self.indentation_based = False self.pm = PluginManager() self.pm.loadplugins(self) self.pm.do_incparse_init() self.previous_version = None logging.debug("Incremental parser done") def from_dict(self, rules, startsymbol, lr_type, whitespaces, pickle_id, precedences): self.graph = None self.syntaxtable = None if pickle_id: filename = "".join([os.path.dirname(__file__), "/../pickle/", str(pickle_id ^ hash(whitespaces)), ".pcl"]) try: f = open(filename, "r") self.syntaxtable = pickle.load(f) except IOError: pass if self.syntaxtable is None: self.graph = StateGraph(startsymbol, rules, lr_type) self.graph.build() self.syntaxtable = SyntaxTable(lr_type) self.syntaxtable.build(self.graph, precedences) if pickle_id: pickle.dump(self.syntaxtable, open(filename, "w")) self.whitespaces = whitespaces self.pm.do_incparse_from_dict(rules) def init_ast(self, magic_parent=None): bos = BOS(Terminal(""), 0, []) eos = EOS(FinishSymbol(), 0, []) bos.magic_parent = magic_parent eos.magic_parent = magic_parent bos.next_term = eos eos.prev_term = bos root = Node(Nonterminal("Root"), 0, [bos, eos]) self.previous_version = AST(root) root.save(0) bos.save(0) eos.save(0) def reparse(self): self.inc_parse([], True) def inc_parse(self, line_indents=[], reparse=False): logging.debug("============ NEW INCREMENTAL PARSE ================= ") self.validating = False self.error_node = None self.stack = [] self.undo = [] self.current_state = 0 self.stack.append(Node(FinishSymbol(), 0, [])) bos = self.previous_version.parent.children[0] self.loopcount = 0 USE_OPT = True self.pm.do_incparse_inc_parse_top() la = self.pop_lookahead(bos) while(True): logging.debug("\x1b[35mProcessing\x1b[0m %s %s %s %s", la, la.changed, id(la), la.indent) self.loopcount += 1 if isinstance(la.symbol, Terminal) or isinstance(la.symbol, FinishSymbol) or la.symbol == Epsilon(): if la.changed: assert False # with prelexing you should never end up here! else: lookup_symbol = self.get_lookup(la) result = self.parse_terminal(la, lookup_symbol) if result == "Accept": self.last_status = True return True elif result == "Error": self.last_status = False return False elif result != None: la = result else: # Nonterminal if la.changed or reparse: # deconstruct the #la.changed = False # as all nonterminals that have changed are being rebuild, there is no need to change this flag (this also solves problems with comments) self.undo.append((la, 'changed', True)) la = self.left_breakdown(la) else: if USE_OPT: #Follow parsing/syntax table goto = self.syntaxtable.lookup(self.current_state, la.symbol) if goto: # can we shift this Nonterminal in the current state? logging.debug("OPTShift: %s in state %s -> %s", la.symbol, self.current_state, goto) self.pm.do_incparse_optshift(la) follow_id = goto.action self.stack.append(la) la.state = follow_id #XXX this fixed goto error (I should think about storing the states on the stack instead of inside the elements) self.current_state = follow_id logging.debug("USE_OPT: set state to %s", self.current_state) la = self.pop_lookahead(la) self.validating = True continue else: #XXX can be made faster by providing more information in syntax tables first_term = la.find_first_terminal() lookup_symbol = self.get_lookup(first_term) element = self.syntaxtable.lookup(self.current_state, lookup_symbol) if isinstance(element, Reduce): self.reduce(element) else: la = self.left_breakdown(la) else: # PARSER WITHOUT OPTIMISATION if la.lookup != "": lookup_symbol = Terminal(la.lookup) else: lookup_symbol = la.symbol element = self.syntaxtable.lookup(self.current_state, lookup_symbol) if self.shiftable(la): logging.debug("\x1b[37mis shiftable\x1b[0m") self.stack.append(la) self.current_state = la.state self.right_breakdown() la = self.pop_lookahead(la) else: la = self.left_breakdown(la) logging.debug("============ INCREMENTAL PARSE END ================= ") def parse_terminal(self, la, lookup_symbol): """ Take in one terminal and set it's state to the state the parsing is in at the moment this terminal has been read. :param la: lookahead :param lookup_symbol: :return: "Accept" is the code was accepted as valid, "Error" if the syntax table does not provide a next state """ element = None if isinstance(la, EOS): element = self.syntaxtable.lookup(self.current_state, Terminal("<eos>")) if isinstance(element, Shift): self.current_state = element.action return la if element is None: element = self.syntaxtable.lookup(self.current_state, lookup_symbol) logging.debug("\x1b[34mparse_terminal\x1b[0m: %s in %s -> %s", lookup_symbol, self.current_state, element) if isinstance(element, Accept): #XXX change parse so that stack is [bos, startsymbol, eos] bos = self.previous_version.parent.children[0] eos = self.previous_version.parent.children[-1] self.previous_version.parent.set_children([bos, self.stack[1], eos]) logging.debug("loopcount: %s", self.loopcount) logging.debug ("\x1b[32mAccept\x1b[0m") return "Accept" elif isinstance(element, Shift): self.validating = False self.shift(la, element) return self.pop_lookahead(la) elif isinstance(element, Reduce): logging.debug("\x1b[33mReduce\x1b[0m: %s -> %s", la, element) self.reduce(element) return self.parse_terminal(la, lookup_symbol) elif element is None: if self.validating: logging.debug("Was validating: Right breakdown and return to normal") logging.debug("Before breakdown: %s", self.stack[-1]) self.right_breakdown() logging.debug("After breakdown: %s", self.stack[-1]) self.validating = False else: return self.do_undo(la) def get_lookup(self, la): """ Retrurn the lookup of a node as Terminal. The lookup is name of the regular expression that mached the token in the lexing phase. Note: indentation terminals are handled in a special manner :param la: node to find lookup of :return: the lookup of the node wraped in a Terminal """ if la.lookup != "": lookup_symbol = Terminal(la.lookup) else: lookup_symbol = la.symbol if isinstance(lookup_symbol, IndentationTerminal): #XXX hack: change parsing table to accept IndentationTerminals lookup_symbol = Terminal(lookup_symbol.name) return lookup_symbol def do_undo(self, la): """ Restore changes Loop over self.undo and for the tupel (a,b,c) do a.b = c :param la: :return: """ while len(self.undo) > 0: node, attribute, value = self.undo.pop(-1) setattr(node, attribute, value) self.error_node = la logging.debug ("\x1b[31mError\x1b[0m: %s %s %s", la, la.prev_term, la.next_term) logging.debug("loopcount: %s", self.loopcount) return "Error" def reduce(self, element): """ Execute the reduction given on the current stack. Reduces elements from the stack to a Nonterminal subtree. special: COMMENT subtrees that are found on the stack during reduction are added "silently" to the subtree (they don't count to the amount of symbols of the reduction) :type element: Reduce :param element: reduction to apply :except Exception rule not applicable """ #Fill a children array with nodes that are on the stack children = [] i = 0 while i < element.amount(): c = self.stack.pop() # apply folding information from grammar to tree nodes fold = element.action.right[element.amount()-i-1].folding c.symbol.folding = fold children.insert(0, c) i += 1 logging.debug(" Element on stack: %s(%s)", self.stack[-1].symbol, self.stack[-1].state) self.current_state = self.stack[-1].state #XXX don't store on nodes, but on stack logging.debug(" Reduce: set state to %s (%s)", self.current_state, self.stack[-1].symbol) goto = self.syntaxtable.lookup(self.current_state, element.action.left) if goto is None: raise Exception("Reduction error on %s in state %s: goto is None" % (element, self.current_state)) assert goto != None # save childrens parents state for c in children: self.undo.append((c, 'parent', c.parent)) self.undo.append((c, 'left', c.left)) self.undo.append((c, 'right', c.right)) self.undo.append((c, 'log', c.log.copy())) c.mark_version() # XXX with node reuse we only have to do this if the parent changes new_node = Node(element.action.left.copy(), goto.action, children) self.pm.do_incparse_reduce(new_node) logging.debug(" Add %s to stack and goto state %s", new_node.symbol, new_node.state) self.stack.append(new_node) self.current_state = new_node.state # = goto.action logging.debug("Reduce: set state to %s (%s)", self.current_state, new_node.symbol) if getattr(element.action.annotation, "interpret", None): # eco grammar annotations\ self.interpret_annotation(new_node, element.action) else: # johnstone annotations self.add_alternate_version(new_node, element.action) def interpret_annotation(self, node, production): annotation = production.annotation if annotation: astnode = annotation.interpret(node) node.alternate = astnode def add_alternate_version(self, node, production): # add alternate (folded) versions for nodes to the tree alternate = TextNode(node.symbol.__class__(node.symbol.name), node.state, []) alternate.children = [] teared = [] for i in range(len(node.children)): if production.inserts.has_key(i): # insert tiered nodes at right position value = production.inserts[i] for t in teared: if t.symbol.name == value.name: alternate.children.append(t) c = node.children[i] if c.symbol.folding == "^^^": c.symbol.folding = None teared.append(c) continue elif c.symbol.folding == "^^": while c.alternate is not None: c = c.alternate alternate.symbol = c.symbol for child in c.children: alternate.children.append(child) elif c.symbol.folding == "^": while c.alternate is not None: c = c.alternate for child in c.children: alternate.children.append(child) else: alternate.children.append(c) node.alternate = alternate def left_breakdown(self, la): if len(la.children) > 0: return la.children[0] else: return self.pop_lookahead(la) def right_breakdown(self): node = self.stack.pop() # optimistically shifted Nonterminal # after the breakdown, we need to properly shift the left over terminal # using the (correct) current state from before the optimistic shift of # it's parent tree self.current_state = self.stack[-1].state logging.debug("right breakdown(%s): set state to %s", node.symbol.name, self.current_state) while(isinstance(node.symbol, Nonterminal)): for c in node.children: self.shift(c, rb=True) c = c.right node = self.stack.pop() # after undoing an optimistic shift (through pop) we need to revert # back to the state before the shift (which can be found on the top # of the stack after the "pop" if isinstance(node.symbol, FinishSymbol): # if we reached the end of the stack, reset to state 0 and push # FinishSymbol pack onto the stack self.current_state = 0 self.stack.append(node) return else: logging.debug("right breakdown else: set state to %s", self.stack[-1].state) self.current_state = self.stack[-1].state self.shift(node, rb=True) # pushes previously popped terminal back on stack def shift(self, la, element=None, rb=False): if not element: lookup_symbol = self.get_lookup(la) element = self.syntaxtable.lookup(self.current_state, lookup_symbol) logging.debug("\x1b[32m" + "%sShift(%s)" + "\x1b[0m" + ": %s -> %s", "rb" if rb else "", self.current_state, la, element) la.state = element.action self.stack.append(la) self.current_state = la.state if not la.lookup == "<ws>": # last_shift_state is used to predict next symbol # whitespace destroys correct behaviour self.last_shift_state = element.action self.pm.do_incparse_shift(la, rb) def pop_lookahead(self, la): """ Get next (right) Node :rtype: Node :param la: :return: """ org = la while(la.right_sibling() is None): la = la.parent logging.debug("pop_lookahead(%s): %s", org.symbol, la.right_sibling().symbol) return la.right_sibling() def shiftable(self, la): if self.syntaxtable.lookup(self.current_state, la.symbol): return True return False def has_changed(self, node): return node in self.all_changes def prepare_input(self, _input): l = [] # XXX need an additional lexer to do this right if _input != "": for i in _input.split(" "): l.append(Terminal(i)) l.append(FinishSymbol()) return l def get_ast(self): bos = Node(Terminal("bos"), 0, []) eos = Node(FinishSymbol(), 0, []) root = Node(Nonterminal("Root"), 0, [bos, self.ast_stack[0], eos]) return AST(root) def get_next_possible_symbols(self, state_id): l = set() for (state, symbol) in self.syntaxtable.table.keys(): if state == state_id: l.add(symbol) return l def get_next_symbols_list(self, state = -1): if state == -1: state = self.last_shift_state lookahead = self.get_next_possible_symbols(state) s = [] for symbol in lookahead: s.append(symbol.name) return s def get_next_symbols_string(self, state = -1): l = self.get_next_symbols_list(state) return ", ".join(l) def get_expected_symbols(self, state_id): #XXX if state of a symbol is nullable, return next symbol as well #XXX if at end of state, find state we came from (reduce, stack) and get next symbols from there if state_id != -1: stateset = self.graph.state_sets[state_id] symbols = stateset.get_next_symbols_no_ws() return symbols return [] def reset(self): self.stack = [] self.ast_stack = [] self.all_changes = [] self.undo = [] self.last_shift_state = 0 self.validating = False self.last_status = False self.error_node = None self.previous_version = None self.init_ast() def load_status(self, version): try: self.last_status = self.status_by_version[version] except KeyError: logging.warning("Could not find status for version %s", version) try: self.error_node = self.errornode_by_version[version] except KeyError: logging.warning("Could not find errornode for version %s", version) def save_status(self, version): self.status_by_version[version] = self.last_status self.errornode_by_version[version] = self.error_node
import socket from base64 import encode sock = socket.socket() print("创建连接,连接服务器") sock.connect(('127.0.0.1',5050)) print("准备发送数据给客户端") content = 'hello smallqiang' print("发送的内容为........") print(content) sock.send(content.encode())
# !/usr/bin/python # coding=utf-8 # # @Author: LiXiaoYu # @Time: 2013-10-17 # @Info: Redis Library. import redis, Log, sys, json from Config import Config from Cache import Cache class Redis(Cache): config = None def __init__(self, options={}): self.config = Config() if "redis" not in sys.modules: Log.error(L('_NO_MODULE_')+":redis") if len(options) == 0: options = { "host":self.config.get("redis.host") if self.config.get("redis.host") else "127.0.0.1", "port":self.config.get("redis.port") if self.config.get("redis.port") else "6397" } self.options = options self.handler = redis.Redis(**options) #set prefix if 'prefix' in options: self.options['prefix'] = options['prefix'] else: self.options['prefix'] = self.config.get("redis.prefix") ## # 读取缓存 # @access public # @param string $name 缓存变量名 # @return mixed None ## def get(self, name=""): value = self.handler.get(self.options['prefix']+name) value = value.decode('UTF-8') try: jsonData = json.loads(value) except: jsonData = value return jsonData ## # 写入缓存 # @access public # @param string $name 缓存变量名 # @param mixed $value 存储数据 # @param integer $expire 有效时间(秒) # @return boolean ## def set(self, name="", value="", expire=0): name = self.options['prefix']+name if isinstance(value, (dict,tuple,list)): value = json.dumps(value) if isinstance(expire, int) and expire>0: result = self.handler.setex(name, value, expire) else: result = self.handler.set(name, value) return result ## # 删除缓存 # @access public # @param string $name 缓存变量名 # @return boolean ## def rm(self, name=""): self.handler.delete(self.options['prefix']+name) ## # 清除缓存 # @access public # @return boolean ## def clear(self): return self.handler.flushdb() if __name__ == "__main__": r = Redis() r.set("list", {"a":1,"b":2,"c":(3,4)}) #r.set("list", "ddd") data = r.get("list") print(data) for i in data: print(i)
#!/usr/bin/python import os import sys import re from ConfigParser import ConfigParser, NoSectionError, NoOptionError import requests CONFIG_FILENAME = 'pac.ini' SECTION_PAC = 'PAC' OPTION_PAC_SAVE_PATH = 'SavePath' OPTION_PAC_TEMPLATE_PATH = 'TemplatePath' OPTION_DOMAIN_LIST_PATH = 'DomainListPath' OPTION_PROXY_BLACK_LIST_PATH = 'ProxyBlackListPath' DEFAULT_PAC_SAVE_PATH = 'proxy.pac' DEFAULT_DOMAIN_LIST_PATH = 'domain.list' DEFAULT_PAC_TEMPLATE_PATH = 'pac.template' DEFAULT_PROXY_BLACK_LIST_PATH = 'black.list' PROXY_TXT_LIST_ADDRESS = 'http://txt.proxyspy.net/proxy.txt' PROXY_TXT_LIST_SPLITTER = ' ' PROXY_PATTERN = '(.+?) US-[AH]' PROXY_TEST_URL = 'http://example.org' PROXY_TEST_TIMEOUT = 5 STATUS_OK = 0 STATUS_NO_PROXIES = 1 STATUS_NO_DOMAIN_LIST = 2 STATUS_NO_PAC_TEMPLATE = 3 STATUS_KEYBOARD_INTERRUPT = 4 class ConfigWrapper: def __init__(self, filename): self.filename = filename self.config = ConfigParser() self.config.optionxform = str self.config.read(filename) def get(self, section, option, default=None): try: return self.config.get(section, option) except (NoSectionError, NoOptionError): if not self.config.has_section(section): self.config.add_section(section) self.config.set(section, option, default) self.save() return default def save(self): with open(self.filename, 'wb') as f: self.config.write(f) def test_address(address): proxies = { "http": "http://%s" % address, } try: response = requests.get(PROXY_TEST_URL, proxies=proxies, timeout=PROXY_TEST_TIMEOUT) return 'Example Domain' in response.text except IOError: return False def print_status(status): status_desc_table = { STATUS_OK: "Ok", STATUS_NO_PROXIES: "No proxies", STATUS_NO_DOMAIN_LIST: "Domain list is missing", STATUS_NO_PAC_TEMPLATE: "PAC template is missing", STATUS_KEYBOARD_INTERRUPT: "Cancelled", } print(status_desc_table.get(status, "Unknown status (%d)" % status)) def get_config(): config = ConfigWrapper(CONFIG_FILENAME) return config def get_list(path): with open(path, 'r') as f: items = [x.strip() for x in f.xreadlines() if x] return items def get_proxy_list(): result = [] response = requests.get(PROXY_TXT_LIST_ADDRESS) if response: proxies = re.findall(PROXY_PATTERN, response.text) for address in proxies: if test_address(address): result.append(address) if result: config = get_config() blacklist_path = config.get(SECTION_PAC, OPTION_PROXY_BLACK_LIST_PATH, DEFAULT_PROXY_BLACK_LIST_PATH) if os.path.exists(blacklist_path): proxy_black_list = get_list(blacklist_path) else: proxy_black_list = [] proxy_list = ['PROXY %s' % x for x in result if x not in proxy_black_list] return proxy_list return None def generate_pac(): config = get_config() pac_save_path = config.get(SECTION_PAC, OPTION_PAC_SAVE_PATH, DEFAULT_PAC_SAVE_PATH) domain_list_path = config.get(SECTION_PAC, OPTION_DOMAIN_LIST_PATH, DEFAULT_DOMAIN_LIST_PATH) pac_template_path = config.get(SECTION_PAC, OPTION_PAC_TEMPLATE_PATH, DEFAULT_PAC_TEMPLATE_PATH) if not os.path.exists(domain_list_path): return STATUS_NO_DOMAIN_LIST if not os.path.exists(pac_template_path): return STATUS_NO_PAC_TEMPLATE proxy_list = get_proxy_list() if not proxy_list: return STATUS_NO_PROXIES else: with open(pac_template_path, 'r') as f: pac_template = f.read() domain_list = get_list(domain_list_path) domain_list_str = str(domain_list) proxy_list_str = '; '.join(proxy_list) with open(pac_save_path, 'w') as f: f.write(pac_template % (domain_list_str, proxy_list_str)) return STATUS_OK def main(): try: status = generate_pac() except KeyboardInterrupt: status = STATUS_KEYBOARD_INTERRUPT print_status(status) return status if '__main__' == __name__: sys.exit(main())
#!/usr/bin/env ############################################ # exercise_7_2.py # Author: Paul Yang # Date: June, 2016 # Brief: ############################################ data = open("dialogue_chinese.txt", encoding="utf-8") for line in data: try: (role,line_spoken) = line.split(":",maxsplit=1) print(role,end="") print("說: ", end="") print(line_spoken, end="") except: pass data.close()
class Solution(object): def maxNumber(self, nums1, nums2, k): def get_max_sub_array(nums, k): res , n = [] ,len(nums) for i in xrange(n): while res and len(res) + n - i > k and nums[i] > res[-1]: res.pop() if len(res) < k: res.append(nums[i]) return res ans = [0] * k for i in xrange(max(0, k - len(nums2)), min(k, len(nums1)) + 1): res1 = get_max_sub_array(nums1, i) res2 = get_max_sub_array(nums2, k - i) ans = max(ans, [max(res1, res2).pop(0) for _ in xrange(k)]) return ans
from django.http import JsonResponse, HttpResponse from wrapper import * ##################################### #### FUNCIONES AUXILIARES #### ##################################### def complain_about_get(): data = { 'message': "La peticion tiene que ser GET", } return JsonResponse(data,safe=False) def complain_about_program(): data = { 'message': "No puedo entender el nombre el programa", } return JsonResponse(data,safe=False) def no_result_found(): data = { 'message': "No se han encontrado resultados", } return JsonResponse(data,safe=False) def return_program(resultado): print(resultado) data = { 'registro': resultado[3], 'nombre': resultado[0], 'tipo': resultado[1], 'cinta': resultado[2] } return JsonResponse(data,safe=False) def descompose_program(resultado): data = { 'registro': resultado[3], 'nombre': resultado[0], 'tipo': resultado[1], 'cinta': resultado[2] } return data def clean_result(lista): jsonlist = [] for i in lista: jsonlist.append(descompose_program(i)) return jsonlist def form_list_names(lista): list_json = [] for program in lista: data={ 'nombre':program } list_json.append(data) return list_json ##################################### #### FUNCIONES PRINCIPALES #### ##################################### """ Find a program by its name""" def find_by_name(request): if request.method == 'GET' : if request.GET.get('program') != '' and request.GET.get('program') != None: singleton = WindowMgr() programa = request.GET.get('program') resultado = singleton.find_program_by_name(programa) if resultado != []: return return_program(resultado) else: return no_result_found() else: return complain_about_program() else: return complain_about_get() """Return a list with all the names of the programs""" def get_them_all(request): singleton = WindowMgr() # De aqui se obtienen todos los programas programa =singleton.get_name_programs() data = form_list_names(programa) return JsonResponse(data,safe=False) """Return a list with all the programs on a tape""" def get_tape_all(request): if request.method == 'GET': if request.GET.get('cinta') != '' and request.GET.get('cinta') != None: singleton = WindowMgr() cinta = request.GET.get('cinta') #De aqui se obtienen las cintas resultado = singleton.get_all_programs_tape(cinta) if resultado != []: data = clean_result(resultado) return JsonResponse(data,safe=False) else: return no_result_found() else: return complain_about_program() else: return complain_about_get()
# -*- coding: utf-8 -*- from __future__ import absolute_import from django import template from extra_settings.models import Setting register = template.Library() @register.simple_tag(takes_context=True) def get_setting(context, name, default=''): return Setting.get(name, default)
#import sys input = sys.stdin.readline def main(): S, T = input().split() print(T+S) if __name__ == '__main__': main()
#HOUSE PRICE PREDICTIONS # PART 1 :- # PART 1- Getting the Data #Import the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt #Import the Dataset train=pd.read_csv('train.csv') test=pd.read_csv('test.csv') #PART 2:- #PART 2- Exploratory Data Analysis #sales price info info_train=train.SalePrice.describe() #to plot the skewness of sales price print ("Skew is:", train.SalePrice.skew()) plt.hist(train.SalePrice, color='blue') plt.show() #log transform the target variable since its skewed target_y = np.log(train.SalePrice) print ("Skew is:", target_y.skew()) plt.hist(target_y, color='blue') plt.show() #get the numeric features from the dataset numeric_features_train = train.select_dtypes(include=[np.number]) numeric_features_test = test.select_dtypes(include=[np.number]) #getting the categorical features and its description categorical_features = train.select_dtypes(exclude=[np.number]) #exclude all numeric features categorical_feature_description=categorical_features.describe() #correlation matrix corr = numeric_features_train.corr() print(corr['SalePrice'].sort_values(ascending=False)[:38], '\n') #38 most +vely correlated features with SalesPrice #print(corr['SalePrice'].sort_values(ascending=False)[-10:]) #10 most -vely correlated #Getting the heatmap import seaborn as sns sns.heatmap(corr) #remove one of two features that have a correlation higher than 0.9 columns = np.full((corr.shape[0],), True, dtype=bool) for i in range(corr.shape[0]): for j in range(i+1, corr.shape[0]): if corr.iloc[i,j] >= 0.9: if columns[j]: columns[j] = False selected_columns = numeric_features_train.columns[columns] train_corr = numeric_features_train[selected_columns] #dataset(train_corr) has only those columns with correlation less than 0.9 #Getting the numeric features with null values nulls_train = pd.DataFrame(train.isnull().sum().sort_values(ascending=False)[:80]) #features with null values nulls_train.columns = ['Null Count'] nulls_train.index.name = 'Feature' nulls_test = pd.DataFrame(test.isnull().sum().sort_values(ascending=False)[:80]) #features with null values nulls_test.columns = ['Null Count'] nulls_test.index.name = 'Feature' # PART 3- Data Preprocessing #Taking care of missing data num_null_train = pd.DataFrame(numeric_features_train.isnull().sum().sort_values(ascending=False)[:80]) #features with null values num_null_test = pd.DataFrame(numeric_features_test.isnull().sum().sort_values(ascending=False)[:80]) #features with null values #Taking care of categorical data #1 -MSZoning print ("Original: \n") print (train.MSZoning.value_counts(), "\n") #Counts def encode(x): #Encoding RL as 1 and others as 0. return 1 if x == 'RL' else 0 #to encode train['enc_MSZoning'] = train.MSZoning.apply(encode) test['enc_MSZoning'] = test.MSZoning.apply(encode) print (train.enc_MSZoning.value_counts()) #Check encoded value #to check barplot condition_pivot = train.pivot_table(index='enc_MSZoning', values='SalePrice', aggfunc=np.median) condition_pivot.plot(kind='bar', color='blue') plt.xlabel('Encoded Sale Condition') plt.ylabel('Median Sale Price') plt.xticks(rotation=0) plt.show() # 2- Street print ("Original: \n") print (train.Street.value_counts(), "\n") train['enc_street'] = pd.get_dummies(train.Street, drop_first=True) test['enc_street'] = pd.get_dummies(test.Street, drop_first=True) print ('Encoded: \n') print (train.enc_street.value_counts()) #3 -GarageCond print (train.GarageCond.value_counts()) def encode(x): return 1 if x == 'TA' else 0 #to encode train['enc_GarageCond'] = train.GarageCond.apply(encode) test['enc_GarageCond'] = test.GarageCond.apply(encode) print (train.enc_GarageCond.value_counts()) # 4- Central Air #when only 2 categories are present print ("Original: \n") print (train.CentralAir.value_counts(), "\n") train['enc_CentralAir'] = pd.get_dummies(train.CentralAir, drop_first=True) test['enc_CentralAir'] = pd.get_dummies(test.CentralAir, drop_first=True) print ('Encoded: \n') print (train.enc_CentralAir.value_counts()) train_corr = train.corr() #correlation between numerical features and target. print(train_corr['SalePrice'].sort_values(ascending=False)[:15], '\n') #10 most +vely correlated features with SalesPrice print(train_corr['SalePrice'].sort_values(ascending=False)[-10:]) # PART 4 Bulding a linear model #DV and IDV features """X=train.iloc[:,[17,46,61,62,38,43,49,54,19,20,59,26,56,34]].values #Both are very correlated (38,43) 19,20,59 very correlated 59-Nan 26-Nan """ #Not the best method to take care of missing values data = train.select_dtypes(include=[np.number]).interpolate().dropna() sum(data.isnull().sum() != 0) #Check if the all of the columns have 0 null values. """ X=train.iloc[:,[17,46,61,62,38,49,54,19,26,56,34]].values y=train.iloc[:,-5].values #Missing values from sklearn.impute import SimpleImputer imputer=SimpleImputer(missing_values=np.nan,strategy='mean') X[:,8:9]=imputer.fit_transform(X[:,8:9]) """ X = data.drop(['SalePrice', 'Id'], axis=1) #From train.csv y = np.log(train.SalePrice) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=.25) # Fitting Simple Linear Regression to the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() model=regressor.fit(X_train, y_train) #Predicting the test set results y_pred=regressor.predict(X_test) #using train set # Applying k-Fold Cross Validation (model evaluation) from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator = regressor, X = X_train, y = y_train, cv = 10) accuracies.mean() accuracies.std() # PART 4 Evaluate the model print ("R^2 is: \n", model.score(X_test, y_test)) from sklearn.metrics import mean_squared_error print ('RMSE is: \n', mean_squared_error(y_test, y_pred)) #RMSE measures the distance between our predicted values and actual values. actual_values = y_test plt.scatter(y_pred, actual_values, alpha=.7,color='b') #alpha helps to show overlapping data plt.xlabel('Predicted Price') plt.ylabel('Actual Price') plt.title('Linear Regression Model') plt.show() #Predicting the test.csv results """features = test.select_dtypes(include=[np.number]).drop(['Id'], axis=1).interpolate() features_X=features.iloc[:,[3,15,25,26,11,18,22,5,7,23,8]] predictions = model.predict(features_X) final_predictions = np.exp(predictions)""" #Getting the results on test.csv file test_features = test.select_dtypes(include=[np.number]).drop(['Id'], axis=1).interpolate() predictions = model.predict(test_features) #using test final_predictions = np.exp(predictions) #compare the result print ("Original predictions are: \n", predictions[:5], "\n") print ("Final predictions are: \n", final_predictions[:5]) #Getting a csv file output=pd.DataFrame({'Id':test.Id, 'SalePrice':final_predictions}) output.to_csv('my_submission_SLR.csv', index=False)
from collective.rooter.navroot import setNavigationRoot from plone.app.layout.navigation.interfaces import INavigationRoot from zope.component import adapter from zope.publisher.interfaces import IEndRequestEvent from zope.traversing.interfaces import IBeforeTraverseEvent @adapter(INavigationRoot, IBeforeTraverseEvent) def record_navigation_root(obj, event): """When traversing over a site manager that is a navigation root, record the navigation root in a thread-local. """ setNavigationRoot(obj) @adapter(IEndRequestEvent) def clean_navigation_root(event): """When traversal is over, clear the navigation root thread-local """ setNavigationRoot(None)
#!/usr/bin/env python # coding: utf-8 # ## Run LRP on all test and validation results import sys import os import json import time import torch import pandas as pd import numpy as np import time import matplotlib.pyplot as plt import seaborn as sns from collections import Counter import torch import torch.nn as nn from torch.utils.data import DataLoader from urllib.parse import urlparse import tarfile import pickle import shutil import matplotlib.pyplot as plt import shap import numpy as np import deep_id_pytorch from lstm_models import * from lstm_lrp_models import * from lstm_att_models import * from lstm_self_att_models import * from lstm_utils import * from imp_utils import * IS_SYNTHETIC = True # If dataset is synthetic/real # MODEL_NAME = 'lstm' MODEL_NAME = "lstm" USE_SELF_ATTENTION = True NROWS = 1e9 TRAIN_MODEL = True SEQ_LEN = 30 DATA_TYPE = "event" # event/sequence TRAIN_DATA_PATH = f"../data/synthetic/sample_dataset/{DATA_TYPE}/{SEQ_LEN}/train.csv" VALID_DATA_PATH = f"../data/synthetic/sample_dataset/{DATA_TYPE}/{SEQ_LEN}/val.csv" TEST_DATA_PATH = f"../data/synthetic/sample_dataset/{DATA_TYPE}/{SEQ_LEN}/test.csv" VOCAB_PATH = f"../data/synthetic/sample_dataset/{DATA_TYPE}/{SEQ_LEN}/vocab.pkl" MODEL_SAVE_PATH_PATTERN = f"./output/synthetic/{DATA_TYPE}/{SEQ_LEN}/{MODEL_NAME}/model_weights/model_{'{}'}.pkl" IMP_SAVE_DIR_PATTERN = f"./output/synthetic/{DATA_TYPE}/{SEQ_LEN}/{MODEL_NAME}/importances/{'{}'}_imp_{'{}'}.pkl" # Feature importance values path for a given dataset split OUTPUT_RESULTS_PATH = ( f"./output/synthetic/{DATA_TYPE}/{SEQ_LEN}/{MODEL_NAME}/train_results/results.csv" ) PARAMS_PATH = f"./output/synthetic/{DATA_TYPE}/{SEQ_LEN}/{MODEL_NAME}/train_results/model_params.json" BEST_EPOCH = 2 TOTAL_EXAMPLES = 7000 # Total patients in val/test data TARGET_COLNAME = "label" UID_COLNAME = "patient_id" TARGET_VALUE = "1" # Results path for val & test data output_dir = os.path.dirname(IMP_SAVE_DIR_PATTERN) VAL_RESULTS_PATH = os.path.join(output_dir, f"val_all_lrp_{BEST_EPOCH}.pkl") TEST_RESULTS_PATH = os.path.join(output_dir, f"test_all_lrp_{BEST_EPOCH}.pkl") # ### Load Vocab and Dataset # Load model params MODEL_PARAMS = None with open(PARAMS_PATH, "r") as fp: MODEL_PARAMS = json.load(fp) MODEL_PARAMS if os.path.exists(VOCAB_PATH): with open(VOCAB_PATH, "rb") as fp: vocab = pickle.load(fp) print(f"vocab len: {len(vocab)}") # vocab + padding + unknown else: raise ValueError( "Vocab path does not exist! Please create vocab from training data and save it first." ) valid_dataset, vocab = build_lstm_dataset( VALID_DATA_PATH, min_freq=MODEL_PARAMS["min_freq"], uid_colname=UID_COLNAME, target_colname=TARGET_COLNAME, max_len=SEQ_LEN, target_value=TARGET_VALUE, vocab=vocab, nrows=NROWS, rev=MODEL_PARAMS["rev"], ) test_dataset, _ = build_lstm_dataset( TEST_DATA_PATH, min_freq=MODEL_PARAMS["min_freq"], uid_colname=UID_COLNAME, target_colname=TARGET_COLNAME, max_len=SEQ_LEN, target_value=TARGET_VALUE, vocab=vocab, nrows=NROWS, rev=MODEL_PARAMS["rev"], ) valid_dataloader = DataLoader( valid_dataset, batch_size=MODEL_PARAMS["batch_size"], shuffle=False, num_workers=2 ) test_dataloader = DataLoader( test_dataset, batch_size=MODEL_PARAMS["batch_size"], shuffle=False, num_workers=2 ) # ### Load Best Model model_path = MODEL_SAVE_PATH_PATTERN.format(f"{BEST_EPOCH:02}") # Check if cuda is available print(f"Cuda available: {torch.cuda.is_available()}") model_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") lstm_model_best = AttNoHtLSTM( MODEL_PARAMS["embedding_dim"], MODEL_PARAMS["hidden_dim"], vocab, model_device, bidi=MODEL_PARAMS["bidirectional"], nlayers=MODEL_PARAMS["nlayers"], dropout=MODEL_PARAMS["dropout"], init_type=MODEL_PARAMS["init_type"], linear_bias=MODEL_PARAMS["linear_bias"], ) lstm_model_best.load_state_dict(torch.load(model_path)) valid_results_best = {} valid_results_best[BEST_EPOCH] = {} test_results_best = {} test_results_best[BEST_EPOCH] = {} # calculate relevancy and SHAP lstm_model_best.eval() lrp_model = LSTM_LRP_MultiLayer(lstm_model_best.cpu()) # Get test/val data val_patient_ids, val_labels, val_idxed_text = get_eval_data( valid_dataloader, TOTAL_EXAMPLES ) test_patient_ids, test_labels, test_idxed_text = get_eval_data( test_dataloader, TOTAL_EXAMPLES ) start = time.time() print("Processing validation data...") for sel_idx in range(len(val_labels)): one_text = [ int(token.numpy()) for token in val_idxed_text[sel_idx] if int(token.numpy()) != 0 ] lrp_model.set_input(one_text) lrp_model.forward_lrp() Rx, Rx_rev, _ = lrp_model.lrp(one_text, 0, eps=1e-6, bias_factor=0) R_words = np.sum(Rx + Rx_rev, axis=1) df = pd.DataFrame() df["lrp_scores"] = R_words df["idx"] = one_text df["seq_idx"] = [x for x in range(len(one_text))] df["token"] = [lrp_model.vocab.itos(x) for x in one_text] df["att_weights"] = lrp_model.get_attn_values() if val_patient_ids[sel_idx] not in valid_results_best[BEST_EPOCH]: valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]] = {} valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]] = {} valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]]["label"] = val_labels[ sel_idx ] valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]]["pred"] = lrp_model.s[0] valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]]["imp"] = df.copy() if sel_idx % 500 == 0: print(f"{sel_idx} of {TOTAL_EXAMPLES}") end = time.time() mins, secs = epoch_time(start, end) print(f"Total Time: {mins}min: {secs}sec") valid_results_best[BEST_EPOCH][val_patient_ids[sel_idx]] with open(VAL_RESULTS_PATH, "wb") as fp: pickle.dump(valid_results_best, fp) print("Processing test data...") start = time.time() for sel_idx in range(len(test_labels)): one_text = [ int(token.numpy()) for token in test_idxed_text[sel_idx] if int(token.numpy()) != 0 ] lrp_model.set_input(one_text) lrp_model.forward_lrp() Rx, Rx_rev, _ = lrp_model.lrp(one_text, 0, eps=1e-6, bias_factor=0) R_words = np.sum(Rx + Rx_rev, axis=1) df = pd.DataFrame() df["lrp_scores"] = R_words df["idx"] = one_text df["seq_idx"] = [x for x in range(len(one_text))] df["token"] = [lstm_model_best.vocab.itos(x) for x in one_text] df["att_weights"] = lrp_model.get_attn_values() if test_patient_ids[sel_idx] not in test_results_best[BEST_EPOCH]: test_results_best[BEST_EPOCH][test_patient_ids[sel_idx]] = {} test_results_best[BEST_EPOCH][test_patient_ids[sel_idx]] = {} test_results_best[BEST_EPOCH][test_patient_ids[sel_idx]]["label"] = test_labels[ sel_idx ] test_results_best[BEST_EPOCH][test_patient_ids[sel_idx]]["pred"] = lrp_model.s[0] test_results_best[BEST_EPOCH][test_patient_ids[sel_idx]]["imp"] = df.copy() if sel_idx % 500 == 0: print(f"{sel_idx} of {TOTAL_EXAMPLES}") end = time.time() mins, secs = epoch_time(start, end) print(f"Total Time: {mins}min: {secs}sec") with open(TEST_RESULTS_PATH, "wb") as fp: pickle.dump(test_results_best, fp) print("Success!")
# -------------- # Importing header files import numpy as np #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here #Loading data file and saving it into a new numpy array data = np.genfromtxt(path, delimiter=",", skip_header=1) print(data.shape) #Concatenating the new record to the existing numpy array census=np.concatenate((data, new_record),axis = 0) print(census.shape) #Code ends here # -------------- #Code starts here age = census[:,0] max_age =age.max() print(max_age) min_age = age.min() print(min_age) age_mean = age.mean() print(age_mean) age_std = np.std(age) print(age_std) # -------------- #Code starts here race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,2]==3] race_4 = census[census[:,2]==4] len_0 = len(race_0) print(len_0) len_1 = len(race_1) print(len_1) len_2 = len(race_2) print(len_2) len_3 = len(race_3) print(len_3) len_4 = len(race_4) print(len_4) #Storing the different race lengths with appropriate indexes race_list=[len_0, len_1,len_2, len_3, len_4] #Storing the race with minimum length into a variable minority_race=race_list.index(min(race_list)) # -------------- #Code starts here senior_citizens = census[census[:,0]>60] working_hours_sum=senior_citizens.sum(axis=0)[6] senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(avg_working_hours) # -------------- #Code starts here high=census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high=high[:,7].mean() avg_pay_low = low[:,7].mean() print(avg_pay_high) print(avg_pay_low)
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-28 06:51 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('player', '0002_auto_20161228_1215'), ] operations = [ migrations.RemoveField( model_name='player', name='isAdmin', ), ]
import report #import axteriz
#!/usr/bin/env python """ This script downloads article information of one URL. The results are stored in JSON-files in a sub-folder. You need to adapt the variables url and basepath in order to use the script. """ import json from newsplease import NewsPlease url = 'https://www.rt.com/news/203203-ukraine-russia-troops-border/' basepath = '/Users/felix/Downloads/' article = NewsPlease.from_url(url) with open(basepath + article['filename'] + '.json', 'w') as outfile: json.dump(article, outfile, indent=4, sort_keys=True)
""" Contains the class to color code and value code the cards. """ class Card(): """ Creates a deck of cards (52 cards). """ def __init__(self, suit, value): """ Initializes the suit and value for each card. """ self.suit = suit self.value = value def __repr__(self): """ Returns a string with the value and suit. """ return str(self.value) + " of " + self.suit def value_score(self): """ Assigns an integer value to each card to be used in the __lt__ and __gt__ methods. """ points = { "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "J": 11, "Q": 12, "K": 13, "A": 14 } return points[self.value] def __lt__(self, other): """ Compares if player's current card value is less than the other player's. """ return self.value_score() < other.value_score() def __gt__(self, other): """ Compares if player's current card value is greater than the other player's. """ return self.value_score() > other.value_score()
class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: # import itertools # return list(set(itertools.permutations(nums))) if not nums: return [] result = set() visited = [0] * len(nums) def do_permute(nums, track): if len(nums) == len(track): result.add(tuple(track)) return for i, num in enumerate(nums): if visited[i] != 0: continue visited[i] = 1 do_permute(nums, track+[num]) visited[i] = 0 do_permute(nums, []) return list(result) class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: # import itertools # return list(set(itertools.permutations(nums))) if not nums: return [] result = set() def do_permute(nums, track): if len(nums) == 0: result.add(tuple(track)) return for i, num in enumerate(nums): do_permute(nums[:i] + nums[i+1:], track+[num]) do_permute(nums, []) return list(result)
import json from tools import playlists as p from tools import tracks_data as t if __name__ == '__main__': playlists = p.Playlists() playlists.formatter() playlists.save_to_local() # open playlist's info with open('data/playlists_info.json') as f: playlists_info = json.load(f) #info = playlists_info[0] # Extract track's info for all playlists for info in playlists_info: tracks = t.TracksData(info) tracks.formatter() tracks.save_to_local()
import scipy.io as sio import os import numpy as np import matplotlib.pyplot as plt path_loss = os.path.join('result','0','loss_list.mat') data_loss = sio.loadmat(path_loss) total_loss = data_loss['loss_t'][0] mse_loss = data_loss['mse'][0] ce_loss = data_loss['ce'][0] for id in range(1): print('--------------',id) plt.plot(total_loss) plt.savefig(os.path.join('result',str(id),'total_loss.png')) plt.close() plt.plot(mse_loss) plt.savefig(os.path.join('result',str(id),'mse_loss.png')) plt.close() plt.plot(ce_loss) plt.savefig(os.path.join('result',str(id),'ce_loss.png')) plt.close() path_loss = os.path.join('result',str(id),'result_list.mat') data_loss = sio.loadmat(path_loss) oa = data_loss['oa'][0] aa = data_loss['aa'][0] kappa = data_loss['kappa'][0] plt.plot(oa) plt.savefig(os.path.join('result',str(id),'oa.png')) plt.close() plt.plot(aa) plt.savefig(os.path.join('result',str(id),'aa.png')) plt.close() plt.plot(kappa) plt.savefig(os.path.join('result',str(id),'kappa.png')) plt.close() print('max oa',np.max(oa)) print('max aa',np.max(aa)) print('max kappa',np.max(kappa)) path_loss = os.path.join('result',str(id),'psnr_list.mat') data_loss = sio.loadmat(path_loss) psnr = data_loss['psnr'][0] plt.plot(psnr) plt.savefig(os.path.join('result',str(id),'psnr.png')) plt.close() print('max psnr',np.max(psnr))
import os import unittest import mox import WMCore_t.Storage_t.Plugins_t.PluginTestBase_t from WMCore.Storage.Plugins.FNALImpl import FNALImpl as ourPlugin from WMCore.Storage.Plugins.CPImpl import CPImpl as ourFallbackPlugin import subprocess from WMCore.WMBase import getWMBASE from WMCore.Storage.StageOutError import StageOutError, StageOutFailure from nose.plugins.attrib import attr class RunCommandThing: def __init__(self, target): self.target = target def runCommand(self,things): return ("dummy1", "dummy2") class DCCPFNALImplTest(unittest.TestCase): def setUp(self): self.commandPrepend = os.path.join(getWMBASE(),'src','python','WMCore','Storage','Plugins','DCCPFNAL','wrapenv.sh') self.runMocker = mox.MockObject(RunCommandThing) self.copyMocker = mox.MockObject(ourFallbackPlugin) def runCommandStub(command): (num1, num2) = self.runMocker.runCommand(command) return (num1, num2) def getImplStub(command, useNewVersion = None): return self.copyMocker pass def tearDown(self): pass @attr("integration") def testFail(self): #first try to make a non existant file (regular) self.runMocker.runCommand( [self.commandPrepend,'dccp', '-o', '86400', '-d', '0', '-X', '-role=cmsprod', '/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET' ]\ ).AndReturn(("1", "This was a test of the fail system")) #then try to make a non existant file on lustre # -- fake making a directory self.runMocker.runCommand( [self.commandPrepend, 'mkdir', '-m', '755', '-p', '/store/unmerged']\ ).AndReturn(("0", "we made a directory, yay")) # -- fake the actual copy self.copyMocker.doTransfer( \ '/store/unmerged/lustre/NONEXISTANTSOURCE', '/store/unmerged/lustre/NONEXISTANTTARGET', True, None, None, None, None\ ).AndRaise(StageOutFailure("testFailure")) # do one with a real pfn self.runMocker.runCommand(\ [self.commandPrepend, 'mkdir', '-m', '755', '-p',\ '/pnfs/cms/WAX/11/store/temp/WMAgent/unmerged/RECO/WMAgentCommissioning10-v7newstageout']).AndReturn(("0","")) self.runMocker.runCommand([self.commandPrepend, 'dccp', '-o', '86400', '-d', '0', '-X', '-role=cmsprod', 'file:///etc/hosts', 'dcap://cmsdca.fnal.gov:24037/pnfs/fnal.gov/usr/cms/WAX/11/store/temp/WMAgent/unmerged/RECO/WMAgentCommissioning10-v7newstageout/0000/0661D749-DD95-DF11-8A0F-00261894387C.root ']).AndReturn(("0","")) # now try to delete it (pnfs) self.runMocker.runCommand( ['rm', '-fv', '/pnfs/cms/WAX/11/store/tmp/testfile' ]\ ).AndReturn(("1", "This was a test of the fail system")) # try to delete it (lustre) self.runMocker.runCommand( ['/bin/rm', '/lustre/unmerged/NOTAFILE']\ ).AndReturn(("1", "This was a test of the fail system")) mox.Replay(self.runMocker) mox.Replay(self.copyMocker) #ourPlugin.runCommand = runMocker.runCommand() testObject = ourPlugin() self.assertRaises(StageOutFailure, testObject.doTransfer,'/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET', True, None, None, None, None) self.assertRaises(StageOutFailure, testObject.doTransfer,'/store/unmerged/lustre/NONEXISTANTSOURCE', '/store/unmerged/lustre/NONEXISTANTTARGET', True, None, None, None, None) self.assertRaises(StageOutFailure, testObject.doTransfer,'file:///etc/hosts', 'dcap://cmsdca.fnal.gov:24037/pnfs/fnal.gov/usr/cms/WAX/11/store/temp/WMAgent/unmerged/RECO/WMAgentCommissioning10-v7newstageout/0000/0661D749-DD95-DF11-8A0F-00261894387C.root ', True, None, None, None, None) testObject.doDelete('/store/tmp/testfile', None, None, None, None ) testObject.doDelete('/store/unmerged/lustre/NOTAFILE',None, None, None, None ) mox.Verify(self.runMocker) mox.Verify(self.copyMocker) @attr("integration") def testWin(self): #first try to make a file (regular). this one works self.runMocker.runCommand( [self.commandPrepend,'dccp', '-o', '86400', '-d', '0', '-X', '-role=cmsprod', '/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET' ]\ ).AndReturn((0, "This transfer works")) self.runMocker.runCommand( [self.commandPrepend,'/opt/d-cache/dcap/bin/check_dCachefilecksum.sh', '/store/NONEXISTANTTARGET', '/store/NONEXISTANTSOURCE']\ ).AndReturn((0, "Oh, the checksum was checked")) # now make a file and have the checksum fail self.runMocker.runCommand( [self.commandPrepend,'dccp', '-o', '86400', '-d', '0', '-X', '-role=cmsprod', '/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET' ]\ ).AndReturn((0, "This transfer works")) self.runMocker.runCommand( [self.commandPrepend,'/opt/d-cache/dcap/bin/check_dCachefilecksum.sh', '/store/NONEXISTANTTARGET', '/store/NONEXISTANTSOURCE']\ ).AndReturn((1, "Oh, the checksum was checked. Things look bad")) self.runMocker.runCommand( [self.commandPrepend, 'mkdir', '-m', '755', '-p', '/store/unmerged']\ ).AndReturn((0, "")) #then try to make a non existant file on lustre # -- fake making a directory self.runMocker.runCommand( [self.commandPrepend, 'mkdir', '-m', '755', '-p', '/store/unmerged']\ ).AndReturn((0, "we made a directory, yay")) # -- fake the actual copy self.copyMocker.doTransfer( \ '/store/unmerged/lustre/NONEXISTANTSOURCE', '/store/unmerged/lustre/NONEXISTANTTARGET', True, None, None, None, None\ ).AndReturn("balls") mox.Replay(self.runMocker) mox.Replay(self.copyMocker) #ourPlugin.runCommand = runMocker.runCommand() testObject = ourPlugin() # copy normally and have it work newPfn = testObject.doTransfer('/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET', True, None, None, None, None) self.assertEqual(newPfn, '/store/NONEXISTANTTARGET') # second time fails the checksum self.assertRaises(StageOutFailure, testObject.doTransfer,'/store/NONEXISTANTSOURCE', '/store/NONEXISTANTTARGET', True, None, None, None, None) # copy to lustre normally and have it work newPfn = testObject.doTransfer('/store/unmerged/lustre/NONEXISTANTSOURCE', '/store/unmerged/lustre/NONEXISTANTTARGET', True, None, None, None, None) self.assertEqual(newPfn, "balls") mox.Verify(self.runMocker) mox.Verify(self.copyMocker) if __name__ == "__main__": unittest.main()
from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.shortcuts import render,redirect from django.contrib.auth.forms import UserCreationForm from django.views.generic import View from django.shortcuts import get_object_or_404 from .forms import PostForm from .models import Posts from django.contrib.auth import authenticate,login,logout from django.http import HttpResponse,JsonResponse from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin # Create your views here. class Register(View): template = "register.html" def get(self,request): if request.user.is_authenticated(): return redirect("index") userform = UserCreationForm() context = { "userform":userform } return render(request, self.template, context) def post(self,request): userform = UserCreationForm(data=request.POST) if userform.is_valid(): user = userform.save() return redirect("home:login") else: context = { "userform":userform } return render(request,self.template,context) class Login(View): template = "login.html" def get(self,request): return render(request,self.template,{}) def post(self,request): if request.user.is_authenticated(): #messages.warning(request,"You're already logged in.") return redirect("index") username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username,password=password) if user: if user.is_active: login(request,user) return redirect("index") else: return HttpResponse("your account is disabled") else: return HttpResponse("Invalid details") class Index(View): template = "index.html" def get(self,request): posts_list = Posts.objects.all().order_by('-created_at') paginator = Paginator(posts_list, 10) page = request.GET.get('page') try: posts_list = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. posts_list = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. posts_list = paginator.page(paginator.num_pages) context = { "posts":posts_list } return render(request, self.template, context) class Create(LoginRequiredMixin,View): template = "create.html" def get(self,request): postform = PostForm(initial={'user':request.user}) context = { "form":postform } return render(request, self.template, context) def post(self,request): postform = PostForm(request.POST) # post = Posts.objects.get() # post = [p.to_jason() for p in post] if postform.is_valid(): new_post = postform.save() return redirect("index") # return JsonResponse(new_post.to_json()) # return JsonResponse({'post':post}) class Edit(View): template = "edit.html" def get(self,request,pk): news = get_object_or_404(Posts,slug=slug) form = PostForm(instance=news) context = { "form":form, "post":news } return render(request, self.template, context) def post(self,request,slug): news = get_object_or_404(Posts,slug=slug) form = PostForm(request.POST,instance=news) if form.is_valid(): form.save() return redirect("index") else: context = { "form":form, "post":news } return render(request, self.template, context) class Delete(View): def post(self,request,slug): news = get_object_or_404(Posts,slug=slug) news.delete() return redirect("index") @login_required def user_logout(request): # Since we know the user is logged in, we can now just log them out. logout(request) # Take the user back to the homepage. return redirect('index')
from PyQt5.QtWidgets import QMainWindow, QWidget from PyQt5.QtWidgets import QApplication, QDialog, QTreeWidget, QTreeWidgetItem from PyQt5.QtGui import QIcon, QFont import PyQt5 from PyQt5.QtWidgets import QMessageBox from PyQt5.QtCore import QDir from PyQt5.QtCore import Qt, pyqtSlot, pyqtSignal from libopenimu.qt.Charts import IMUChartView from libopenimu.models.ProcessedData import ProcessedData from libopenimu.models.Base import Base import gc # UI from resources.ui.python.MainWindow_ui import Ui_MainWindow from libopenimu.qt.ImportWindow import ImportWindow from libopenimu.qt.GroupWindow import GroupWindow from libopenimu.qt.ParticipantWindow import ParticipantWindow from libopenimu.qt.RecordsetWindow import RecordsetWindow from libopenimu.qt.ResultWindow import ResultWindow from libopenimu.qt.StartWindow import StartWindow from libopenimu.qt.ImportBrowser import ImportBrowser from libopenimu.qt.ImportManager import ImportManager from libopenimu.qt.ExportWindow import ExportWindow from libopenimu.qt.StreamWindow import StreamWindow from libopenimu.qt.BackgroundProcess import BackgroundProcess, SimpleTask, ProgressDialog from libopenimu.qt.ProcessSelectWindow import ProcessSelectWindow # Models from libopenimu.models.Participant import Participant from libopenimu.models.DataSet import DataSet from libopenimu.models.LogTypes import LogTypes from libopenimu.streamers.streamer_types import StreamerTypes # Database from libopenimu.db.DBManager import DBManager # Python import sys from datetime import datetime class MainWindow(QMainWindow): currentFileName = '' dbMan = [] currentDataSet = DataSet() currentRecordsets = [] def __init__(self, parent=None): super(MainWindow, self).__init__(parent=parent) self.UI = Ui_MainWindow() self.UI.setupUi(self) self.UI.dockToolBar.setTitleBarWidget(QWidget()) self.UI.dockLog.hide() self.add_to_log("OpenIMU - Prêt à travailler.", LogTypes.LOGTYPE_INFO) # Setup signals and slots self.setup_signals() self.show_start_window() def __del__(self): # Restore sys.stdout sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def show_start_window(self): self.clear_main_widgets() self.showMinimized() start_window = StartWindow(self) if start_window.exec() == QDialog.Rejected: # User closed the dialog - exits! sys.exit(0) # Init database manager self.currentFileName = start_window.fileName self.dbMan = DBManager(self.currentFileName) # Maximize window self.showMaximized() # Load data self.add_to_log("Chargement des données...", LogTypes.LOGTYPE_INFO) self.currentDataSet = self.dbMan.get_dataset() self.load_data_from_dataset() self.UI.treeDataSet.setCurrentItem(None) self.UI.treeDataSet.owner = self # self.loadDemoData() self.add_to_log("Données chargées!", LogTypes.LOGTYPE_DONE) # If we need to import data, show the import dialog if start_window.importing: self.importRequested() gc.collect() def setup_signals(self): self.UI.treeDataSet.itemClicked.connect(self.tree_item_clicked) self.UI.btnDataSetInfos.clicked.connect(self.infos_requested) self.UI.btnAddGroup.clicked.connect(self.new_group_requested) self.UI.btnAddParticipant.clicked.connect(self.new_participant_requested) self.UI.treeDataSet.participantDragged.connect(self.participant_was_dragged) self.UI.btnDelete.clicked.connect(self.delete_requested) self.UI.btnImport.clicked.connect(self.import_requested) self.UI.btnExportCSV.clicked.connect(self.export_csv_requested) self.UI.dockDataset.visibilityChanged.connect(self.UI.btnShowDataset.setChecked) self.UI.dockLog.visibilityChanged.connect(self.toggle_log) self.UI.btnShowDataset.clicked.connect(self.toggle_dataset) self.UI.btnShowLog.clicked.connect(self.toggle_log) self.UI.btnTransfer.clicked.connect(self.transfer_requested) self.UI.btnClose.clicked.connect(self.db_close_requested) self.UI.btnCompact.clicked.connect(self.db_compact_requested) self.UI.btnProcess.clicked.connect(self.process_data_requested) def console_log_normal(self, text): self.add_to_log(text, LogTypes.LOGTYPE_DEBUG) def console_log_error(self, text): self.add_to_log(text, LogTypes.LOGTYPE_ERROR) @pyqtSlot() def load_data_from_dataset(self): self.UI.treeDataSet.clear() self.clear_main_widgets() # Groups groups = self.dbMan.get_all_groups() for group in groups: self.UI.treeDataSet.update_group(group) # Participants participants = self.dbMan.get_all_participants() for participant in participants: self.UI.treeDataSet.update_participant(participant) # Recordsets recordsets = self.dbMan.get_all_recordsets() for recordset in recordsets: self.UI.treeDataSet.update_recordset(recordset) # Results results = self.dbMan.get_all_processed_data() for result in results: self.UI.treeDataSet.update_result(result) def update_group(self, group): item = self.UI.treeDataSet.update_group(group) self.UI.treeDataSet.setCurrentItem(item) def update_participant(self, participant): item = self.UI.treeDataSet.update_participant(participant) self.UI.treeDataSet.setCurrentItem(item) def clear_main_widgets(self): for i in reversed(range(self.UI.frmMain.layout().count())): self.UI.frmMain.layout().itemAt(i).widget().setParent(None) def show_group(self, group=None): self.clear_main_widgets() group_widget = GroupWindow(dbManager=self.dbMan, group=group) self.UI.frmMain.layout().addWidget(group_widget) group_widget.dataSaved.connect(self.data_was_saved) group_widget.dataCancelled.connect(self.data_was_cancelled) def show_participant(self, participant=None, base_group=None): self.clear_main_widgets() part_widget = ParticipantWindow(dbManager=self.dbMan, participant=participant, default_group=base_group) self.UI.frmMain.layout().addWidget(part_widget) part_widget.dataSaved.connect(self.data_was_saved) part_widget.dataCancelled.connect(self.data_was_cancelled) @pyqtSlot('QString', int) def add_to_log(self, text, log_type): if text == ' ' or text == '\n': return log_format = "" if log_type == LogTypes.LOGTYPE_INFO: log_format = "<span style='color:black'>" if log_type == LogTypes.LOGTYPE_WARNING: log_format = "<span style='color:orange;font-style:italic'>" if log_type == LogTypes.LOGTYPE_ERROR: log_format = "<span style='color:red;font-weight:bold'>" if log_type == LogTypes.LOGTYPE_DEBUG: log_format = "<span style='color:grey;font-style:italic'>" if log_type == LogTypes.LOGTYPE_DONE: log_format = "<span style='color:green;font-weight:bold'>" self.UI.txtLog.append("<span style='color:grey'>" + datetime.now().strftime( "%H:%M:%S.%f") + " </span>" + log_format + text + "</span>") self.UI.txtLog.ensureCursorVisible() QApplication.processEvents() def get_current_widget_data_type(self): # TODO: checks! return self.UI.frmMain.layout().itemAt(0).widget().data_type ###################### @pyqtSlot(bool) def toggle_dataset(self, visibility): self.UI.dockDataset.setVisible(visibility) @pyqtSlot(bool) def toggle_log(self, visibility): self.UI.dockLog.setVisible(visibility) self.UI.btnShowLog.setChecked(visibility) if visibility: sys.stdout = EmittingStream(textWritten=self.console_log_normal) sys.stderr = EmittingStream(textWritten=self.console_log_error) else: sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ @pyqtSlot() def import_requested(self): importer = ImportBrowser(data_manager=self.dbMan) importer.participant_added.connect(self.load_data_from_dataset) importer.log_request.connect(self.add_to_log) importer.setStyleSheet(self.styleSheet()) if importer.exec() == QDialog.Accepted: self.load_data_from_dataset() gc.collect() @pyqtSlot() def export_csv_requested(self): exporter = ExportWindow(self.dbMan, self) exporter.setStyleSheet(self.styleSheet()) if exporter.exec() == QDialog.Accepted: print("Accepted") @pyqtSlot() def infos_requested(self): infos_window = ImportWindow(dataset=self.currentDataSet, filename=self.currentFileName) infos_window.setStyleSheet(self.styleSheet()) infos_window.noImportUI = True infos_window.infosOnly = True if infos_window.exec() != QDialog.Rejected: # TODO: Save data self.currentDataSet.name = infos_window.dataSet.name @pyqtSlot() def process_data_requested(self): if self.currentRecordsets: # Display Process Window proc_window = ProcessSelectWindow(data_manager=self.dbMan, recordsets=self.currentRecordsets, parent=self) if proc_window.exec() == QDialog.Accepted: self.UI.treeDataSet.update_item("result", proc_window.processed_data) self.UI.treeDataSet.select_item("result", proc_window.processed_data.id_processed_data) @pyqtSlot() def db_close_requested(self): msg = QMessageBox(self) msg.setIcon(QMessageBox.Question) msg.setStyleSheet("QPushButton{min-width: 100px; min-height: 40px;}") msg.setText("Cet ensemble de données sera fermé. Désirez-vous poursuivre?") msg.setWindowTitle("Fermeture?") msg.setStandardButtons(QMessageBox.Yes | QMessageBox.No) rval = msg.exec() if rval == QMessageBox.Yes: self.dbMan.close() self.add_to_log("Fichier " + self.currentFileName + " fermé.", LogTypes.LOGTYPE_INFO) self.hide() self.show_start_window() @pyqtSlot() def db_compact_requested(self): msg = QMessageBox(self) msg.setIcon(QMessageBox.Question) msg.setStyleSheet("QPushButton{min-width: 100px; min-height: 40px;}") msg.setText("Le fichier de données sera nettoyé. Ceci peut prendre un certain temps. \nDésirez-vous poursuivre?") msg.setWindowTitle("Compactage des données") msg.setStandardButtons(QMessageBox.Yes | QMessageBox.No) rval = msg.exec() if rval == QMessageBox.Yes: task = SimpleTask("Compactage des données", self.dbMan.compact) process = BackgroundProcess([task]) dialog = ProgressDialog(process, 'Nettoyage', self) process.start() dialog.exec() @pyqtSlot() def new_group_requested(self): self.show_group() @pyqtSlot() def new_participant_requested(self): # Check if we can get a root item (group) for the current selected item or not item = self.UI.treeDataSet.currentItem() if item is not None: while item.parent() is not None: item = item.parent() default_group = None if self.UI.treeDataSet.get_item_type(item) == "group": default_group = self.UI.treeDataSet.groups[self.UI.treeDataSet.get_item_id(item)] self.show_participant(base_group=default_group) @pyqtSlot(Participant) def participant_was_dragged(self,participant): self.dbMan.update_participant(participant) self.update_participant(participant) @pyqtSlot(QTreeWidgetItem, int) def tree_item_clicked(self, item, column): # print(item.text(column)) item_id = self.UI.treeDataSet.get_item_id(item) item_type = self.UI.treeDataSet.get_item_type(item) # Clear all widgets self.clear_main_widgets() self.UI.btnProcess.setEnabled(False) self.currentRecordsets = [] if item_type == "group": self.show_group(self.UI.treeDataSet.groups[item_id]) # groupWidget = GroupWindow(dbManager=self.dbMan, group = self.UI.treeDataSet.groups[item_id]) # self.UI.frmMain.layout().addWidget(groupWidget) if item_type == "participant": self.show_participant(self.UI.treeDataSet.participants[item_id]) if item_type == "recordsets" or item_type == "recordset" or item_type == "subrecord": if item_type == "recordsets": part = self.UI.treeDataSet.participants[self.UI.treeDataSet.get_item_id(item.parent())] self.currentRecordsets = self.dbMan.get_all_recordsets(part) else: self.currentRecordsets = [self.UI.treeDataSet.recordsets[item_id]] records_widget = RecordsetWindow(manager=self.dbMan, recordset=self.currentRecordsets, parent=self) # records_widget.setStyleSheet(self.styleSheet() + records_widget.styleSheet()) self.UI.frmMain.layout().addWidget(records_widget) records_widget.dataDisplayRequest.connect(self.UI.treeDataSet.select_item) records_widget.dataUpdateRequest.connect(self.UI.treeDataSet.update_item) self.UI.btnProcess.setEnabled(True) if item_type == "result": result_widget = ResultWindow(manager=self.dbMan, results=self.UI.treeDataSet.results[item_id], parent=self) self.UI.frmMain.layout().addWidget(result_widget) self.UI.frmMain.update() @pyqtSlot() def data_was_saved(self): item_type = self.get_current_widget_data_type() if item_type == "group": group = self.UI.frmMain.layout().itemAt(0).widget().group self.update_group(group) self.add_to_log("Groupe " + group.name + " mis à jour.", LogTypes.LOGTYPE_DONE) if item_type == "participant": part = self.UI.frmMain.layout().itemAt(0).widget().participant self.update_participant(part) self.add_to_log("Participant " + part.name + " mis à jour.", LogTypes.LOGTYPE_DONE) @pyqtSlot() def data_was_cancelled(self): item_type = self.get_current_widget_data_type() if item_type == "group": if self.UI.frmMain.layout().itemAt(0).widget().group is None: self.clear_main_widgets() if item_type == "participant": if self.UI.frmMain.layout().itemAt(0).widget().participant is None: self.clear_main_widgets() @pyqtSlot() def delete_requested(self): item_id = self.UI.treeDataSet.get_item_id(self.UI.treeDataSet.currentItem()) item_type = self.UI.treeDataSet.get_item_type(self.UI.treeDataSet.currentItem()) if item_type == "recordsets" or item_type == "results": return msg = QMessageBox(self) msg.setIcon(QMessageBox.Question) msg.setStyleSheet("QPushButton{min-width: 100px; min-height: 40px;}") msg.setText("Désirez-vous vraiment supprimer \"" + self.UI.treeDataSet.currentItem().text(0) + "\" et tous les éléments associés?") msg.setWindowTitle("Confirmation de suppression") msg.setStandardButtons(QMessageBox.Yes | QMessageBox.No) rval = msg.exec() if rval == QMessageBox.Yes: item_name = self.UI.treeDataSet.currentItem().text(0) tasks = [] if item_type == "group": group = self.UI.treeDataSet.groups[item_id] self.UI.treeDataSet.remove_group(group) task = SimpleTask("Suppression de '" + group.name + "'", self.dbMan.delete_group, group) tasks.append(task) if item_type == "participant": part = self.UI.treeDataSet.participants[item_id] self.UI.treeDataSet.remove_participant(part) task = SimpleTask("Suppression de '" + part.name + "'", self.dbMan.delete_participant, part) tasks.append(task) if item_type == "recordset": # Find and remove all related results for result in self.UI.treeDataSet.results.values(): if result is not None: for ref in result.processed_data_ref: if ref.recordset.id_recordset == item_id: self.UI.treeDataSet.remove_result(result) task = SimpleTask("Suppression de '" + result.name + "'", self.dbMan.delete_processed_data, result) tasks.append(task) # self.dbMan.delete_processed_data(result) break recordset = self.UI.treeDataSet.recordsets[item_id] task = SimpleTask("Suppression de '" + recordset.name + "'", self.dbMan.delete_recordset, recordset) tasks.append(task) # self.dbMan.delete_recordset(recordset) self.UI.treeDataSet.remove_recordset(recordset) if item_type == "result": result = self.UI.treeDataSet.results[item_id] task = SimpleTask("Suppression de '" + result.name + "'", self.dbMan.delete_processed_data, result) tasks.append(task) self.UI.treeDataSet.remove_result(result) # self.dbMan.delete_processed_data(result) if tasks: process = BackgroundProcess(tasks) # Create progress dialog dialog = ProgressDialog(process, 'Suppression', self) # Start tasks process.start() dialog.exec() self.add_to_log(item_name + " a été supprimé.", LogTypes.LOGTYPE_DONE) self.clear_main_widgets() # def closeEvent(self, event): # return def create_chart_view(self, test_data=False): chart_view = IMUChartView(self) if test_data is True: chart_view.add_test_data() return chart_view @pyqtSlot() def transfer_requested(self): import_man = ImportManager(dbmanager=self.dbMan, dirs=True, stream=True, parent=self) # TODO: More intelligent refresh! import_man.participant_added.connect(self.load_data_from_dataset) if import_man.exec() == QDialog.Accepted: stream_diag = StreamWindow(stream_type=import_man.filetype_id, path=import_man.filename, parent=self) stream_diag.exec() # Do the actual import msg = QMessageBox(self) msg.setIcon(QMessageBox.Question) msg.setStyleSheet("QPushButton{min-width: 100px; min-height: 40px;}") msg.setText("Procéder à l'importation des données?") msg.setWindowTitle("Importer?") msg.setStandardButtons(QMessageBox.Yes | QMessageBox.No) rval = msg.exec() if rval == QMessageBox.Yes: # Start import process import_browser = ImportBrowser(data_manager=self.dbMan, parent=self) import_browser.log_request.connect(self.add_to_log) # Build import list files = import_man.get_file_list() importer_id = StreamerTypes.value_importer_types[import_man.filetype_id] for file_name, file_part in files.items(): import_browser.add_file_to_list(file_name, import_man.filetype, importer_id, file_part) import_browser.ok_clicked() self.load_data_from_dataset() ######################################################################################################################## class Treedatawidget(QTreeWidget): groups = {} participants = {} recordsets = {} results = {} items_groups = {} items_participants = {} items_recordsets = {} items_results = {} participantDragged = pyqtSignal(Participant) owner = None def __init__(self, parent=None): super(Treedatawidget, self).__init__(parent=parent) def remove_group(self,group): item = self.items_groups.get(group.id_group, None) # Remove all participants items in that group for i in range(0, item.childCount()): child = item.child(i) child_id = self.get_item_id(child) self.remove_participant(self.participants[child_id]) for i in range(0, self.topLevelItemCount()): if self.topLevelItem(i) == item: self.takeTopLevelItem(i) self.groups[group.id_group] = None self.items_groups[group.id_group] = None break def remove_participant(self,participant): item = self.items_participants.get(participant.id_participant, None) # Remove all recordsets and results items from participant for i in range(0, item.childCount()): child_type = self.get_item_type(item.child(i)) for j in range(0, item.child(i).childCount()): child = item.child(i).child(j) child_id = self.get_item_id(child) if child_type == "recordsets": try: self.remove_recordset(self.recordsets[child_id]) except KeyError: continue if child_type == "results": try: self.remove_result(self.results[child_id]) except KeyError: continue if participant.id_group is None: # Participant without a group for i in range(0, self.topLevelItemCount()): if self.topLevelItem(i) == item: self.takeTopLevelItem(i) break else: for i in range(0, item.parent().childCount()): if item.parent().child(i) == item: item.parent().takeChild(i) break self.participants[participant.id_participant] = None self.items_participants[participant.id_participant] = None def remove_recordset(self, recordset): item = self.items_recordsets.get(recordset.id_recordset, None) for i in range(0, item.parent().childCount()): if item.parent().child(i) == item: item.parent().takeChild(i) break self.recordsets[recordset.id_recordset] = None self.items_recordsets[recordset.id_recordset] = None def remove_result(self, result): item = self.items_results.get(result.id_processed_data, None) for i in range(0, item.parent().childCount()): if item.parent().child(i) == item: item.parent().takeChild(i) break self.results[result.id_processed_data] = None self.items_results[result.id_processed_data] = None def update_group(self, group): item = self.items_groups.get(group.id_group, None) if item is None: item = QTreeWidgetItem() item.setText(0, group.name) item.setIcon(0, QIcon(':/OpenIMU/icons/group.png')) item.setData(0, Qt.UserRole, group.id_group) item.setData(1, Qt.UserRole, 'group') item.setFont(0, QFont('Helvetica', 12, QFont.Bold)) self.addTopLevelItem(item) self.groups[group.id_group] = group self.items_groups[group.id_group] = item else: item.setText(0, group.name) return item def update_participant(self, part): item = self.items_participants.get(part.id_participant, None) group_item = self.items_groups.get(part.id_group, None) if item is None: item = QTreeWidgetItem() item.setText(0, part.name) item.setIcon(0, QIcon(':/OpenIMU/icons/participant.png')) item.setData(0, Qt.UserRole, part.id_participant) item.setData(1, Qt.UserRole, 'participant') item.setFont(0, QFont('Helvetica', 12, QFont.Bold)) if group_item is None: # Participant without a group self.addTopLevelItem(item) else: group_item.addChild(item) parent = item # Recordings item = QTreeWidgetItem() item.setText(0, 'Enregistrements') item.setIcon(0, QIcon(':/OpenIMU/icons/records.png')) item.setData(1, Qt.UserRole, 'recordsets') item.setFont(0, QFont('Helvetica', 11, QFont.Bold)) parent.addChild(item) # Results item = QTreeWidgetItem() item.setText(0, 'Résultats') item.setIcon(0, QIcon(':/OpenIMU/icons/results.png')) item.setData(1, Qt.UserRole, 'results') item.setFont(0, QFont('Helvetica', 11, QFont.Bold)) parent.addChild(item) item = parent else: item.setText(0, part.name) # Check if we must move it or not, if the group changed if item.parent() != group_item: # Old group - find and remove current item if item.parent() is None: # No parent... for i in range(0, self.topLevelItemCount()): if self.topLevelItem(i) == item: item = self.takeTopLevelItem(i) break else: # Had a group... for i in range(0, item.parent().childCount()): if item.parent().child(i) == item: item = item.parent().takeChild(i) break # New group if group_item is None: # Participant without a group self.addTopLevelItem(item) else: group_item.addChild(item) self.participants[part.id_participant] = part self.items_participants[part.id_participant] = item return item def update_recordset(self, recordset): item = self.items_recordsets.get(recordset.id_recordset, None) if item is None: item = QTreeWidgetItem() item.setText(0, recordset.name) item.setIcon(0, QIcon(':/OpenIMU/icons/recordset.png')) item.setData(0, Qt.UserRole, recordset.id_recordset) item.setData(1, Qt.UserRole, 'recordset') item.setFont(0, QFont('Helvetica', 11, QFont.Bold)) part_item = self.items_participants.get(recordset.id_participant,None) if part_item is not None: for i in range(0, part_item.childCount()): if self.get_item_type(part_item.child(i)) == "recordsets": part_item.child(i).addChild(item) else: item.setText(0, recordset.name) self.recordsets[recordset.id_recordset] = recordset self.items_recordsets[recordset.id_recordset] = item return item def update_result(self, result: ProcessedData): item = self.items_results.get(result.id_processed_data, None) if item is None: item = QTreeWidgetItem() item.setText(0, result.name) item.setIcon(0, QIcon(':/OpenIMU/icons/result.png')) item.setData(0, Qt.UserRole, result.id_processed_data) item.setData(1, Qt.UserRole, 'result') item.setFont(0, QFont('Helvetica', 11, QFont.Bold)) part_item = None if len(result.processed_data_ref)>0: part_item = self.items_participants.get(result.processed_data_ref[0].recordset.id_participant,None) if part_item is not None: # TODO: subrecords... for i in range(0, part_item.childCount()): if self.get_item_type(part_item.child(i)) == "results": part_item.child(i).addChild(item) else: item.setText(0, result.name) self.results[result.id_processed_data] = result self.items_results[result.id_processed_data] = item return item @classmethod def get_item_type(cls, item): if item is not None: return item.data(1, Qt.UserRole) else: return "" @classmethod def get_item_id(cls, item): if item is not None: return item.data(0, Qt.UserRole) else: return "" @pyqtSlot(str, int) def select_item(self, item_type, item_id): # print ("Selecting " + item_type + ", ID " + str(item_id)) item = None if item_type == "group": item = self.items_groups.get(item_id, None) if item_type == "participant": item = self.items_participants.get(item_id, None) if item_type == "recordset": item = self.items_recordsets.get(item_id, None) if item_type == "result": item = self.items_results.get(item_id, None) if item is not None: self.setCurrentItem(item) self.owner.tree_item_clicked(item, 0) @pyqtSlot(str, Base) def update_item(self, item_type, data): # print ("Selecting " + item_type + ", ID " + str(item_id)) # item = None if item_type == "group": self.update_group(data) if item_type == "participant": self.update_participant(data) if item_type == "recordset": self.update_recordset(data) if item_type == "result": self.update_result(data) def clear(self): self.groups = {} self.participants = {} self.recordsets = {} self.results = {} self.items_groups = {} self.items_participants = {} self.items_recordsets = {} self.items_results = {} super().clear() def dropEvent(self, event): index = self.indexAt(event.pos()) source_item = self.currentItem() source_type = source_item.data(1, Qt.UserRole) source_id = source_item.data(0, Qt.UserRole) target_item = self.itemFromIndex(index) if target_item is not None: target_type = target_item.data(1, Qt.UserRole) target_id = target_item.data(0, Qt.UserRole) if source_type == "participant": # Participant can only be dragged over groups or no group at all if not index.isValid(): # Clear source and set to no group self.participants[source_id].group = None self.participants[source_id].id_group = None # new_item = source_item.clone() # self.addTopLevelItem(new_item) self.participantDragged.emit(self.participants[source_id]) event.accept() return else: if target_type == "group": self.participants[source_id].group = self.groups[target_id] self.participants[source_id].id_group = self.groups[target_id].id_group # new_item = source_item.clone() # target_item.addChild(new_item) self.participantDragged.emit(self.participants[source_id]) event.accept() return event.ignore() class EmittingStream(PyQt5.QtCore.QObject): textWritten = PyQt5.QtCore.pyqtSignal(str) flushRequest = PyQt5.QtCore.pyqtSignal() def write(self, text): self.textWritten.emit(str(text)) def flush(self): pass # Main if __name__ == '__main__': # Must be done before starting the app QApplication.setAttribute(Qt.AA_EnableHighDpiScaling) app = QApplication(sys.argv) # qInstallMessageHandler(qt_message_handler) # Set current directory to home path QDir.setCurrent(QDir.homePath()) print(PyQt5.__file__) # paths = [x for x in dir(QLibraryInfo) if x.endswith('Path')] # pprint({x: QLibraryInfo.location(getattr(QLibraryInfo, x)) for x in paths}) # WebEngine settings # QWebEngineSettings.globalSettings().setAttribute(QWebEngineSettings.PluginsEnabled, True) # QWebEngineSettings.globalSettings().setAttribute(QWebEngineSettings.JavascriptCanOpenWindows, True) # QWebEngineSettings.globalSettings().setAttribute(QWebEngineSettings.JavascriptEnabled, True) # QWebEngineSettings.globalSettings().setAttribute(QWebEngineSettings.LocalContentCanAccessRemoteUrls,True) # QWebEngineSettings.globalSettings().setAttribute(QWebEngineSettings.AllowRunningInsecureContent, True) window = MainWindow() # Never executed (exec already in main)... sys.exit(app.exec_())
from .person import Person class MITPerson(Person): nextIdNum = 0 def __init__(self, name): Person.__init__(self, name) self.idNum = MITPerson.nextIdNum MITPerson.nextIdNum += 1 def getIdNum(self): return self.idNum def __lt__(self, other): return self.idNum < other.idNum def speak(self, utterance): return (self.getLastName() + " says: " + utterance) class Student(MITPerson): pass class UG(Student): def __init__(self, name, classYear): MITPerson.__init__(self, name) self.year = classYear def getClass(self): return self.year def speak(self, utterance): return MITPerson.speak(self, " Dude, " + utterance) class Grad(Student): pass class TransferStudent(Student): pass def isStudent(obj): return isinstance(obj, Student) class Professor(MITPerson): def __init__(self, name, department): MITPerson.__init__(self, name): self.department = department def speak(self, utterance): new = 'In course ' + self.department + ' we say ' return MITPerson.speak(self, new + utterance) def lecture(self, topic): return self.speak("It is obbious that " + topic)
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from json import loads from glob import glob from os.path import join from tornado.web import HTTPError from .oauth2 import OauthBaseHandler, authenticate_oauth from qiita_core.qiita_settings import qiita_config import qiita_db as qdb def _get_plugin(name, version): """Returns the plugin with the given name and version Parameters ---------- name : str The name of the plugin version : str The version of the plugin Returns ------- qiita_db.software.Software The requested plugin Raises ------ HTTPError If the plugin does not exist, with error code 404 If there is a problem instantiating the plugin, with error code 500 """ try: plugin = qdb.software.Software.from_name_and_version(name, version) except qdb.exceptions.QiitaDBUnknownIDError: raise HTTPError(404) except Exception as e: raise HTTPError(500, reason='Error instantiating plugin %s %s: %s' % (name, version, str(e))) return plugin class PluginHandler(OauthBaseHandler): @authenticate_oauth def get(self, name, version): """Retrieve the plugin information Parameters ---------- name : str The plugin name version : str The plugin version Returns ------- dict The plugin information: 'name': the plugin name 'version': the plugin version 'description': the plugin description 'commands': list of the plugin commands 'publications': list of publications 'default_workflows': list of the plugin default workflows 'type': the plugin type 'active': whether the plugin is active or not """ with qdb.sql_connection.TRN: plugin = _get_plugin(name, version) response = { 'name': plugin.name, 'version': plugin.version, 'description': plugin.description, 'commands': [c.name for c in plugin.commands], 'publications': [{'DOI': doi, 'PubMed': pubmed} for doi, pubmed in plugin.publications], 'default_workflows': [w.name for w in plugin.default_workflows], 'type': plugin.type, 'active': plugin.active} self.write(response) class CommandListHandler(OauthBaseHandler): @authenticate_oauth def post(self, name, version): """Create new command for a plugin Parameters ---------- name : str The name of the plugin version : str The version of the plugin """ with qdb.sql_connection.TRN: plugin = _get_plugin(name, version) cmd_name = self.get_argument('name') cmd_desc = self.get_argument('description') req_params = loads(self.get_argument('required_parameters')) opt_params = loads(self.get_argument('optional_parameters')) for p_name, vals in opt_params.items(): if vals[0].startswith('mchoice'): opt_params[p_name] = [vals[0], loads(vals[1])] if len(vals) == 2: opt_params[p_name] = [vals[0], loads(vals[1])] elif len(vals) == 4: opt_params[p_name] = [vals[0], loads(vals[1]), vals[2], vals[3]] else: raise qdb.exceptions.QiitaDBError( "Malformed parameters dictionary, the format " "should be either {param_name: [parameter_type, " "default]} or {parameter_name: (parameter_type, " "default, name_order, check_biom_merge)}. Found: " "%s for parameter name %s" % (vals, p_name)) # adding an extra element to make sure the parser knows this is # an optional parameter opt_params[p_name].extend(['qiita_optional_parameter']) outputs = self.get_argument('outputs', None) if outputs: outputs = loads(outputs) dflt_param_set = loads(self.get_argument('default_parameter_sets')) analysis_only = self.get_argument('analysis_only', False) parameters = req_params parameters.update(opt_params) cmd = qdb.software.Command.create( plugin, cmd_name, cmd_desc, parameters, outputs, analysis_only=analysis_only) if dflt_param_set is not None: for name, vals in dflt_param_set.items(): qdb.software.DefaultParameters.create(name, cmd, **vals) self.finish() def _get_command(plugin_name, plugin_version, cmd_name): """Returns the command with the given name within the given plugin Parameters ---------- plugin_name : str The name of the plugin plugin_version : str The version of the plugin cmd_name : str The name of the command in the plugin Returns ------- qiita_db.software.Command The requested command Raises ------ HTTPError If the command does not exist, with error code 404 If there is a problem instantiating the command, with error code 500 """ plugin = _get_plugin(plugin_name, plugin_version) try: cmd = plugin.get_command(cmd_name) except qdb.exceptions.QiitaDBUnknownIDError: raise HTTPError(404) except Exception as e: raise HTTPError(500, reason='Error instantiating cmd %s of plugin ' '%s %s: %s' % (cmd_name, plugin_name, plugin_version, str(e))) return cmd class CommandHandler(OauthBaseHandler): @authenticate_oauth def get(self, plugin_name, plugin_version, cmd_name): """Retrieve the command information Parameters ---------- plugin_name : str The plugin name plugin_version : str The plugin version cmd_name : str The command name Returns ------- dict The command information 'name': the command name 'description': the command description 'required_parameters': dict with the required parameters, in the format {parameter_name: [type, [subtypes]]} 'optional_parameters': dict with the optional parameters, in the format {parameter_name: [type, default value]} 'default_parameter_sets': dict with the default parameter sets, in the format {parameter set name: {parameter_name: value}} """ with qdb.sql_connection.TRN: cmd = _get_command(plugin_name, plugin_version, cmd_name) response = { 'name': cmd.name, 'description': cmd.description, 'required_parameters': cmd.required_parameters, 'optional_parameters': cmd.optional_parameters, 'default_parameter_sets': { p.name: p.values for p in cmd.default_parameter_sets}} self.write(response) class CommandActivateHandler(OauthBaseHandler): @authenticate_oauth def post(self, plugin_name, plugin_version, cmd_name): """Activates the command Parameters ---------- plugin_name : str The plugin name plugin_version : str The plugin version cmd_name : str The command name """ with qdb.sql_connection.TRN: cmd = _get_command(plugin_name, plugin_version, cmd_name) cmd.activate() self.finish() class ReloadPluginAPItestHandler(OauthBaseHandler): @authenticate_oauth def post(self): """Reloads the plugins""" conf_files = sorted(glob(join(qiita_config.plugin_dir, "*.conf"))) for fp in conf_files: software = qdb.software.Software.from_file(fp, update=True) software.activate() software.register_commands() self.finish()
from django.db import models # Create your models here. class ClientModel(models.Model): lastname = models.CharField(max_length=120,blank=True, null=True, default=None,verbose_name="Фамилия") email = models.EmailField(blank=True, null=True, default=None) firstname = models.CharField(max_length=120,blank=True, null=True, default=None,verbose_name="Имя") phone = models.CharField(max_length=50, blank=True, null=True, default=None,verbose_name="Тел.") address = models.CharField(max_length=128, blank=True, null=True, default=None,verbose_name="Адрес") created = models.DateTimeField(auto_now_add=True,auto_now=False,verbose_name="Созд.") updated = models.DateTimeField(auto_now_add=False,auto_now=True,verbose_name="Обнов.") token_key = models.CharField(max_length=128,blank=True, null=True, default=None) # вывод одного поля def __str__(self): return "Клиент %s " % (self.id ) class Meta: verbose_name = 'Клиент' verbose_name_plural = 'Клиенты'
# -*- coding: utf-8 -*- class GrapheNO: """graphe code par liste d'adjacence. Les sommets devront etre numerotes 0,1,...,n-1""" def __init__(self, n, l_adj): """initialise un graphe d'apres la liste d'adjacence l_adj et son ordre n""" self.ordre = n # attribut ordre = nb de sommets self.adj = l_adj # attribut liste adjacence def affiche(self): """affiche dans le terminal la liste d'adjacence""" print "ordre : ", self.ordre for v in range(self.ordre): print "voisins de", v," : ", for voisin in self.adj[v]: print voisin, print def degre(self,v): """renvoie le degre du sommet v""" return len(self.adj[v]) def taille(self): """renvoie le nombre d'arêtes du graphe""" sommedegres = 0 for v in range(self.ordre): sommedegres += len(self.adj[v]) return sommedegres/2 # petits malins : return sum([len(self.adj[v]) for v in range(self.ordre)]) def nbTriangles(self): """renvoie le nb de triangles du graphe. Une version très naïve consisterait à faire une triple boucle et tester les trois adjacences Mieux chercher les voisins des voisins d'un sommet v donné et regarder si v est voisin à nouveau. Chaque triangle aura été compté six fois.""" nbT = 0 for v in range(self.ordre): for v1 in self.adj[v]: for v2 in self.adj[v1]: if v in self.adj[v2]: nbT += 1 return nbT/6 #################################################################################################################### def aretes_vers_liste_adjacence(n,aretes): """n est l'ordre du graphe non oriente, sommets 0,1, ..., n-1 aretes la liste de ses aretes renvoie la liste d'adjacence du graphe""" adjacence = [ [] for i in range(n) ] #liste contenant n listes vides for arete in aretes: adjacence[ arete[0] ].append( arete[1] ) adjacence[ arete[1] ].append( arete[0] ) return adjacence def grapheComplet(n): """renvoie un objet GrapheNO correspondant au graphe complet d'ordre n""" l_adj = [] for v in range(n): voisinage = [] for voisin in range(n): if voisin != v: voisinage.append(voisin) l_adj.append(voisinage) return GrapheNO(n, l_adj) """remarque : on peut également si on est en forme écrire une seule ligne : return GrapheNO([ [j for j in range(n) if j!=i] for i in range(n) ])""" def cycle(n) : """renvoie un objet GrapheNO correspondant au cycle d'ordre n""" l_adj = [[1,n-1]] for v in range(1,n-1): l_adj.append([v-1,v+1]) l_adj.append([n-2,0]) return GrapheNO(n, l_adj) def lireAretesEtOrdre(nomdufichier): """lit le fichier et renvoie la liste des aretes qui s'y trouvent""" f = file(nomdufichier, 'r') lignes = f.readlines() #on extrait les lignes qui commencent par 'E' #si c'est bon on cree une nouvelle arete aretes = [] ordre = 0 for l in lignes: mots = l.split() if len(mots) >= 3 and mots[0]=='E': aretes.append([int(mots[1]), int(mots[2])]) #tout la monde va oublier la conversion en int if len(mots) > 0 and mots[0]=="ordre": ordre = int(mots[1]) return aretes, ordre def lireGrapheNO(nomdufichier): """renvoie l'objet GrapheNO contenu par liste d'arêtes dans le fichier""" aretes, n = lireAretesEtOrdre(nomdufichier) return GrapheNO(n, aretes_vers_liste_adjacence(n,aretes)) def test1(): for nom in ["petitgraphe.txt","copperfield.txt","erdos.txt","levures.txt","metro.txt"]: g = lireGrapheNO(nom) print "*"*20 print nom print "ordre :", g.ordre print "taille :", g.taille() print "triangles :", g.nbTriangles() def parcours_pargeur(g, v): """effectue un parcours en largeur du grapheNO g depuis le sommet v ; renvoie le tableau d des distances et le tableau pred des predecesseurs ; utilise une file LIFO basique avec une liste (queue) ici version sans les couleurs""" #initialisation pred = [None] * g.ordre d = [-1] * g.ordre d[v] = 0 queue = [v] #on y va while queue: courant = queue.pop() for voisin in g.adj[courant]: if d[voisin] == -1: pred[voisin] = courant d[voisin] = d[courant] + 1 queue.insert(0,voisin) #fin return d, pred def test3(): """distance du sommet 0 au 'dernier' sommet""" for nom in ["petitgraphe.txt","copperfield.txt","erdos.txt","levures.txt","metro.txt"]: g = lireGrapheNO(nom) d, pred = parcours_pargeur(g,0) print nom, d[g.ordre-1] def nb_composantes_connexes(g): inconnu = [True] * g.ordre nb_composantes = 0 for depart in range(g.ordre): if inconnu[depart]: nb_composantes +=1 queue = [depart] inconnu[depart] = False while queue: courant = queue.pop() for voisin in g.adj[courant]: if inconnu[voisin]: inconnu[voisin] = False queue.insert(0,voisin) inconnu[voisin] = False return nb_composantes def test2(): for n in range(10): nomfichier = "composantes" + str(n) + ".txt" print nomfichier, nb_composantes_connexes(lireGrapheNO(nomfichier)) def mem_comp(g, a, b): """affiche si les sommets sont dans la meme composante connexe""" d, p = parcours_pargeur(g,a) return d[b] != -1 g = lireGrapheNO("levures.txt") for i in range(g.ordre): if not mem_comp(g,0,i): print i #programme du making off def retrouveordre(nomdufichier): f = file(nomdufichier, 'r') lignes = f.readlines() #on extrait les lignes qui commencent par 'E' #si c'est bon on cree une nouvelle arete max = -1 for l in lignes: mots = l.split() if len(mots) >= 3 and mots[0]=='E': if int(mots[1]) > max: max = int(mots[1]) if int(mots[2]) > max: max = int(mots[2]) return max + 1
import pika from src.settings import RABBITMQ_HOST, RABBITMQ_PORT, RABBITMQ_USERNAME, RABBITMQ_PASSWORD, RABBITMQ_QUEUE, \ RABBITMQ_PREFETCH_COUNT from src.contracts.event_consumer import EventConsumer class RabbitConsumer(EventConsumer): def start_consumption(self, callback): credentials = pika.PlainCredentials(RABBITMQ_USERNAME, RABBITMQ_PASSWORD) connection = pika.BlockingConnection(pika.ConnectionParameters( host=RABBITMQ_HOST, port=RABBITMQ_PORT, credentials=credentials )) channel = connection.channel() channel.basic_qos(prefetch_count=RABBITMQ_PREFETCH_COUNT) channel.basic_consume(on_message_callback=callback, queue=RABBITMQ_QUEUE) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
from timeit import default_timer as timer import tkinter from PIL import Image from PIL import ImageTk import cv2 import numpy as np from math import sqrt MAX_FEATURES = 5000 GOOD_MATCH_PERCENT = 0.25 MIN_MATCHES = 10 camindex = 2 ransacReprojThreshold = 25.0 im1 = cv2.imread('template.jpg') im1Gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) orb = cv2.ORB_create(MAX_FEATURES) keypoints1, descriptors1 = orb.detectAndCompute(im1Gray, None) matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 100) flann = cv2.FlannBasedMatcher(index_params, search_params) stdpix = 500 stdval = 0.1 cap = cv2.VideoCapture(camindex) if not cap.isOpened(): print("Camera not found at index ", camindex) exit() cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 960) font = cv2.FONT_HERSHEY_SIMPLEX devthresh = 0.5 accurate = 0 detected = 1 undetected = 0 #lgdev = 100 lgdst = [] lgcen = () lgsz = 1 drops = 0 def eucliddist(p1, p2): dx = p1[0]-p2[0] dy = p1[1]-p2[1] dist = sqrt(dx*dx + dy*dy) return dist def sign(x): if x >= 0: return 1 else: return -1 def check_convexity(points): val = [0,0,0,0] for i in range(4): x0, y0 = points[i][0], points[i][1] x1, y1 = points[(i+1)%4][0], points[(i+1)%4][1] x2, y2 = points[(i+2)%4][0], points[(i+2)%4][1] val[i] = sign((x1-x0)*(y2-y0)-(y1-y0)*(x2-x0)) if 0 in val: return False if(val == [1,1,1,1] or val == [-1,-1,-1,-1]): return True return False def validate(corners): points = [np.array(corners[i][0]) for i in range(4)] cvx = check_convexity(points) sides = [eucliddist(points[i], points[(i+1)%4]) for i in range(4)] #print(sides) dev = np.std(sides)/np.mean(sides) #print(dev) if(dev<devthresh and cvx): return 3 elif(dev>=devthresh and cvx): return 2 elif(dev<devthresh and not cvx): return 1 else: return 0 def quadcentroid(corners): #returns centre of quadrilateral sumx=0.0 sumy=0.0 for i in range(4): sumx+=corners[i][0][0] sumy+=corners[i][0][1] return (int(sumx//4) , int(sumy//4)) def quadsize(corners): #returns longest diagonal diag1 = eucliddist(corners[0][0], corners[2][0]) diag2 = eucliddist(corners[1][0], corners[3][0]) return max(diag1, diag2) def triangulate(quantity, currpix): qx = quantity[0]*stdval/stdpix qy = quantity[1]*stdval/stdpix return (qx,qy) def reqacc (rvel , cdist, taracc): if(cdist[0]!=0): a0 = taracc[0] + 0.5*np.dot(rvel[0], rvel[0])/cdist[0] else: a0=taracc[0] if(cdist[1]!=0): a1 = taracc[1] + 0.5*np.dot(rvel[1], rvel[1])/cdist[1] else: a1 = taracc[1] acc = [a0, a1] return acc def cendist(mcen, frame0): h,w,c = frame0.shape cen = (w//2, h//2) off=np.subtract(np.array(cen), np.array(mcen)) return off def displacement(pos0, pos1): pixshift=(pos1[0]-pos0[0], pos1[1]-pos0[1]) return pixshift def pixvel (pos0, pos1, framerate): svect = displacement(pos0, pos1) vvect = (svect[0]*framerate , svect[1]*framerate) return vvect def pixacc (pos0, pos1, pos2, framerate): vel0 = pixvel(pos0, pos1, framerate) vel1 = pixvel(pos1, pos2, framerate) avect = ((vel1[0]-vel0[0])*framerate, (vel1[1]-vel0[1])*framerate) return avect def pixacc (vel0, vel1, framerate): avect = ((vel1[0]-vel0[0])*framerate, (vel1[1]-vel0[1])*framerate) return avect def pformat(pair): x = str(pair[0])[0:8] y = str(pair[1])[0:8] return '('+x+','+y+')' def findmatch(im2): global accurate global detected global undetected #global lgdev global lgdst global lgcen global lgsz global drops try: im2Gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) keypoints2, descriptors2 = orb.detectAndCompute(im2Gray, None) matches = matcher.match(descriptors1, descriptors2, None) matches.sort(key=lambda x: x.distance, reverse=False) numGoodMatches = int(len(matches) * GOOD_MATCH_PERCENT) matches = matches[:numGoodMatches] if(len(matches)<MIN_MATCHES): raise Exception('Not enough matches') points1 = np.zeros((len(matches), 2), dtype=np.float32) points2 = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points1[i, :] = keypoints1[match.queryIdx].pt points2[i, :] = keypoints2[match.trainIdx].pt # Find homography h, mask = cv2.findHomography(points1, points2, cv2.RANSAC, ransacReprojThreshold = ransacReprojThreshold) height, width, channels = im1.shape pts = np.float32([ [0,0],[0,height-1],[width-1,height-1],[width-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,h) cen = quadcentroid(dst) qsz = quadsize(dst) if(fcount%10==0): #lgdev = 0.6 iMatches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None) cv2.imwrite('frames/frame'+str(fcount)+'.jpg', iMatches) v = validate(dst) if v==3: accurate +=1 detected +=1 undetected = 0 #if v==3: lgdst,lgcen,lgsz = dst,cen,qsz #cv2.polylines(im2,[np.int32(lgdst)],True,(0, 64, 0),3, cv2.LINE_AA) cv2.polylines(im2,[np.int32(dst)],True,(0, 255, 0),3, cv2.LINE_AA) cv2.putText(im2,'Success',(10,100), font, 1,(0,255,0),2,cv2.LINE_AA) elif v==1 or v==0: detected +=1 if(undetected<=10 and accurate>0): undetected +=1 drops+=1 accurate+=1 cv2.polylines(im2,[np.int32(lgdst)],True,(0, 255, 255),3, cv2.LINE_AA) cv2.putText(im2,'Failure',(10,100), font, 1,(0,0,255),2,cv2.LINE_AA) if(accurate>0): cen = lgcen qsz = lgsz elif v==0: raise Exception('Non convex overskewed bounding box') display = ImageTk.PhotoImage(image = Image.fromarray(cv2.cvtColor(im2, cv2.COLOR_BGR2RGB))) return cen, qsz, display except: undetected+=1 if(undetected<=10 and accurate>0): drops+=1 detected+=1 accurate+=1 cv2.polylines(im2,[np.int32(lgdst)],True,(128, 128, 128),3, cv2.LINE_AA) cv2.putText(im2,'Success',(10,100), font, 1,(0,255,0),2,cv2.LINE_AA) else: cv2.putText(im2,'Not detected',(10,100), font, 1,(255,100,0),2,cv2.LINE_AA) display = ImageTk.PhotoImage(image = Image.fromarray(cv2.cvtColor(im2, cv2.COLOR_BGR2RGB))) if(accurate>0): return lgcen, lgsz, display return (0,0), 1, display try: print('Starting system, Capturing camera ', camindex) fcount = 0 prev = timer() window = tkinter.Tk() start = timer() window.title('Live Stream') ret, frame0 = cap.read() pos0, sz0, mat = findmatch(frame0) now = timer() framerate = 1/(now-prev) prev = now ret, frame1 = cap.read() pos1, sz1, mat = findmatch(frame1) h1, w1, c1 = im1.shape h2, w2, c2 = frame0.shape width = w1+w2 height = max(h1, h2) canvas = tkinter.Canvas(window, width = width, height = height) canvas.pack() vel0 = pixvel(pos0, pos1, framerate) fcount = 2 while(True): ret, frame2 = cap.read() fcount+=1 pos2, sz2, mat = findmatch(frame2) now = timer() framerate = 1/(now-prev) prev = now canvas.create_image(0, 0, image = mat, anchor = tkinter.NW) window.update() vel1 = pixvel(pos1, pos2, framerate) acc0 = pixacc(vel0, vel1, framerate) #acceleration between frames cdist = cendist(pos0, frame0) #distance of target from centre of field of view avgsize = (sz0+sz1+sz2)/3 #average size of target in 3 frames racc = reqacc(vel0, cdist, acc0) #required pixel acceleration according to current data realacc = triangulate(racc, avgsize) #required actual acceleration print('\033[K Frame: ',fcount, 'Framerate: ',int(framerate), 'Average FPS: ', (fcount//(now-start)), 'Accuracy: ', (accurate*100//detected), ' %') print('\033[K Position: ',pformat(pos2),' pixel') print('\033[K Shift: ',pformat(displacement(pos0, pos1)),' pixel') print('\033[K Velocity: ',pformat(vel1),' pixel/s') print('\033[K Acceleration: ',pformat(acc0),' pixel/s^2') print('\033[K Required Accceleration: ',pformat(realacc),' metre/s^2') print('\033[A'*7) pos0, sz0 = pos1, sz1 pos1, sz1 = pos2, sz2 vel0 = vel1 except KeyboardInterrupt: print("\n"*7, "Releasing camera...") cap.release() print("Writing to log file") with open('stats.txt', 'a') as logfile: #total frames, Accuracy %, Buffered, Total detected, Total accurate, Actual accurate, Undetected logfile.write(str(fcount)+'\t\t'+str((accurate*100//detected))+'\t\t'+str(drops)+'\t'+str(detected)+'\t'+str(accurate)+'\t'+str(accurate-drops)+'\t'+str(fcount-detected)+'\n') print("Exiting...") exit()
#!/usr/bin/env python import logging from typing import ( Any, Dict, List, Optional, ) from hummingbot.logger import HummingbotLogger from hummingbot.core.event.events import TradeType from hummingbot.connector.exchange.bittrex.bittrex_order_book_message import BittrexOrderBookMessage from hummingbot.core.data_type.order_book cimport OrderBook from hummingbot.core.data_type.order_book_message import ( OrderBookMessage, OrderBookMessageType, ) _btob_logger = None cdef class BittrexOrderBook(OrderBook): @classmethod def logger(cls) -> HummingbotLogger: global _btob_logger if _btob_logger is None: _btob_logger = logging.getLogger(__name__) return _btob_logger @classmethod def snapshot_message_from_exchange(cls, msg: Dict[str, any], timestamp: float, metadata: Optional[Dict] = None) -> OrderBookMessage: if metadata: msg.update(metadata) return BittrexOrderBookMessage( OrderBookMessageType.SNAPSHOT, { "trading_pair": msg["marketSymbol"], "update_id": int(msg["sequence"]), "bids": msg["bid"], "asks": msg["ask"] }, timestamp=timestamp) @classmethod def diff_message_from_exchange(cls, msg: Dict[str, any], timestamp: Optional[float] = None, metadata: Optional[Dict] = None): if metadata: msg.update(metadata) return BittrexOrderBookMessage( OrderBookMessageType.DIFF, { "trading_pair": msg["marketSymbol"], "update_id": int(msg["sequence"]), "bids": msg["bidDeltas"], "asks": msg["askDeltas"] }, timestamp=timestamp) @classmethod def trade_message_from_exchange(cls, msg: Dict[str, Any], timestamp: Optional[float] = None, metadata: Optional[Dict] = None) -> OrderBookMessage: if metadata: msg.update(metadata) return BittrexOrderBookMessage( OrderBookMessageType.TRADE, { "trading_pair": msg["trading_pair"], "trade_type": float(TradeType.BUY.value) if msg["takerSide"] == "BUY" else float(TradeType.SELL.value), "trade_id": msg["id"], "update_id": msg["sequence"], "price": msg["rate"], "amount": msg["quantity"] }, timestamp=timestamp) @classmethod def from_snapshot(cls, snapshot: OrderBookMessage): raise NotImplementedError("Bittrex order book needs to retain individual order data.") @classmethod def restore_from_snapshot_and_diffs(self, snapshot: OrderBookMessage, diffs: List[OrderBookMessage]): raise NotImplementedError("Bittrex order book needs to retain individual order data.")
#!/usr/bin/env python #-*- coding: utf-8 -*- import smtplib import sys from email.MIMEMultipart import MIMEMultipart from email.MIMEText import MIMEText # message lines = sys.stdin.readlines() message = "" for i in range(len(lines)): message += lines[i] # email setting msg = MIMEMultipart() msg['From'] = 'sender@email.com' msg['To'] = 'your@email.com' msg['Subject'] = '[ISIMA][ENT] Nouvelle note dispo !' msg.attach(MIMEText(message)) mailserver = smtplib.SMTP('mail.gmx.com', 587) mailserver.ehlo() mailserver.starttls() mailserver.ehlo() mailserver.login('sender_login', 'sender_password') mailserver.sendmail('sender@email.com', 'your@email.com', msg.as_string()) mailserver.quit()
"""module containing url patterns for the comments app""" from django.urls import path from authors.apps.comments.views import ( ListCreateCommentView, UpdateDestroyCommentView, LikeComment, LikeCommentStatus, DislikeComment, CommentHistoryViewSet ) urlpatterns = [ path( "comments/", ListCreateCommentView.as_view(), name="list_create_comment", ), path( "comments/<pk>/", UpdateDestroyCommentView.as_view(), name="retrieve_update_destroy", ), path('comments/<int:pk>/like', LikeComment.as_view()), path('comments/<int:pk>/likestatus', LikeCommentStatus.as_view()), path('comments/<int:pk>/dislike', DislikeComment.as_view()), path('comments/<int:pk>/history', CommentHistoryViewSet.as_view({"get": "list"})) ]
from math import cos, inf from random import uniform, random from src.glTypes import V3, newColor from src.glMath import angle, cross, divide, dot, matrixMult, matrixMult_4_1, mult, negative, norm, substract def flat(render, **kwargs): u, v, w = kwargs['baryCoords'] tA, tB, tC = kwargs['textureCoords'] A, B, C = kwargs['vertices'] b, g, r = kwargs['color'] triangleNormal = kwargs['triangleNormal'] b/=255 g/=255 r/=255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 intensity = dot(triangleNormal, negative(render.directional_light)) b *= intensity g *= intensity r *= intensity if intensity > 0: return r, g, b else: return 0, 0, 0 def gourad(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 intensityA = dot(nA, negative(render.directional_light)) intensityB = dot(nB, negative(render.directional_light)) intensityC = dot(nC, negative(render.directional_light)) intensity = intensityA*u + intensityB*v + intensityC*w b *= intensity g *= intensity r *= intensity if intensity > 0: return r, g, b else: return 0, 0, 0 def phong(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = b*intensity if b*intensity <=1 else 1 g = g*intensity if g*intensity <=1 else 1 r = r*intensity if r*intensity <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0 def unlit(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 return r, g, b def toon(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) if intensity > 0.9: intensity = 1 elif intensity > 0.6: intensity = 0.6 elif intensity > 0.2: intensity = 0.4 else: intensity = 0.2 b *= intensity g *= intensity r *= intensity if intensity > 0: return r, g, b else: return 0, 0, 0 def coolShader(render, **kwargs): u, v, w = kwargs['baryCoords'] nA, nB, nC = kwargs['normals'] nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) r, g, b = (0,0,0) if intensity > 0.7: r = 1 elif intensity > 0.3: r = 0.5 b = 0.5 else: b = 1 return r, g, b def textureBlend(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) if intensity < 0: intensity = 0 b *= intensity g *= intensity r *= intensity if render.active_texture_2: textureColor = render.active_texture_2.getColor(tx, ty) b += (textureColor[0] / 255) * (1 - intensity) g += (textureColor[1] / 255) * (1 - intensity) r += (textureColor[2] / 255) * (1 - intensity) b = 1 if b > 1 else (0 if b < 0 else b) g = 1 if g > 1 else (0 if g < 0 else g) r = 1 if r > 1 else (0 if r < 0 else r) return r, g, b return r, g, b def gradient(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] nA, nB, nC = kwargs['normals'] A, B, C = kwargs['vertices'] upColor = kwargs['upColor'] downColor = kwargs['downColor'] y = A[1] * u + B[1] * v + C[1] * w height = render.maxY - render.minY b = (((y+abs(render.minY)) / height) * (upColor[0] - downColor[0]) + downColor[0]) / 255 g = (((y+abs(render.minY)) / height) * (upColor[1] - downColor[1]) + downColor[1]) / 255 r = (((y+abs(render.minY)) / height) * (upColor[2] - downColor[2]) + downColor[2]) / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = b*intensity if 0 <= b*intensity <=1 else (0 if b*intensity < 0 else 1) g = g*intensity if 0 <= g*intensity <=1 else (0 if g*intensity < 0 else 1) r = r*intensity if 0 <= r*intensity <=1 else (0 if r*intensity < 0 else 1) if intensity > 0: return r, g, b else: return 0, 0, 0 def highlighter(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] color = kwargs['highColor'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = b*intensity g = g*intensity r = r*intensity forwardVector = V3(render.camMatrix[0][2], render.camMatrix[1][2], render.camMatrix[2][2]) parallel = dot(normal, forwardVector) b = color[0]/255 * (1 - parallel) if color[0]/255 * (1 - parallel)>b else b g = color[1]/255 * (1 - parallel) if color[1]/255 * (1 - parallel)>g else g r = color[2]/255 * (1 - parallel) if color[2]/255 * (1 - parallel)>r else r b = float(abs(b*(1-pow((intensity+1),-10)))) g = float(abs(g*(1-pow((intensity+1),-10)))) r = float(abs(r*(1-pow((intensity+1),-10)))) b = b if b <=1 else 1 g = g if g <=1 else 1 r = r if r <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0 def cut(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] v1, v2, v3 = kwargs['originalVertices'] axis = kwargs['axis'] interval = kwargs['interval'] if axis == 'x': direction = v1[0] * u + v2[0] * v + v3[0] * w elif axis == 'y': direction = v1[1] * u + v2[1] * v + v3[1] * w elif axis == 'z': direction = v1[2] * u + v2[2] * v + v3[2] * w else: direction = v1[1] * u + v2[1] * v + v3[1] * w if cos(direction*interval) >=0: b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = b*intensity if b*intensity <=1 else 1 g = g*intensity if g*intensity <=1 else 1 r = r*intensity if r*intensity <=1 else 1 else : b = 0 g = 0 r = 0 b = b if b <=1 else 1 g = g if g <=1 else 1 r = r if r <=1 else 1 b = b if b >=0 else 0 g = g if g >=0 else 0 r = r if r >=0 else 0 return r, g, b def noise(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = random() * b g = random() * g r = random() * r b = b*intensity if b*intensity <=1 else 1 g = g*intensity if g*intensity <=1 else 1 r = r*intensity if r*intensity <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0 def outline(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] color = kwargs['highColor'] nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) forwardVector = V3(render.camMatrix[0][2], render.camMatrix[1][2], render.camMatrix[2][2]) parallel = dot(normal, forwardVector) if parallel < 0.3: b = color[0]/255 * (1 - parallel) g = color[1]/255 * (1 - parallel) r = color[2]/255 * (1 - parallel) else: b = 0 g = 0 r = 0 b = b if b <=1 else 1 g = g if g <=1 else 1 r = r if r <=1 else 1 return r, g, b def snow(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] A, B, C = kwargs['vertices'] color = newColor(1,1,1) b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = b*intensity g = g*intensity r = r*intensity forwardVector = V3(0,-1,1) parallel = dot(normal, forwardVector) b = color[0]/255 * (1 - parallel) if color[0]/255 * (1 - parallel)>b else b g = color[1]/255 * (1 - parallel) if color[1]/255 * (1 - parallel)>g else g r = color[2]/255 * (1 - parallel) if color[2]/255 * (1 - parallel)>r else r try: b = float(abs(b*(1-pow((intensity+1),-10)))) g = float(abs(g*(1-pow((intensity+1),-10)))) r = float(abs(r*(1-pow((intensity+1),-10)))) except: pass b = b if b <=1 else 1 g = g if g <=1 else 1 r = r if r <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0 def accentuate(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] color = kwargs['highColor'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) intensity = dot(normal, negative(render.directional_light)) b = color[0]/255 if color[0]/255 > b else b g = color[1]/255 if color[1]/255 > g else g r = color[2]/255 if color[2]/255 > r else r b = b*intensity if b*intensity <=1 else 1 g = g*intensity if g*intensity <=1 else 1 r = r*intensity if r*intensity <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0 def normalMap(render, **kwargs): u, v, w = kwargs['baryCoords'] b, g, r = kwargs['color'] A, B, C = kwargs['vertices'] tA, tB, tC = kwargs['textureCoords'] nA, nB, nC = kwargs['normals'] b /= 255 g /= 255 r /= 255 if render.active_texture: tx = tA[0] * u + tB[0] * v + tC[0] * w ty = tA[1] * u + tB[1] * v + tC[1] * w textureColor = render.active_texture.getColor(tx, ty) b *= textureColor[0] / 255 g *= textureColor[1] / 255 r *= textureColor[2] / 255 nX = nA[0] * u + nB[0] * v + nC[0] * w nY = nA[1] * u + nB[1] * v + nC[1] * w nZ = nA[2] * u + nB[2] * v + nC[2] * w normal = V3(nX, nY, nZ) if render.normal_map: textureNormal = render.normal_map.getColor(tx, ty) textureNormal = V3((textureNormal[2] / 255) * 2 - 1, (textureNormal[1] / 255) * 2 - 1, (textureNormal[0] / 255) * 2 - 1) textureNormal = divide(textureNormal, norm(textureNormal)) edge1 = substract(B,A) edge2 = substract(C,A) deltaUV1 = substract(V3(tB[0], tB[1], 0), V3(tA[0], tA[1], 0)) deltaUV2 = substract(V3(tC[0], tC[1], 0), V3(tA[0], tA[1], 0)) f = 1 / (deltaUV1[0] * deltaUV2[1] - deltaUV2[0] * deltaUV1[1]) tangent = [f * (deltaUV2[1] * edge1[0] - deltaUV1[1] * edge2[0]), f * (deltaUV2[1] * edge1[1] - deltaUV1[1] * edge2[1]), f * (deltaUV2[1] * edge1[2] - deltaUV1[1] * edge2[2])] tangent = divide(V3(tangent[0], tangent[1], tangent[2]), norm(V3(tangent[0], tangent[1], tangent[2]))) tangent = substract(tangent, mult(normal, dot(tangent, normal))) tangent = divide(tangent, norm(tangent)) bitangent = cross(normal, tangent) bitangent = divide(bitangent, norm(bitangent)) tangentMatrix = [[tangent[0], bitangent[0], normal[0]], [tangent[1], bitangent[1], normal[1]], [tangent[2], bitangent[2], normal[2]]] textureNormal = matrixMult_4_1(tangentMatrix, [textureNormal.x, textureNormal.y, textureNormal.z]) textureNormal = divide(V3(textureNormal[0], textureNormal[1], textureNormal[2]), norm(V3(textureNormal[0], textureNormal[1], textureNormal[2]))) intensity = dot(textureNormal, negative(render.directional_light)) else: intensity = dot(normal, negative(render.directional_light)) b = b*intensity if b*intensity <=1 else 1 g = g*intensity if g*intensity <=1 else 1 r = r*intensity if r*intensity <=1 else 1 if intensity > 0: return r, g, b else: return 0, 0, 0
""" ================================ Spectral analysis of the trials ================================ This example demonstrates how to perform spectral analysis on epochs extracted from a specific subject within the :class:`moabb.datasets.Cattan2019_PHMD` dataset. """ # Authors: Pedro Rodrigues <pedro.rodrigues01@gmail.com> # Modified by: Gregoire Cattan <gcattan@hotmail.fr> # License: BSD (3-clause) import warnings import matplotlib.pyplot as plt import numpy as np from moabb.datasets import Cattan2019_PHMD from moabb.paradigms import RestingStateToP300Adapter warnings.filterwarnings("ignore") ############################################################################### # Initialization # --------------- # # 1) Specify the channel and subject to compute the power spectrum. # 2) Create an instance of the :class:`moabb.datasets.Cattan2019_PHMD` dataset. # 3) Create an instance of the :class:`moabb.paradigms.RestingStateToP300Adapter` paradigm. # By default, the data is filtered between 1-35 Hz, # and epochs are extracted from 10 to 50 seconds after event tagging. # Select channel and subject for the remaining of the example. channel = "Cz" subject = 1 dataset = Cattan2019_PHMD() events = ["on", "off"] paradigm = RestingStateToP300Adapter(events=events, channels=[channel]) ############################################################################### # Estimate Power Spectral Density # --------------- # 1) Obtain the epochs for the specified subject. # 2) Use Welch's method to estimate the power spectral density. f, S, _, y = paradigm.psd(subject, dataset) ############################################################################### # Display of the data # --------------- # # Plot the averaged Power Spectral Density (PSD) for each label condition, # using the selected channel specified at the beginning of the script. fig, ax = plt.subplots(facecolor="white", figsize=(8.2, 5.1)) for condition in events: mean_power = np.mean(S[y == condition], axis=0).flatten() ax.plot(f, 10 * np.log10(mean_power), label=condition) ax.set_xlim(paradigm.fmin, paradigm.fmax) ax.set_ylim(100, 135) ax.set_ylabel("Spectrum Magnitude (dB)", fontsize=14) ax.set_xlabel("Frequency (Hz)", fontsize=14) ax.set_title("PSD for Channel " + channel, fontsize=16) ax.legend() fig.show()
from django.apps import AppConfig class AppCrontabConfig(AppConfig): name = 'app_crontab'
""" Enough is enough! Alice and Bob were on a holiday. Both of them took many pictures of the places they've been, and now they want to show Charlie their entire collection. However, Charlie doesn't like these sessions, since the motive usually repeats. He isn't fond of seeing the Eiffel tower 40 times. He tells them that he will only sit during the session if they show the same motive at most N times. Luckily, Alice and Bob are able to encode the motive as a number. Can you help them to remove numbers such that their list contains each number only up to N times, without changing the order? Task Given a list lst and a number N, create a new list that contains each number of lst at most N times without reordering. For example if N = 2, and the input is [1,2,3,1,2,1,2,3], you take [1,2,3,1,2], drop the next [1,2] since this would lead to 1 and 2 being in the result 3 times, and then take 3, which leads to [1,2,3,1,2,3]. """ def delete_nth(array, n): new = [] for i in range(len(array)): new.append(array[i]) if new.count(array[i] ) < n else "" return new print(delete_nth([1,1,1,1],2) ) print(delete_nth([20,37,20,21],1))
from distutils.core import setup import pathlib HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() setup( name = 'hitomi_py', packages = ['hitomi_py'], version = '1.0', license='MIT', description = 'hitomi api', long_description=README, long_description_content_type="text/markdown", author = 'VORZAM', author_email = 'dayomosiu2@gmail.com', url = 'https://github.com/VORZAW/hitomi_py', download_url = 'https://github.com/VORZAW/hitomi_py/archive/refs/heads/main.zip', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', "Programming Language :: Python :: 3" ] )
# Generated by Django 3.1.6 on 2021-07-03 15:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cabroozadmin', '0012_auto_20210703_1856'), ] operations = [ migrations.RemoveField( model_name='driverdetails', name='approved', ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 11 18:22:50 2021 @author: chulke """ class Punto: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return f'({self.x}, {self.y})' def __repr__(self): return f'Punto({self.x}, {self.y})' def __add__(self, b): return Punto(self.x + b.x, self.y + b.y) class Rectangulo: def __init__(self, p1, p2): self.a = p1 self.b = p2 def base(self): self.base_rect = abs(self.a.x - self.b.x) return self.base_rect def altura(self): self.altura_rect = abs(self.a.y - self.b.y) return self.altura_rect def area(self): self.area_rect = self.base_rect * self.altura_rect return self.area_rect def rotar(self): v1 = Punto(max(self.a.x, self.b.x), min(self.a.y, self.b.y)) v2 = v1.__add__(Punto(self.altura(), self.base())) self.a = v1 self.b = v2 def __str__(self): return f'({self.a}, {self.b})' def __repr__(self): return f'Rectangulo({self.a}, {self.b})'
import multiprocessing workers = multiprocessing.cpu_count() * 2 + 1 bind = 'unix:rabbitholeapi.sock' umask = 0o007 reload = True #logging accesslog = '-' errorlog = '-'
from cgshop2021_pyutils.solution import Solution from cgshop2021_pyutils.solution import TargetNotReachedError def __last(iter): last = None for i in iter: last = i return last def validate(solution: Solution): """ Attempts to validate an instance, raising an exception derived from InvalidSolutionError with further information about the error for invalid solutions. """ last_config = __last(solution.configuration_sequence()) if last_config.positions != solution.instance.target: raise TargetNotReachedError(solution.instance, solution, last_config.positions)
# Generated by Django 2.2.3 on 2020-02-04 08:45 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tracks', '0023_track_track_designer'), ] operations = [ migrations.AlterField( model_name='course', name='succeeded_users', field=models.ManyToManyField(blank=True, null=True, to=settings.AUTH_USER_MODEL), ), ]
class Initials: def getInitials(self,name): words = name.split() out = [] for word in words: out.append(word[0]) return "".join(out)
#import sys #input = sys.stdin.readline def main(): X = int( input()) print(X//500*1000 + X%500//5*5) if __name__ == '__main__': main()
# The Airport Kiosk - V 1.0.0 # Author: Dena, Rene # Last Modified: 5/1/17 # _Misc. # _Functions # _Strictly Script print('\n\t\t\tWelcome to "THE AIRPORT KIOSK" script!') while True: name = input('\nBefore we begin, what is your name?:') if name.isalpha(): print('\nAwesome! We can now begin {}.'.format(name.title())) break else: print('\nCANNOT continue if space was left empty.') print('Also, please be sure to ENTER your name using \ a-z characters only.') print('\n\t\t\tWelcome to the MAIN CONSOLE!') print('\nHere, you will be given the option to to enter the price of your plane ticket, and how many bags you are checking in.') print('\nLet\'s begin.') print('\n{}, what was the price of your ticket?'.format(name.title())) while True: try: ticket_price = int(input("Enter a number: ")) print('\nAwesome! You\'ve stated your ticket price was ${}.'.format(ticket_price)) break except ValueError: print("\nNot an integer value...") print('\nNow we\'ll be calculating your total number of bags.') print('\nHow many bags will you be checking in?') while True: try: bags = int(input("Enter a number: ")) print('\nAwesome! You\'ve stated you\'ll be checking in {} bags.'.format(bags)) break except ValueError: print("\nNot an integer value...") bags_cost = bags * 25 - 25 total_cost = ticket_price + bags_cost print('\nGiven the information provided above, you total cost will accumulate to ${:.2f}'.format(total_cost)) print('Thank you for using "THE AIRPORT KIOSK" script! Hope to see you again soon :)')
""" bir kitaba sayfa numaraları verilirken 689 tane 1 rakamı kullanılmıştır bu kitabın sayfa sayısını bulunuz """ toplam=0 for i in range(1,2000): sayfa_no=list(str(i)) for j in sayfa_no: if(str(j)=="1"): toplam+=1 if(toplam==689): print("sayfa sayisi:",i) break
#!/usr/bin/python3 """This module creates a class State that inherits from BaseModel""" from models.base_model import BaseModel class State(BaseModel): """ This is a User class with the public class attributes: - name: string - empty string """ name = ''
from django.contrib import admin # Register your models here. # since models.py is in the same folder we say from .models import class profile from .models import profile # to make profile model manageable through Django admin class profileAdmin(admin.ModelAdmin): class Meta: model = profile admin.site.register(profile, profileAdmin)
import os import subprocess from libqtile import layout, hook from libqtile.config import Group from keys import keys from groups import groups from screens import screens layout_theme = { "border_width": 2, "margin": 6, "border_focus": "e1acff", "border_normal": "1D2330" } layouts = [ layout.Max(**layout_theme), layout.Columns(**layout_theme), layout.MonadTall(**layout_theme), layout.Stack(num_stacks=2), layout.VerticalTile(), ] widget_defaults = { 'font': 'Sans', 'fontsize': 16, 'padding': 3 } dgroups_key_binder = None dgroups_app_rules = [] follow_mouse_focus = True bring_front_click = False cursor_warp = False floating_layout = layout.Floating(float_rules=[ {'wmclass': 'confirm'}, {'wmclass': 'dialog'}, {'wmclass': 'download'}, {'wmclass': 'error'}, {'wmclass': 'file_progress'}, {'wmclass': 'notification'}, {'wmclass': 'splash'}, {'wmclass': 'toolbar'}, {'wmclass': 'confirmreset'}, # gitk {'wmclass': 'makebranch'}, # gitk {'wmclass': 'maketag'}, # gitk {'wname': 'branchdialog'}, # gitk {'wname': 'pinentry'}, # GPG key password entry {'wmclass': 'ssh-askpass'}, # ssh-askpass ]) auto_fullscreen = True focus_on_window_activation = "smart" wmname = 'LG3D' @hook.subscribe.startup_once def startup_once(): home = os.path.expanduser('~') subprocess.Popen([home + '/.config/qtile/autostart.sh'])
import networkx as nx import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import scipy import numpy as np import math import pickle from tqdm import tqdm_notebook from multiprocessing import Pool np.set_printoptions(suppress=True) pd.set_option('display.float_format', lambda x: '%.3f' % x) import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import train_test_split from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score import xgboost as xgb from xgboost.sklearn import XGBClassifier import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.utils.data import DataLoader from torch.autograd import Variable from torch.optim.lr_scheduler import ExponentialLR from torchvision import datasets, transforms torch.cuda.set_device(2) ## Model Declaration class ConvNet(nn.Module): def __init__(self, in_dim=256, out_dim=1): super(ConvNet, self).__init__() self.in_dim = in_dim self.outdim_en1 = in_dim self.outdim_en2 = math.ceil(self.outdim_en1 / 2) self.out_dim = out_dim self.model_conv = nn.Sequential( nn.Conv1d(in_channels=in_dim, out_channels=in_dim*2, kernel_size=2), nn.BatchNorm1d(in_dim*2), nn.ReLU(), nn.Conv1d(in_channels=in_dim*2, out_channels=in_dim*4, kernel_size=2), nn.BatchNorm1d(in_dim*4), nn.ReLU(), ) self.model_fc = nn.Sequential( nn.Linear(in_features=self.in_dim*4, out_features=self.outdim_en1), nn.BatchNorm1d(self.outdim_en1), nn.ReLU(), nn.Dropout(0.4), nn.Linear(in_features=self.outdim_en1, out_features=self.outdim_en2), nn.BatchNorm1d(self.outdim_en2), nn.ReLU(), nn.Dropout(0.2), nn.Linear(in_features=self.outdim_en2, out_features=self.out_dim), nn.Sigmoid() ) def forward(self, x): x = self.model_conv(x) return self.model_fc(x.view(-1, self.in_dim*4)) class FocalLoss(nn.Module): def __init__(self, alpha=0.01, gamma=2, logits=False, reduce=True): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.logits = logits self.reduce = reduce def forward(self, inputs, targets): if self.logits: BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduce=False) else: BCE_loss = F.binary_cross_entropy(inputs, targets, reduce=False) pt = torch.exp(-BCE_loss) F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss if self.reduce: return torch.mean(F_loss) else: F_loss class FocalLoss2(nn.Module): def __init__(self, alpha=0.01, gamma_pos=3, gamma_neg=2, logits=False, reduce=True): super(FocalLoss2, self).__init__() self.alpha = alpha self.gamma_pos = gamma_pos self.gamma_neg = gamma_neg self.logits = logits self.reduce = reduce def forward(self, inputs, targets): if self.logits: BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduce=False) else: BCE_loss = F.binary_cross_entropy(inputs, targets, reduce=False) pt = torch.exp(-BCE_loss) gamma_diff = self.gamma_pos - self.gamma_neg F_loss_pos = self.alpha * targets * (1-pt)**self.gamma_pos * BCE_loss F_loss_pos = torch.mean(pt)**(-gamma_diff) * F_loss_pos F_loss_neg = self.alpha * (1 - targets) * (1-pt)**self.gamma_neg * BCE_loss F_loss = F_loss_pos + F_loss_neg avg_F_loss_pos = torch.sum(F_loss_pos) / torch.sum(targets) avg_F_loss_neg = torch.sum(F_loss_neg) / torch.sum(1-targets) if self.reduce: return torch.mean(F_loss), avg_F_loss_pos, avg_F_loss_neg else: return F_loss, F_loss_pos, F_loss_neg ## Parameters Settings # # GRU # --------------------- ## focal loss alpha = 1e-4 gamma = 2 gamma_pos = 4 gamma_neg = 2 learn_rate = 1e-4 train_batch_size = 128 test_batch_size = 256 max_epochs = 100 ## Data Preparation data = np.load('GRUArray_and_label_for_NewEmbedding_heter_superv_recur_focal_logisticMF.npz', allow_pickle=True) GPUArray = data['arr_0'] label = data['arr_1'] GPUArray = GPUArray[-1033905:,:,:] label = label[-1033905:] X_train, X_test, y_train, y_test = train_test_split(GPUArray, label, random_state=42) X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) y_train = torch.FloatTensor(y_train) y_test = torch.FloatTensor(y_test) train_data = [] for i in range(len(X_train)): train_data.append((X_train[i], y_train[i])) test_data = [] for i in range(len(X_test)): test_data.append((X_test[i], y_test[i])) train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size) test_dataloader = DataLoader(test_data, shuffle=False, batch_size=test_batch_size) classifier = ConvNet(in_dim=X_train.shape[2], out_dim=1).cuda() focal_loss = FocalLoss2(alpha, gamma_pos, gamma_neg) optim_clsfr = optim.Adam(filter(lambda p: p.requires_grad, classifier.parameters()), lr=learn_rate) def train(epoch, dataloader): label_list = [] pred_y_list = [] clsf_loss_batch = [] clsf_loss_pos_batch = [] clsf_loss_neg_batch = [] for batch_idx, (data, target) in enumerate(dataloader): if data.size()[0] != dataloader.batch_size: continue data, target = Variable(data.cuda()), Variable(target.cuda()) # Update classifier optim_clsfr.zero_grad() pred_y = classifier(data.permute(0, 2, 1)).squeeze(-1) clsf_loss, clsf_loss_pos, clsf_loss_neg = focal_loss(pred_y, target) clsf_loss.backward() optim_clsfr.step() clsf_loss_batch.append(clsf_loss) if torch.sum(target) > 0: clsf_loss_pos_batch.append(clsf_loss_pos) clsf_loss_neg_batch.append(clsf_loss_neg) label_list += list(target.cpu().detach().numpy()) pred_y_list += list(pred_y.cpu().detach().numpy()) if batch_idx % 2000 == 0: print(' Idx {} => clsf: {}'.format(batch_idx, clsf_loss)) clsf_loss_avg = sum(clsf_loss_batch) / len(clsf_loss_batch) clsf_loss_pos_avg = sum(clsf_loss_pos_batch) / len(clsf_loss_pos_batch) clsf_loss_neg_avg = sum(clsf_loss_neg_batch) / len(clsf_loss_neg_batch) return np.array(label_list), np.array(pred_y_list), clsf_loss_avg, clsf_loss_pos_avg, clsf_loss_neg_avg def infer(dataloader): label_list = [] pred_y_list = [] clsf_loss_batch = [] clsf_loss_pos_batch = [] clsf_loss_neg_batch = [] for batch_idx, (data, target) in enumerate(dataloader): if data.size()[0] != dataloader.batch_size: continue data, target = Variable(data.cuda()), Variable(target.cuda()) # Update classifier pred_y = classifier(data.permute(0, 2, 1)).squeeze(-1) clsf_loss, clsf_loss_pos, clsf_loss_neg = focal_loss(pred_y, target) clsf_loss_batch.append(clsf_loss) if torch.sum(target) > 0: clsf_loss_pos_batch.append(clsf_loss_pos) clsf_loss_neg_batch.append(clsf_loss_neg) label_list += list(target.cpu().detach().numpy()) pred_y_list += list(pred_y.cpu().detach().numpy()) clsf_loss_avg = sum(clsf_loss_batch) / len(clsf_loss_batch) clsf_loss_pos_avg = sum(clsf_loss_pos_batch) / len(clsf_loss_pos_batch) clsf_loss_neg_avg = sum(clsf_loss_neg_batch) / len(clsf_loss_neg_batch) return np.array(label_list), np.array(pred_y_list), clsf_loss_avg, clsf_loss_pos_avg, clsf_loss_neg_avg def evaluate(y_true, y_pred): prec = precision_score(y_true, y_pred) recall = recall_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) return prec, recall, f1 train_history_loss = [] train_history_auc = [] max_thres = 0. max_train_auc = 0. for epoch in range(max_epochs): print('Epoch {} -------------------------------------------------------------------------'.format(epoch)) classifier.train() label_train, pred_y_train, clsf_loss_train, clsf_loss_pos_train, clsf_loss_neg_train = train(epoch, train_dataloader) auc_train = roc_auc_score(label_train, pred_y_train) train_history_loss.append(clsf_loss_train) train_history_auc.append(auc_train) print('Training => auc: {:.6f}, clsf_pos: {}, clsf_neg: {}'. format(auc_train, clsf_loss_pos_train, clsf_loss_neg_train)) if epoch % 1 == 0: # # Testing # ------------------------------------------------------------------------------------ thres = np.min(pred_y_train[label_train==1]) print("Threshold is set to {}".format(thres)) with torch.no_grad(): classifier.eval() label_test, pred_y_test, clsf_loss_test, clsf_loss_pos_test, clsf_loss_neg_test = infer(test_dataloader) auc = roc_auc_score(label_test, pred_y_test) print("Min. Probailities on test set with label 1: {}".format(np.min(pred_y_test[label_test==1]))) y_predict_bin = np.array(pred_y_test > thres, dtype=int) prec, recall, f1 = evaluate(label_test, y_predict_bin) print('Testing ==> auc: {:.6f}, prec: {:.4f}, rec: {:.4f}, F1score: {:.4f}, clsf_loss: {}'. format(auc, prec, recall, f1, clsf_loss_test)) if auc_train > max_train_auc or thres > max_thres: max_train_auc = auc_train if auc_train > max_train_auc else max_train_auc max_thres = thres if thres > max_thres else max_thres torch.save({'epoch': epoch, 'model_state_dict': classifier.state_dict(), 'optimizer_state_dict': optim_clsfr.state_dict(), 'loss': focal_loss, }, 'saved_models/conv1d2_heter_clsfr-auc{:.6f}-thres{:.4f}'.format(auc_train, thres)) ''' Epoch 0 ------------------------------------------------------------------------- Idx 0 => clsf: 3.180097337462939e-05 Idx 2000 => clsf: 4.1567297159872396e-08 Idx 4000 => clsf: 9.181596816176807e-09 Idx 6000 => clsf: 3.0312852228320253e-09 Training => auc: 0.984012, clsf_pos: 1.4177763659972697e-05, clsf_neg: 3.927018497051904e-07 Threshold is set to 0.042069803923368454 Min. Probailities on test set with label 1: 0.017674291506409645 Testing ==> auc: 0.974674, prec: 0.0035, rec: 0.9767, F1score: 0.0070, clsf_loss: 6.776513572503973e-09 Epoch 1 ------------------------------------------------------------------------- Idx 0 => clsf: 2.473788951462552e-09 Idx 2000 => clsf: 1.0929490645850137e-09 Idx 4000 => clsf: 5.3109711073418e-10 Idx 6000 => clsf: 7.051710881889051e-10 Training => auc: 0.986544, clsf_pos: 9.21737046155613e-06, clsf_neg: 1.228757096072286e-09 Threshold is set to 0.004770103842020035 Min. Probailities on test set with label 1: 0.057617560029029846 Testing ==> auc: 0.999823, prec: 0.0002, rec: 1.0000, F1score: 0.0003, clsf_loss: 2.8976829824500783e-09 Epoch 2 ------------------------------------------------------------------------- Idx 0 => clsf: 7.819139224984895e-10 Idx 2000 => clsf: 2.2328056070719526e-10 Idx 4000 => clsf: 2.0501557396190861e-10 Idx 6000 => clsf: 1.5500294103798495e-10 Training => auc: 0.987420, clsf_pos: 1.0768956599349622e-05, clsf_neg: 5.49017553641562e-10 Threshold is set to 0.00422847643494606 Min. Probailities on test set with label 1: 0.0124081801623106 Testing ==> auc: 0.999467, prec: 0.0002, rec: 1.0000, F1score: 0.0003, clsf_loss: 3.640037604668578e-09 Epoch 3 ------------------------------------------------------------------------- Idx 0 => clsf: 1.2664903847880993e-10 Idx 2000 => clsf: 1.9871397582971184e-10 Idx 4000 => clsf: 7.369310023319642e-11 Idx 6000 => clsf: 8.815074364898479e-11 Training => auc: 0.995489, clsf_pos: 8.526847523171455e-06, clsf_neg: 2.6755878068662753e-10 Threshold is set to 0.007625599857419729 Min. Probailities on test set with label 1: 0.01630779355764389 Testing ==> auc: 0.999787, prec: 0.0011, rec: 1.0000, F1score: 0.0022, clsf_loss: 3.6711322870530694e-09 Epoch 4 ------------------------------------------------------------------------- Idx 0 => clsf: 1.2046630359918709e-10 Idx 2000 => clsf: 1.047521722141731e-10 Idx 4000 => clsf: 6.175711331213307e-11 Idx 6000 => clsf: 6.46883102639606e-11 Training => auc: 0.998356, clsf_pos: 6.4510040829190984e-06, clsf_neg: 3.974020557073743e-10 Threshold is set to 0.009090877138078213 Min. Probailities on test set with label 1: 0.0392480306327343 Testing ==> auc: 0.999934, prec: 0.0095, rec: 1.0000, F1score: 0.0189, clsf_loss: 1.82703496776071e-09 Epoch 5 ------------------------------------------------------------------------- Idx 0 => clsf: 4.252895258183287e-11 Idx 2000 => clsf: 4.198571698643683e-11 Idx 4000 => clsf: 6.35648755853424e-11 Idx 6000 => clsf: 3.4695524231409536e-11 Training => auc: 0.999946, clsf_pos: 5.7035872487176675e-06, clsf_neg: 1.7216429670785516e-10 Threshold is set to 0.02147645317018032 Min. Probailities on test set with label 1: 0.042940910905599594 Testing ==> auc: 0.999966, prec: 0.0453, rec: 1.0000, F1score: 0.0866, clsf_loss: 3.120794955790984e-09 Epoch 6 ------------------------------------------------------------------------- Idx 0 => clsf: 5.530596813851929e-11 Idx 2000 => clsf: 4.3120944315244714e-11 Idx 4000 => clsf: 2.674554501480575e-11 Idx 6000 => clsf: 2.2346622330360333e-09 Training => auc: 0.999617, clsf_pos: 7.104088581399992e-06, clsf_neg: 1.7187742895607983e-10 Threshold is set to 0.011965308338403702 Min. Probailities on test set with label 1: 0.07618094235658646 Testing ==> auc: 0.999970, prec: 0.0187, rec: 1.0000, F1score: 0.0367, clsf_loss: 2.3029553819498005e-09 Epoch 7 ------------------------------------------------------------------------- Idx 0 => clsf: 2.7237417876690984e-10 Idx 2000 => clsf: 7.428187925873075e-11 Idx 4000 => clsf: 3.724244690417322e-09 Idx 6000 => clsf: 2.4350493843527943e-10 Training => auc: 0.997927, clsf_pos: 5.63932644581655e-06, clsf_neg: 1.7748567893161038e-10 Threshold is set to 0.006347938906401396 Min. Probailities on test set with label 1: 0.055862341076135635 Testing ==> auc: 0.999936, prec: 0.0053, rec: 1.0000, F1score: 0.0105, clsf_loss: 2.139596722017245e-09 Epoch 8 ------------------------------------------------------------------------- Idx 0 => clsf: 2.6747265513549223e-10 Idx 2000 => clsf: 3.6152091098529127e-08 Idx 4000 => clsf: 1.7938869140143865e-11 Idx 6000 => clsf: 5.644702760765341e-11 Training => auc: 0.999985, clsf_pos: 4.964941126672784e-06, clsf_neg: 3.1524913235436713e-10 Threshold is set to 0.036402639001607895 Min. Probailities on test set with label 1: 0.03797255456447601 Testing ==> auc: 0.999935, prec: 0.0498, rec: 1.0000, F1score: 0.0949, clsf_loss: 2.439758173267137e-09 Epoch 9 ------------------------------------------------------------------------- Idx 0 => clsf: 9.991685256949268e-11 Idx 2000 => clsf: 8.736086853922131e-11 Idx 4000 => clsf: 2.557553058224471e-10 Idx 6000 => clsf: 2.573189057664127e-11 Training => auc: 0.999975, clsf_pos: 5.078523827251047e-06, clsf_neg: 1.651299930127692e-10 Threshold is set to 0.026118585839867592 Min. Probailities on test set with label 1: 0.011123161762952805 Testing ==> auc: 0.999814, prec: 0.4516, rec: 0.9767, F1score: 0.6176, clsf_loss: 3.880967103242483e-09 Epoch 10 ------------------------------------------------------------------------- Idx 0 => clsf: 1.752840060598171e-11 Idx 2000 => clsf: 2.796759698830975e-11 Idx 4000 => clsf: 2.315705960320713e-11 Idx 6000 => clsf: 1.8534666856862003e-11 Training => auc: 0.999944, clsf_pos: 5.029150997870602e-06, clsf_neg: 1.586374087647613e-10 Threshold is set to 0.016078852117061615 Min. Probailities on test set with label 1: 0.07293397188186646 Testing ==> auc: 0.999937, prec: 0.0372, rec: 1.0000, F1score: 0.0717, clsf_loss: 2.0397372679781256e-09 Epoch 11 ------------------------------------------------------------------------- Idx 0 => clsf: 1.9159071898422475e-11 Idx 2000 => clsf: 7.770750015678729e-11 Idx 4000 => clsf: 1.428219088134286e-11 Idx 6000 => clsf: 2.0972025505106018e-10 Training => auc: 0.999985, clsf_pos: 3.6924909636582015e-06, clsf_neg: 1.3725894032479147e-10 Threshold is set to 0.028964009135961533 Min. Probailities on test set with label 1: 0.04810567572712898 Testing ==> auc: 0.999932, prec: 0.0426, rec: 1.0000, F1score: 0.0817, clsf_loss: 2.621581618456048e-09 Epoch 12 ------------------------------------------------------------------------- Idx 0 => clsf: 1.6186394238837387e-11 Idx 2000 => clsf: 2.3966533618802188e-11 Idx 4000 => clsf: 1.9677308393806214e-11 Idx 6000 => clsf: 3.2605609184832574e-11 Training => auc: 0.999998, clsf_pos: 2.456007905493607e-06, clsf_neg: 1.4827362948555134e-10 Threshold is set to 0.08942635357379913 Min. Probailities on test set with label 1: 0.010869729332625866 Testing ==> auc: 0.999902, prec: 0.8889, rec: 0.9302, F1score: 0.9091, clsf_loss: 3.758317657087673e-09 Epoch 13 ------------------------------------------------------------------------- Idx 0 => clsf: 1.9662832126399188e-11 Idx 2000 => clsf: 2.6728515234442085e-11 Idx 4000 => clsf: 1.0870407872454191e-11 Idx 6000 => clsf: 1.0176811650330908e-11 Training => auc: 0.999869, clsf_pos: 4.76427794637857e-06, clsf_neg: 1.0161227415039775e-10 Threshold is set to 0.012571227736771107 Min. Probailities on test set with label 1: 0.06783907860517502 Testing ==> auc: 0.999939, prec: 0.0325, rec: 1.0000, F1score: 0.0630, clsf_loss: 2.882978078488918e-09 Epoch 14 ------------------------------------------------------------------------- Idx 0 => clsf: 1.4055852835814786e-11 Idx 2000 => clsf: 4.490695593162286e-10 Idx 4000 => clsf: 3.6349090404286244e-10 Idx 6000 => clsf: 1.1976087656295764e-11 Training => auc: 0.999992, clsf_pos: 2.9908405849710107e-06, clsf_neg: 1.927581844141102e-10 Threshold is set to 0.05567270889878273 Min. Probailities on test set with label 1: 0.019926929846405983 Testing ==> auc: 0.999919, prec: 0.1405, rec: 0.9767, F1score: 0.2456, clsf_loss: 3.2658402648877427e-09 Epoch 15 ------------------------------------------------------------------------- Idx 0 => clsf: 1.2783750620581902e-11 Idx 2000 => clsf: 1.615479972016942e-11 Idx 4000 => clsf: 4.387665925031925e-11 Idx 6000 => clsf: 1.1835641841595468e-11 Training => auc: 0.999991, clsf_pos: 2.8810395633627195e-06, clsf_neg: 1.0705120123688516e-10 Threshold is set to 0.03907858580350876 Min. Probailities on test set with label 1: 0.019675686955451965 Testing ==> auc: 0.999922, prec: 0.0733, rec: 0.9767, F1score: 0.1364, clsf_loss: 3.1810547529431688e-09 Epoch 16 ------------------------------------------------------------------------- Idx 0 => clsf: 2.623142675295398e-11 Idx 2000 => clsf: 5.304361117008938e-11 Idx 4000 => clsf: 8.207490242995163e-12 Idx 6000 => clsf: 9.826322047712388e-12 Training => auc: 0.999998, clsf_pos: 2.1857701995031675e-06, clsf_neg: 7.998341572390544e-11 Threshold is set to 0.06598863750696182 Min. Probailities on test set with label 1: 0.003597858129069209 Testing ==> auc: 0.999525, prec: 0.9091, rec: 0.9302, F1score: 0.9195, clsf_loss: 5.606712871752961e-09 Epoch 17 ------------------------------------------------------------------------- Idx 0 => clsf: 1.1762273446902505e-11 Idx 2000 => clsf: 9.192134033109145e-12 Idx 4000 => clsf: 9.19030389984199e-12 Idx 6000 => clsf: 1.9899106667997657e-11 Training => auc: 0.999975, clsf_pos: 3.4574179608171107e-06, clsf_neg: 1.8256371414615558e-10 Threshold is set to 0.01627841591835022 Min. Probailities on test set with label 1: 0.005854449234902859 Testing ==> auc: 0.999678, prec: 0.0840, rec: 0.9767, F1score: 0.1547, clsf_loss: 4.9219099906849806e-09 Epoch 18 ------------------------------------------------------------------------- Idx 0 => clsf: 2.2994200293835476e-11 Idx 2000 => clsf: 3.798718839487236e-10 Idx 4000 => clsf: 7.848527383558235e-12 Idx 6000 => clsf: 1.2480525293789846e-11 Training => auc: 0.999994, clsf_pos: 3.0306803182611475e-06, clsf_neg: 1.2851915365263977e-10 Threshold is set to 0.057559721171855927 Min. Probailities on test set with label 1: 0.0342058427631855 Testing ==> auc: 0.999931, prec: 0.3590, rec: 0.9767, F1score: 0.5250, clsf_loss: 3.5859999414356025e-09 Epoch 19 ------------------------------------------------------------------------- Idx 0 => clsf: 2.1808053626837243e-11 Idx 2000 => clsf: 1.1375086636511433e-11 Idx 4000 => clsf: 1.806585783747927e-11 Idx 6000 => clsf: 1.7897584803083788e-10 Training => auc: 0.999990, clsf_pos: 3.134448661512579e-06, clsf_neg: 1.2103909541316682e-10 Threshold is set to 0.034912291914224625 Min. Probailities on test set with label 1: 0.005457509309053421 Testing ==> auc: 0.999842, prec: 0.1843, rec: 0.9302, F1score: 0.3077, clsf_loss: 5.072182673870884e-09 Epoch 20 ------------------------------------------------------------------------- Idx 0 => clsf: 1.3696956763231682e-11 Idx 2000 => clsf: 4.746208981387667e-10 Idx 4000 => clsf: 1.243938459183358e-11 Idx 6000 => clsf: 5.273234973679486e-12 Training => auc: 0.999997, clsf_pos: 2.2446158709499286e-06, clsf_neg: 5.727815791112256e-11 Threshold is set to 0.05452180653810501 Min. Probailities on test set with label 1: 0.003080059075728059 Testing ==> auc: 0.996904, prec: 0.8163, rec: 0.9302, F1score: 0.8696, clsf_loss: 5.4293605167288206e-09 Epoch 21 ------------------------------------------------------------------------- Idx 0 => clsf: 7.842456718754054e-12 Idx 2000 => clsf: 1.1155242528315679e-11 Idx 4000 => clsf: 4.9478988614626296e-12 Idx 6000 => clsf: 8.654909254557364e-12 Training => auc: 0.999985, clsf_pos: 3.848815595119959e-06, clsf_neg: 1.5159962174493558e-10 Threshold is set to 0.020875653252005577 Min. Probailities on test set with label 1: 0.023123309016227722 Testing ==> auc: 0.999934, prec: 0.0570, rec: 1.0000, F1score: 0.1078, clsf_loss: 3.3928269083105533e-09 Epoch 22 ------------------------------------------------------------------------- Idx 0 => clsf: 1.5345659465371142e-10 Idx 2000 => clsf: 5.501275650299231e-12 Idx 4000 => clsf: 9.348277360543555e-12 Idx 6000 => clsf: 9.292738453736682e-12 Training => auc: 0.999989, clsf_pos: 2.7361597858543973e-06, clsf_neg: 7.292741410758197e-11 Threshold is set to 0.029038527980446815 Min. Probailities on test set with label 1: 0.00556844100356102 Testing ==> auc: 0.999881, prec: 0.1522, rec: 0.9767, F1score: 0.2633, clsf_loss: 4.3210821587535975e-09 Epoch 23 ------------------------------------------------------------------------- Idx 0 => clsf: 6.914073046732083e-12 Idx 2000 => clsf: 9.990107699420214e-12 Idx 4000 => clsf: 1.1983554773498106e-11 Idx 6000 => clsf: 1.1166637614579145e-09 Training => auc: 0.999968, clsf_pos: 3.7955039715598105e-06, clsf_neg: 1.330833082624494e-10 Threshold is set to 0.014160431921482086 Min. Probailities on test set with label 1: 0.06285425275564194 Testing ==> auc: 0.999897, prec: 0.0393, rec: 1.0000, F1score: 0.0757, clsf_loss: 2.552049460646799e-09 Epoch 24 ------------------------------------------------------------------------- Idx 0 => clsf: 9.16762759456402e-12 Idx 2000 => clsf: 2.9319695976637306e-11 Idx 4000 => clsf: 5.73566151171323e-12 Idx 6000 => clsf: 7.502823015648197e-12 Training => auc: 0.999987, clsf_pos: 3.128912567262887e-06, clsf_neg: 1.6404451408380538e-10 Threshold is set to 0.039402686059474945 Min. Probailities on test set with label 1: 0.03392123058438301 Testing ==> auc: 0.999922, prec: 0.0649, rec: 0.9767, F1score: 0.1217, clsf_loss: 3.1273605927140125e-09 Epoch 25 ------------------------------------------------------------------------- Idx 0 => clsf: 5.050874649081827e-12 Idx 2000 => clsf: 5.812217027112432e-12 Idx 4000 => clsf: 4.785491447556467e-12 Idx 6000 => clsf: 4.921901861770772e-12 Training => auc: 0.999991, clsf_pos: 2.1945190837868722e-06, clsf_neg: 9.22651954837761e-11 Threshold is set to 0.04655322805047035 Min. Probailities on test set with label 1: 0.006852686870843172 Testing ==> auc: 0.999900, prec: 0.1695, rec: 0.9302, F1score: 0.2867, clsf_loss: 4.127334918280212e-09 Epoch 26 ------------------------------------------------------------------------- Idx 0 => clsf: 2.953482458600831e-10 Idx 2000 => clsf: 5.5948119401239005e-12 Idx 4000 => clsf: 5.517459319287488e-12 Idx 6000 => clsf: 4.7847706699521986e-12 Training => auc: 0.999992, clsf_pos: 3.426252987992484e-06, clsf_neg: 1.2722446707247315e-10 Threshold is set to 0.05697764456272125 Min. Probailities on test set with label 1: 0.04139380529522896 Testing ==> auc: 0.999872, prec: 0.1449, rec: 0.9302, F1score: 0.2508, clsf_loss: 3.327045527967698e-09 Epoch 27 ------------------------------------------------------------------------- Idx 0 => clsf: 4.2121419199792065e-12 Idx 2000 => clsf: 5.48666754390803e-12 Idx 4000 => clsf: 6.069302178890457e-12 Idx 6000 => clsf: 2.6801724901936996e-12 Training => auc: 0.999995, clsf_pos: 2.593475983303506e-06, clsf_neg: 1.0941256234353602e-10 Threshold is set to 0.05497302860021591 Min. Probailities on test set with label 1: 0.009865447878837585 Testing ==> auc: 0.999829, prec: 0.1717, rec: 0.9302, F1score: 0.2899, clsf_loss: 4.911965056919598e-09 Epoch 28 ------------------------------------------------------------------------- Idx 0 => clsf: 5.702323162271039e-12 Idx 2000 => clsf: 6.707787103543694e-12 Idx 4000 => clsf: 2.6709374295608157e-11 Idx 6000 => clsf: 4.207073578399445e-11 Training => auc: 0.999978, clsf_pos: 3.416762183405808e-06, clsf_neg: 1.0317076359900312e-10 Threshold is set to 0.018782800063490868 Min. Probailities on test set with label 1: 0.02162165194749832 Testing ==> auc: 0.999902, prec: 0.0590, rec: 1.0000, F1score: 0.1114, clsf_loss: 3.4409597393647573e-09 Epoch 29 ------------------------------------------------------------------------- Idx 0 => clsf: 8.777535642767731e-11 Idx 2000 => clsf: 3.4373552615374336e-11 Idx 4000 => clsf: 6.3479985157322e-11 Idx 6000 => clsf: 5.350741551224392e-12 Training => auc: 0.999994, clsf_pos: 2.5309675493190298e-06, clsf_neg: 7.236103383156944e-11 Threshold is set to 0.04678452014923096 Min. Probailities on test set with label 1: 0.008769948035478592 Testing ==> auc: 0.999897, prec: 0.1591, rec: 0.9767, F1score: 0.2736, clsf_loss: 3.988388730391534e-09 Epoch 30 ------------------------------------------------------------------------- Idx 0 => clsf: 2.7339825282163277e-12 Idx 2000 => clsf: 4.078090296011361e-12 Idx 4000 => clsf: 5.958975934222677e-12 Idx 6000 => clsf: 2.0843914701890176e-12 Training => auc: 0.999997, clsf_pos: 2.2534729851031443e-06, clsf_neg: 1.3964437939328889e-10 Threshold is set to 0.07935924082994461 Min. Probailities on test set with label 1: 0.006430990528315306 Testing ==> auc: 0.999862, prec: 0.7273, rec: 0.9302, F1score: 0.8163, clsf_loss: 4.7155950255728385e-09 Epoch 31 ------------------------------------------------------------------------- Idx 0 => clsf: 1.7688365962914565e-12 Idx 2000 => clsf: 2.9690527380416e-12 Idx 4000 => clsf: 4.252486904277042e-11 Idx 6000 => clsf: 2.8031249196813768e-12 Training => auc: 0.999993, clsf_pos: 2.3058580609358614e-06, clsf_neg: 4.7196076907729534e-11 Threshold is set to 0.040091872215270996 Min. Probailities on test set with label 1: 0.010271180421113968 Testing ==> auc: 0.999853, prec: 0.0820, rec: 0.9302, F1score: 0.1507, clsf_loss: 4.219815608053068e-09 Epoch 32 ------------------------------------------------------------------------- Idx 0 => clsf: 2.6215791690265e-12 Idx 2000 => clsf: 3.462985757526904e-12 Idx 4000 => clsf: 8.699985870608273e-11 Idx 6000 => clsf: 1.5569846844101787e-12 Training => auc: 0.999996, clsf_pos: 2.2348228867485886e-06, clsf_neg: 1.07841194307845e-10 Threshold is set to 0.06484325975179672 Min. Probailities on test set with label 1: 0.0033310684375464916 Testing ==> auc: 0.999437, prec: 0.1961, rec: 0.9302, F1score: 0.3239, clsf_loss: 5.115790902010531e-09 Epoch 33 ------------------------------------------------------------------------- Idx 0 => clsf: 7.833456973360686e-12 Idx 2000 => clsf: 2.7143396419404553e-09 Idx 4000 => clsf: 2.8771134780170016e-12 Idx 6000 => clsf: 2.0916504205742426e-12 Training => auc: 0.999992, clsf_pos: 2.9837074180250056e-06, clsf_neg: 8.617891122941757e-11 Threshold is set to 0.041820891201496124 Min. Probailities on test set with label 1: 0.007536693941801786 Testing ==> auc: 0.999825, prec: 0.1036, rec: 0.9302, F1score: 0.1865, clsf_loss: 5.3403890198922e-09 Epoch 34 ------------------------------------------------------------------------- Idx 0 => clsf: 7.480131097858944e-11 Idx 2000 => clsf: 3.3165540626323153e-12 Idx 4000 => clsf: 2.702665782144953e-12 Idx 6000 => clsf: 9.562286726327862e-12 Training => auc: 0.999999, clsf_pos: 1.7759648471837863e-06, clsf_neg: 9.133163669794442e-11 Threshold is set to 0.09692412614822388 Min. Probailities on test set with label 1: 0.0043848794884979725 Testing ==> auc: 0.999795, prec: 0.7018, rec: 0.9302, F1score: 0.8000, clsf_loss: 5.972694339106965e-09 Epoch 35 ------------------------------------------------------------------------- Idx 0 => clsf: 4.086367529076984e-12 Idx 2000 => clsf: 2.499957706125766e-11 Idx 4000 => clsf: 5.429280358626443e-10 Idx 6000 => clsf: 5.2497672875517765e-11 Training => auc: 0.999993, clsf_pos: 2.2145218281366397e-06, clsf_neg: 5.818910978061531e-11 Threshold is set to 0.0451289638876915 Min. Probailities on test set with label 1: 0.008911632001399994 Testing ==> auc: 0.999830, prec: 0.1533, rec: 0.9302, F1score: 0.2632, clsf_loss: 5.310671902236663e-09 Epoch 36 ------------------------------------------------------------------------- Idx 0 => clsf: 1.2235316926290096e-10 Idx 2000 => clsf: 4.6513400769887525e-12 Idx 4000 => clsf: 2.4154343889609686e-12 Idx 6000 => clsf: 1.5250466904939697e-12 Training => auc: 0.999998, clsf_pos: 1.7965813867704128e-06, clsf_neg: 4.913838086428868e-11 Threshold is set to 0.06879152357578278 Min. Probailities on test set with label 1: 0.001360047492198646 Testing ==> auc: 0.978942, prec: 0.9091, rec: 0.9302, F1score: 0.9195, clsf_loss: 6.827893805905205e-09 Epoch 37 ------------------------------------------------------------------------- Idx 0 => clsf: 2.9519321015358813e-12 Idx 2000 => clsf: 8.933629010166033e-12 Idx 4000 => clsf: 2.0031190248182007e-12 Idx 6000 => clsf: 1.4920726329817335e-12 Training => auc: 0.999999, clsf_pos: 1.651143179515202e-06, clsf_neg: 5.3793913767918866e-11 Threshold is set to 0.08773916959762573 Min. Probailities on test set with label 1: 0.0021049317438155413 Testing ==> auc: 0.998583, prec: 0.9524, rec: 0.9302, F1score: 0.9412, clsf_loss: 6.077982117602687e-09 '''
# -*- coding: utf-8 -*- import irc3 import base64 __doc__ = ''' =================================================== :mod:`irc3.plugins.sasl` SASL authentification =================================================== Allow to use sasl authentification .. >>> from irc3.testing import IrcBot >>> from irc3.testing import ini2config Usage:: >>> config = ini2config(""" ... [bot] ... sasl_username = irc3 ... sasl_password = passwd ... """) >>> bot = IrcBot(**config) ''' @irc3.plugin class Sasl: def __init__(self, bot): self.bot = bot self.events = [ irc3.event(r'^:\S+ CAP \S+ LS :(?P<data>.*)', self.cap_ls), irc3.event(r'^:\S+ CAP \S+ ACK :.*sasl.*', self.cap_ack), irc3.event(r'AUTHENTICATE +', self.authenticate), irc3.event(r'^:\S+ 903 \S+ :SASL authentication successful', self.cap_end), ] def connection_ready(self, *args, **kwargs): self.bot.send('CAP LS\r\n') self.bot.attach_events(*self.events) def cap_ls(self, data=None, **kwargs): if 'sasl' in data.lower(): self.bot.send_line('CAP REQ :sasl') else: self.cap_end() def cap_ack(self, **kwargs): self.bot.send_line('AUTHENTICATE PLAIN') def authenticate(self, **kwargs): auth = ('{sasl_username}\0' '{sasl_username}\0' '{sasl_password}').format(**self.bot.config) auth = base64.encodebytes(auth.encode('utf8')) auth = auth.decode('utf8').rstrip('\n') self.bot.send_line('AUTHENTICATE ' + auth) def cap_end(self, **kwargs): self.bot.send_line('CAP END') self.bot.detach_events(*self.events)
''' Author: Vinicius de Figueiredo Marques ++++++++++++++++++++++++++++++++++++++ The objective of this script is to load a XML file representing a database structure with some data. Then it process this structure and generates SQL instructions to be inserted to a choosen SGBD ''' from XMLParser import * from DataBaseFacade import * from ConfigParser import * # Load input and database file information parameters = sys.argv[1:] if(len(parameters)<2): print "Error! You must pass two parameters: the first one should be the input file and second one should be a database info(host, user, password, port) json file" sys.exit(1) for i in range(len(parameters)): if i == 0: # input fileInput = parameters[i] if i == 1: # database file information config = ConfigParser(parameters[i]) db = DataBaseFacade(name = DataBaseFacade.MYSQL,host = config.host(), user = config.user(), password = config.password(), port = config.port()) x = XMLParser(fileInput) x.parse() x.generate() tablesInfo = x.getTablesInfo(); tablesData = x.getTablesData(); if db.createDatabase(x.getDatabaseName()): print "++++ Database Created Sucefully ++++" if db.createTables(tablesInfo): print "++++ Tables Created Sucefully ++++" if db.insertData(tablesData): print "++++ Data Inserted Sucefully ++++" db.closeConnection()
""" File: linkedbst.py Author: Ken Lambert """ from abstractcollection import AbstractCollection from bstnode import BSTNode from linkedstack import LinkedStack # from linkedqueue import LinkedQueue from math import log class LinkedBST(AbstractCollection): """An link-based binary search tree implementation.""" def __init__(self, sourceCollection=None): """Sets the initial state of self, which includes the contents of sourceCollection, if it's present.""" self._root = None AbstractCollection.__init__(self, sourceCollection) # Accessor methods def __str__(self): """Returns a string representation with the tree rotated 90 degrees counterclockwise.""" def recurse(node, level): str_repr = "" if node != None: str_repr += recurse(node.right, level + 1) str_repr += "| " * level str_repr += str(node.data) + "\n" str_repr += recurse(node.left, level + 1) return str_repr return recurse(self._root, 0) def __iter__(self): """Supports a preorder traversal on a view of self.""" if not self.isEmpty(): stack = LinkedStack() stack.push(self._root) while not stack.isEmpty(): node = stack.pop() yield node.data if node.right != None: stack.push(node.right) if node.left != None: stack.push(node.left) def preorder(self): """Supports a preorder traversal on a view of self.""" return None def inorder(self): """Supports an inorder traversal on a view of self.""" lyst = list() def recurse(node): if node != None: recurse(node.left) lyst.append(node.data) recurse(node.right) recurse(self._root) return iter(lyst) def postorder(self): """Supports a postorder traversal on a view of self.""" return None def levelorder(self): """Supports a levelorder traversal on a view of self.""" return None def __contains__(self, item): """Returns True if target is found or False otherwise.""" return self.find(item) != None def find(self, item): """If item matches an item in self, returns the matched item, or None otherwise.""" def recurse(node): if node is None: return None elif item == node.data: return node.data elif item < node.data: return recurse(node.left) else: return recurse(node.right) return recurse(self._root) # Mutator methods def clear(self): """Makes self become empty.""" self._root = None self._size = 0 def add(self, item): """Adds item to the tree.""" # Helper function to search for item's position def recurse(node): # New item is less, go left until spot is found if item < node.data: if node.left == None: node.left = BSTNode(item) else: recurse(node.left) # New item is greater or equal, # go right until spot is found elif node.right == None: node.right = BSTNode(item) else: recurse(node.right) # End of recurse # Tree is empty, so new item goes at the root if self.isEmpty(): self._root = BSTNode(item) # Otherwise, search for the item's spot else: recurse(self._root) self._size += 1 def remove(self, item): """Precondition: item is in self. Raises: KeyError if item is not in self. postcondition: item is removed from self.""" if not item in self: raise KeyError("Item not in tree.""") # Helper function to adjust placement of an item def lift_max_in_left_subtree_to_top(top): # Replace top's datum with the maximum datum in the left subtree # Pre: top has a left child # Post: the maximum node in top's left subtree # has been removed # Post: top.data = maximum value in top's left subtree parent = top current_node = top.left while not current_node.right == None: parent = current_node current_node = current_node.right top.data = current_node.data if parent == top: top.left = current_node.left # End of recurse else: parent.right = current_node.left # Begin main part of the method if self.isEmpty(): return None # Attempt to locate the node containing the item item_removed = None pre_root = BSTNode(None) pre_root.left = self._root parent = pre_root direction = 'L' current_node = self._root while not current_node == None: if current_node.data == item: item_removed = current_node.data break parent = current_node if current_node.data > item: direction = 'L' current_node = current_node.left else: direction = 'R' current_node = current_node.right # Return None if the item is absent if item_removed == None: return None # The item is present, so remove its node # Case 1: The node has a left and a right child # Replace the node's value with the maximum value in the # left subtree # Delete the maximium node in the left subtree if not current_node.left == None \ and not current_node.right == None: lift_max_in_left_subtree_to_top(current_node) else: # Case 2: The node has no left child if current_node.left == None: new_child = current_node.right # Case 3: The node has no right child else: new_child = current_node.left # Case 2 & 3: Tie the parent to the new child if direction == 'L': parent.left = new_child else: parent.right = new_child # All cases: Reset the root (if it hasn't changed no harm done) # Decrement the collection's size counter # Return the item self._size -= 1 if self.isEmpty(): self._root = None else: self._root = pre_root.left return item_removed def replace(self, item, new_item): """ If item is in self, replaces it with new_item and returns the old item, or returns None otherwise.""" probe = self._root while probe != None: if probe.data == item: old_data = probe.data probe.data = new_item return old_data elif probe.data > item: probe = probe.left else: probe = probe.right return None def height(self): ''' Return the height of tree :return: int >>> bst = LinkedBST() >>> bst.height() 0 >>> bst.add(1) >>> bst.height() 0 >>> bst.add(2) >>> bst.height() 1 >>> bst.add(0) >>> bst.height() 1 >>> bst.add(0) >>> bst.height() 2 ''' def height1(top): ''' Helper function :param top: BSTNode :return: int ''' # base case if top.left is None and top.right is None: return 0 # recursive cases maximum = 0 for child in top.left, top.right: if child is not None: child_height = height1(child) if child_height > maximum: maximum = child_height return maximum + 1 if self._root is None: return 0 return height1(self._root) def is_balanced(self): ''' Return True if tree is balanced :return: bool ''' return self.height() < (2*log(self._size + 1) - 1) def range_find(self, low, high): ''' Returns a list of the items in the tree, where low <= item <= high.""" :param low: int :param high: int :return: list of items >>> bst = LinkedBST() >>> bst.add(1) >>> bst.add(2) >>> bst.add(3) >>> bst.range_find(1, 3) [1, 2, 3] >>> bst.rebalance() >>> bst.range_find(1, 3) [1, 2, 3] >>> bst.add(4) >>> bst.add(5) >>> bst.range_find(3, 4) [3, 4] >>> bst.rebalance() >>> bst.add(1200) >>> bst.add(120) >>> bst.range_find(4, 200) [4, 5, 120] ''' def recurse(node, items_range): if node is not None: if node.data > low: recurse(node.left, items_range) if low <= node.data <= high: items_range.append(node.data) if node.data <= high: recurse(node.right, items_range) needed_items = [] recurse(self._root, needed_items) return needed_items def rebalance(self): ''' Rebalances the tree. :return: >>> bst = LinkedBST() >>> bst.add(1) >>> bst.add(2) >>> bst.add(3) >>> bst.height() 2 >>> bst.rebalance() >>> bst.height() 1 >>> bst.add(4) >>> bst.add(5) >>> bst.height() 3 >>> bst.rebalance() >>> bst.height() 2 ''' # helper method for adding elements from sorted list to BST def recurse(bst, sorted_list, start, end): middle = (start + end + 1) // 2 bst.add(sorted_list[middle]) if (middle - 1) >= start: recurse(bst, sorted_list, start, middle - 1) if end >= (middle + 1): recurse(bst, sorted_list, middle + 1, end) lyst = list(self.inorder()) self.clear() recurse(self, lyst, 0, len(lyst)-1) def successor(self, item): """ Returns the smallest item that is larger than item, or None if there is no such item. :param item: the item of which to find the successor :type item: anything comparable with items of tree :return: the item from the tree coming after the passed in one :rtype: anything comparable >>> bst = LinkedBST() >>> bst.add(1) >>> bst.add(2) >>> bst.add(3) >>> bst.successor(2) 3 >>> bst.rebalance() >>> bst.successor(1) 2 >>> bst.add(4) >>> bst.add(5) >>> bst.successor(4) 5 >>> bst.rebalance() >>> bst.successor(3) 4 >>> bst.successor(5) is None True >>> bst.successor(-1000) 1 """ last_left = None walk = self._root # finding the needed item while walk is not None and walk.data != item: if item < walk.data: last_left = walk walk = walk.left else: walk = walk.right if walk is None or walk.right is None: # the successor is above or doesn't exist in the tree. if last_left is None: return None return last_left.data # the successor is to the right of the found item walk = walk.right while walk.left is not None: walk = walk.left return walk.data def predecessor(self, item): """ Returns the largest item that is smaller than item, or None if there is no such item. :param item: the item of which to find the predecessor :type item: anything comparable with items of tree :return: the item from the tree coming before the passed in one :rtype: anything comparable >>> bst = LinkedBST() >>> bst.add(1) >>> bst.add(2) >>> bst.add(3) >>> bst.predecessor(2) 1 >>> bst.rebalance() >>> bst.predecessor(3) 2 >>> bst.add(4) >>> bst.add(5) >>> bst.predecessor(4) 3 >>> bst.rebalance() >>> bst.predecessor(3) 2 >>> bst.predecessor(1) is None True >>> bst.predecessor(100000) 5 """ last_right = None walk = self._root # finding the needed item while walk is not None and walk.data != item: if item < walk.data: walk = walk.left else: last_right = walk walk = walk.right if walk is None or walk.left is None: # the successor is above or doesn't exist in the tree. if last_right is None: return None return last_right.data # the successor is to the left of the found item walk = walk.left while walk.right is not None: walk = walk.right return walk.data def demo_bst(self, path): """ Demonstration of efficiency binary search tree for the search tasks. :param path: :type path: :return: :rtype: """ if __name__ == "__main__": import doctest doctest.testmod()
from django.views.decorators.csrf import csrf_exempt from django.http import Http404, JsonResponse, HttpResponse from django.contrib.auth import authenticate, login from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from api.serializers import ExperimentSerializer from experiments.models import Experiment, Measurement from sensors.models import Sensor from rocks.models import Rock import json, os, time from django.db import connection import pandas as pd import numpy as np from django.db import transaction from django.conf import settings import time, base64 from .tasks import add_experiment_to_db from .models import APIClient @csrf_exempt def upload_chunk(request, checksum): root_dir = 'media/datasets/' dir_path = 'media/datasets/'+checksum+"/" dump_file = dir_path+"dataset.csv" meta_file = dir_path+"metadata.json" if request.method=="POST": auth = request.META['HTTP_AUTHORIZATION'].split() username, password = base64.b64decode( auth[1]).decode("utf-8").split(':') user = authenticate(username=username, password=password) if user is None or user.is_active==False: return HttpResponse('AUTHENTICATION_FAILED') if 'metadata' in request.POST: experiment_meta = json.loads(request.POST["metadata"]) with open(meta_file, "a") as f: json.dump(experiment_meta, f) return HttpResponse('METADATA_RECEIVED') if Experiment.objects.filter(checksum=checksum).exists(): return HttpResponse('DATASET_ALREADY_IN_DB') if os.path.isdir(root_dir)==False: os.mkdir(root_dir) if os.path.isdir(dir_path)==False: os.mkdir(dir_path) if 'chunk' in request.POST: with open(dump_file, "a") as f: f.write(request.POST['chunk']) return HttpResponse('CHUNK_RECEIVED') @csrf_exempt def addexperiment(request, checksum): dir_path = 'media/datasets/'+checksum+"/" dump_file = dir_path+"dataset.csv" meta_file = dir_path+"metadata.json" if request.method=="POST": auth = request.META['HTTP_AUTHORIZATION'].split() username, password = base64.b64decode( auth[1]).decode("utf-8").split(':') user = authenticate(username=username, password=password) if user is None or user.is_active==False: return HttpResponse('AUTHENTICATION_FAILED') if Experiment.objects.filter(checksum=checksum).exists(): return HttpResponse('DATASET_ALREADY_IN_DB') with open(meta_file, "r") as f: experiment_meta = json.load(f) sensors_abbrs = list(pd.read_csv(dump_file, nrows=1).columns) sensors_abbrs.remove('time') sensors = { sensor['abbreviation']:sensor['id'] for sensor in list(Sensor.objects.filter(abbreviation__in=sensors_abbrs).values('abbreviation', 'id')) } with open(dump_file, "r") as f: num_lines = sum(1 for line in f) - 1 experiment_start_unix = int(time.mktime(time.strptime(experiment_meta['start_time'], '%Y-%m-%d %H:%M:%S')))*(10**6) rock = Rock.objects.get(id=experiment_meta['rock_id']) experiment = Experiment(start_time = experiment_meta['start_time'], description = experiment_meta['description'], rock_id=rock, checksum=checksum, nr_data_points=num_lines*len(sensors_abbrs) ) experiment.sensors = [ id for id in sensors.values() ] experiment.save() add_experiment_to_db.delay(checksum) return HttpResponse('EXPERIMENT_BEING_ADDED_TO_THE_DB') @csrf_exempt def getsensors(request): if request.method=="GET": sensors = [ sensor['abbreviation'] for sensor in list(Sensor.objects.values('abbreviation')) ] return HttpResponse(json.dumps(sensors)) @csrf_exempt def getrocks(request): if request.method=="GET": rocks = [ rock['name'] for rock in list(Rock.objects.values('name')) ] return HttpResponse(json.dumps(rocks)) @csrf_exempt def get_initial_data(request): if request.method=="GET": auth = request.META['HTTP_AUTHORIZATION'].split() username, password = base64.b64decode( auth[1]).decode("utf-8").split(':') user = authenticate(username=username, password=password) if user is None or user.is_active==False: return HttpResponse('AUTHENTICATION_FAILED') sensors = [ sensor for sensor in list(Sensor.objects.values('abbreviation', 'id')) ] rocks = [ rock for rock in list(Rock.objects.values('name', 'id')) ] api_latest = APIClient.objects.all().order_by('-date')[0] return HttpResponse(json.dumps({'rocks':rocks, 'sensors':sensors, 'api_version':api_latest.version})) def download_api_client(request): api_latest = APIClient.objects.all().order_by('-date')[0] file_path = os.path.join(settings.MEDIA_ROOT, str(api_latest.file)) if os.path.exists(file_path): with open(file_path, 'rb') as f: response = HttpResponse(f.read(), content_type="application/vnd.ms-excel") response['Content-Disposition'] = 'inltine; filename='+os.path.basename(file_path) return response else: return HttpResponse("ERROR! File no longer exists in the server")
from rest_framework.routers import DefaultRouter from .views import SnippetViewSet,TestViewSet router = DefaultRouter() router.register(r'snippets', SnippetViewSet) router.register(r'tests', TestViewSet) urlpatterns = router.urls # from django.conf.urls import url # from . import views # # urlpatterns = [ # url(r'^snippets/$', views.snippet_list), # url(r'^snippets/(?P<pk>[0-9]+)/$', views.snippet_detail), # ]
from utils.time_watch import time_watch class Rotate: ''' 数组循环左移 ''' @classmethod def fun_1(cls, lst, k): tmp = lst[:] print(id(tmp)) print(id(lst)) for i in range(k): tmp.append(tmp.pop(0)) return tmp @classmethod def fun_2(cls, lst, k): m = k % len(lst) return lst[m:] + lst[:m] # 暴力循环 @classmethod def fun_3(cls, lst, k): m = k % len(lst) for i in range(m): tmp = lst[0] for j in range(1, len(lst)): lst[j-1] = lst[j] lst[-1] = tmp return lst @time_watch def test(s): res = Rotate.fun_1(s, 17) return res if __name__ == '__main__': s = [1, 4, 53, 32, 2, 13, 22] res = test(s) print(res)
import pandas as pd from autumn.core.inputs.database import get_input_db def get_mmr_testing_numbers(): """ Returns daily PCR test numbers for Myanmar """ input_db = get_input_db() df = input_db.query( "covid_mmr", columns=["date_index", "tests"], ) df.dropna(how="any", inplace=True) return pd.Series(df["tests"].to_numpy(), index=df.date_index) def base_mmr_adult_vacc_doses(): # Slide 5 of Mya Yee Mon's PowerPoint sent on 12th November - applied to the 15+ population only """Will move this to inputs db""" times = [ 366, # 1st Jan 2021 393, # 27th Jan 499, # 13th May 522, # 5th June 599, # 21st Aug 606, # 28th Aug 613, # 4th Sept 620, # 11th Sept 627, # 18th Sept 634, # 25th Sept 641, # 2nd Oct 648, # 9th Oct 655, # 16th Oct 662, # 23rd Oct 665, # 26th Oct 670, # 31st Oct 678, # 8th Nov ] values = [ 0, 104865, 1772177, 1840758, 4456857, 4683410, 4860264, 4944654, 5530365, 7205913, 8390746, 9900823, 11223285, 12387573, 12798322, 13244996, 13905795, ] return times, values
#!/usr/bin/env ############################################ # test_vehicle.py # Author: Paul Yang # Date: June, 2016 # Brief: this is to show HOWTO of python class, __init__method, accessing instance/class attribute ############################################ from vehicle import Truck, Sportscar, Compactcar cars = [Truck('Mitush'), Truck('Orangetruck'), Sportscar('Z3'),Compactcar('Polo')] print("--- test abstract methods ---") for car in cars: print(car.name + ': ' + car.move()) print("--- test common methods with different object ---") for car in cars: print(car.name + ': ' + drive(car)) print("--- test in inherited methods turbo ---") yaris = Compactcar('Yaris') yaris.turbo_move()
import sys N=int(input()) a=[[]]*N sum=0 for i in range(N): b=input() x=b.split() if(len(x)==N): a[i]=b.split() else: print("不符合要求,请重新输入!") sys.exit() if(N%2==0): for j in range(N): sum=sum+int(a[j][j])+int(a[j][N-j-1]) print(sum) else: for j in range(N): if(j==(N-1)/2): sum=sum+int(a[j][j]) else: sum=sum+int(a[j][j])+int(a[j][N-j-1]) print(sum)
#encoding:utf-8 from celery import Celery from WenShuCourtDB_Mongo import WenshucoutMongoDb from config import master_ip mydb = WenshucoutMongoDb('WenShuCourt',host=master_ip) app = Celery('db_tasks', broker='redis://127.0.0.1:6379/0',backend='redis://127.0.0.1:6379/1') def getCourts(): ret = mydb.getCourts() return ret def getParams(): ret = mydb.getParams() return ret def getDocids(): ret = mydb.getDocids() return ret @app.task def insertParams(params): mydb.insertParams(params) @app.task def insertParam(param): mydb.insertParam(param) @app.task def updateParamStatus(param): mydb.updateParamStatus(param) @app.task def updateCourtStatus(court_name): mydb.updateCourtStatus(court_name) @app.task def insertCourts(courts): mydb.insertCourts(courts) @app.task def insertCourt(court): mydb.insertCourt(court) @app.task def insertDocids(docids): mydb.insertDocids(docids) @app.task def insertDocid(docid): mydb.insertDocid(docid)
''' Client module that controls database, telegram client, and face recognition model ''' import copy import datetime import threading import logging from pickle import PicklingError, UnpicklingError from bson.errors import BSONError from PIL import Image import numpy as np from model.recognition_model import FaceRecognition from utils import file_to_image_array, pack_model, unpack_model, extract_encodings from utils import add_label_to_image, image_to_file, predict_caption from utils import predict_reference_note LOGGER = logging.getLogger(__name__) class ClientError(Exception): ''' Base client error ''' class ImageFileError(ClientError): ''' Image file related error ''' class PackModelError(ClientError): ''' Pack model error ''' class UnpackModelError(ClientError): ''' Unpack model error ''' class NoModelError(ClientError): ''' No model error ''' class NoBinDataError(ClientError): ''' No bin-data attribute error ''' class CreateCaptionError(ClientError): ''' Error when creating caption ''' class ExtractFaceError(ClientError): ''' Error when extracting face data ''' class LabelNoteFoundError(ClientError): ''' Error when label does not exist ''' class Client: ''' Client object ''' def __init__(self, database=None, telegram=None): self.database = database self.telegram = telegram if telegram: self.telegram.set_train_handler(self.train_image) self.telegram.set_predict_handler(self.predict_image) self.telegram.set_mention_handler(self.mention_label) self.telegram.set_retrain_handler(self.retrain) self.model = None self.model_lock = threading.Lock() LOGGER.info("Client is initialized") def start(self): ''' To start client before interactions ''' LOGGER.info("Client starting") self.telegram.start() def idle(self): ''' To make client idle ''' LOGGER.info("Client idle") self.telegram.idle() def stop(self): ''' To stop client ''' LOGGER.info("Client stopping") self.telegram.stop() def retrain(self): ''' Retrain and re-extract after DNN update ''' faces = self.database.get_faces() if not faces: return for face in faces: image_f = unpack_model(face['image']) image = file_to_image_array(image_f) face['face'] = FaceRecognition.get_face_encoding(image).tolist() self.database.update_face(face) # Retrieve training set faces = self.database.get_faces() x_train = [np.array(x['face']) for x in faces] y_train = [x['label'] for x in faces] model = FaceRecognition.train(x_train, y_train) self.update_model(model, len(faces)) self.database.update_command_counter('retrain') def mention_label(self, label, note=None): ''' Update label with note ''' # Check if label exist result = self.database.find_label(label) if not result: raise LabelNoteFoundError if note: self.database.add_note(label, note) self.database.update_command_counter('label') def get_train(self, image_f, label): ''' Retrieve traning set with new image ''' # Read image from file try: image = file_to_image_array(image_f) except IOError: LOGGER.error("cannot read image for train") raise ImageFileError # Extract target face feature face_encoding = FaceRecognition.get_face_encoding(image) # Retrieve training set faces = self.database.get_faces() x_train = [np.array(x['face']) for x in faces] y_train = [x['label'] for x in faces] # Append new face to training set x_train.append(face_encoding) y_train.append(label) return {'x_train': x_train, 'y_train': y_train, 'face': face_encoding, 'label': label} def update_model(self, model, faces_count): ''' Update model in memory and database ''' # Pack model try: model_bin = pack_model(model) except (PicklingError, BSONError) as exp: LOGGER.error("cannot pack model, %s", exp) raise PackModelError # Update model in memory self.model_lock.acquire() self.model = model self.model_lock.release() # Update model in database self.database.add_model({'bin-data': model_bin, 'face_count': faces_count, 'createdAt': datetime.datetime.utcnow()}) self.database.delete_outdated_models() LOGGER.debug("update and deleted old model") def train_image(self, image_f, label): ''' Train the model with the given image :param image_f: file descriptor of the image :param label: string label for the image :return dict ''' LOGGER.debug("train_image called") training_set = self.get_train(image_f, label) # Train the model model = FaceRecognition.train(training_set['x_train'], training_set['y_train']) # Update model self.update_model(model, len(training_set['x_train'])) # Pack image try: image_bin = pack_model(image_f) except (PicklingError, BSONError) as exp: LOGGER.error("cannot pack image, %s", exp) raise PackModelError self.database.add_faces([{'face': training_set['face'].tolist( ), 'label': training_set['label'], 'image': image_bin}]) self.database.update_command_counter('train') def get_model(self): ''' Get latest model ''' # Check existing model self.model_lock.acquire() if self.model: model_copy = copy.deepcopy(self.model) self.model_lock.release() return model_copy self.model_lock.release() # Retrieve model from database LOGGER.debug("Fetching model") model_coll = self.database.get_model() # Check model properties if model_coll is None: LOGGER.debug("No model found") raise NoModelError if 'bin-data' not in model_coll.keys(): LOGGER.error("No bin-data in model") raise NoBinDataError model_bin = model_coll['bin-data'] # Unpack model self.model_lock.acquire() try: self.model = unpack_model(model_bin) except UnpicklingError: LOGGER.error("Cannot unpack model") self.model_lock.release() raise UnpackModelError # Release model lock model_copy = copy.deepcopy(self.model) self.model_lock.release() return model_copy @staticmethod def handle_predict_result(image, x_locations, predictions): ''' Handle prediction result ''' # Add label to image LOGGER.debug("Adding label to predicted image") try: image = add_label_to_image(image, x_locations, predictions) except (IOError, TypeError, ValueError) as exp: LOGGER.error("Cannot add label to image, %s", exp) raise ImageFileError # Convert image to file LOGGER.debug("Converting labelled image to file") try: file = image_to_file(image) except IOError: LOGGER.error("Cannot convert image to file") raise ImageFileError # Create prediction caption LOGGER.debug("Creating prediction caption") try: caption = predict_caption(predictions) except (TypeError, ValueError): LOGGER.error("Cannot create caption") raise CreateCaptionError return {'file': file, 'caption': caption} @staticmethod def extract_encoding_from_image(image_array): ''' Extract face encodings and locations ''' LOGGER.debug("Extracting encodings") try: faces_encodings, x_locations = extract_encodings(image_array) if (not faces_encodings or not x_locations): raise ExtractFaceError("No faces found") return {'encodings': faces_encodings, 'locations': x_locations} except (TypeError, ValueError) as exp: raise ExtractFaceError(exp) def predict_image(self, image_f): ''' Predict label of the image with model :param image_f: file descriptor of the image :return dict: image with label, and caption ''' LOGGER.debug("predict_image called") # Convert / Open try: image = Image.open(image_f) image_array = file_to_image_array(image_f) except IOError: LOGGER.error("cannot read image file") raise ImageFileError # Extract encoding result = Client.extract_encoding_from_image(image_array) faces_encodings, x_locations = result['encodings'], result['locations'] # Get model model_copy = self.get_model() # Predict LOGGER.debug("Starting prediction") predictions = FaceRecognition.predict(faces_encodings, model_copy) # Process predicted result result = Client.handle_predict_result(image, x_locations, predictions) references, notes = predict_reference_note(self.database, predictions) self.database.update_command_counter('predict') return {'image': result['file'], 'caption': result['caption'], 'notes': notes, 'references': references} @staticmethod def add_images_mock(images, labels, weights=None): ''' Add image and train model, development mock :param images: images to train with :param labels: labels to train with :param weights: weights of different models :return model: the trained model ''' LOGGER.debug("add_images_mock called") return FaceRecognition.train(images, labels, weights) @staticmethod def predict_image_mock(image, model): ''' Predict label of image with model :param image: image to predict :param model: model for prediction :return list: predicted labels, probability, distance ''' LOGGER.debug("predict_image_mock called") return FaceRecognition.predict(image, model)
import os import re import json import sys os.chdir(os.path.dirname(__file__)) sys.path.append("..") from tool.append_to_json import AppendToJson def main_run(): os.chdir(os.path.dirname(__file__)) lexicon_name = "lexicon" input_path = '../../data/knowledge_triple.json' output_path = '../../data/' + lexicon_name + ".json" lexicon_path = "../../resource/" + lexicon_name + ".txt" if os.path.isfile(output_path): os.remove(output_path) # os.mkdir(output_path) print('Start filtering...') lexicon_list = [] lexicon_lines = open(lexicon_path, 'r', encoding='utf-8').readlines() for i, line in enumerate(lexicon_lines): line = line.strip() lexicon_list.append(line) print(len(lexicon_list)) triple_list = [] lines = open(input_path, 'r', encoding='utf-8').readlines() print(len(lines)) for i, line in enumerate(lines): line = json.loads(line) #print(line) arrays = line['关系'] name1 = arrays[0] relation = arrays[1].replace(':','').replace(':','').replace(' ','').replace(' ','').replace('【','').replace('】','') name2 = arrays[2] if relation.strip() == "" or name1.strip() == "" or name2.strip() == "": continue triple = name1 + "->" + relation + "->" + name2 if triple not in triple_list: triple_list.append(triple) if name1 in lexicon_list and name2 in lexicon_list: AppendToJson().append(output_path, line) # print(triple) else: # print("[不匹配] - " + triple) pass print("filter Ending...") if __name__ == '__main__': main_run()
# This file test_campigns is created by lincan for Project uuloong-strategy # on a date of 8/17/16 - 3:01 PM import unittest from flask import json from mongoengine import connect from manage import app __author__ = "lincan" __copyright__ = "Copyright 2016, The uuloong-strategy Project" __version__ = "0.1" __maintainer__ = "lincan" __status__ = "Production" UniversalHeader = { "Content-Type": "application/json" } class CampaignsTestCase(unittest.TestCase): def setUp(self): self.app = app.test_client() def tearDown(self): db = connect('uuloong-strategy') db.drop_database('uuloong-strategy') def test_post_campaigns(self): sample_campaigns = { "name": "ChartBoost_1", "supplier": "ChartBoost", "access_info": { "key": "13213123213123" }, "enum": "kCampaignsChartBoost" } rv = self.app.post('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create game should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(data["name"], "ChartBoost_1", "campaigns name should be 'ChartBoost_1'. but got " + str(data["name"])) self.assertEqual(data["supplier"], "ChartBoost", "campaigns supplier should be 'ChartBoost'. but got " + str(data["name"])) self.assertEqual(data["enum"], "kCampaignsChartBoost", "campaigns enum should be 'kCampaignsChartBoost'. but got " + str(data["name"])) self.assertNotEqual(data["id"], "", "id should not be empty") def test_get_campaigns(self): sample_campaigns = { "name": "ChartBoost_1", "supplier": "ChartBoost", "access_info": { "key": "13213123213123" }, "enum": "kCampaignsChartBoost" } rv = self.app.post('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) game_id = data["id"] rv = self.app.get('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(game_id, data[0]["id"], "since database only have one entry, get game should be same as saved one") sample_campaigns = { "name": "ChartBoost_2", "supplier": "ChartBoost", "access_info": { "key": "13213123213123" }, "enum": "kCampaignsChartBoost" } rv = self.app.post('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) # get two games rv = self.app.get('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(len(data), 2, "database should have two entry") # get specific game rv = self.app.get('/api/v1.0/campaigns/' + game_id, data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(game_id, data["id"], "id should be campaigns as the first one") def test_put_campaigns(self): sample_campaigns = { "name": "ChartBoost_1", "supplier": "ChartBoost", "access_info": { "key": "13213123213123" }, "enum": "kCampaignsChartBoost" } rv = self.app.post('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) game_id = data["id"] sample_campaigns = { "name": "ChartBoost_2", "supplier": "Admob", "access_info": { "key": "fadsfadfafdasf" }, "enum": "kCampaignsAdmob" } rv = self.app.put('/api/v1.0/campaigns/' + game_id, data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(data["name"], "ChartBoost_2", "campaigns name had changed to 'ChartBoost_2'") self.assertEqual(data["supplier"], "Admob", "campaigns supplier had changed to 'Admob'") self.assertEqual(data["enum"], "kCampaignsAdmob", "campaigns enum had changed to 'kCampaignsAdmob'") self.assertEqual(data["access_info"]["key"], "fadsfadfafdasf", "campaigns access_info -> key had changed to 'fadsfadfafdasf'") def test_delete_campaigns(self): sample_campaigns = { "name": "ChartBoost_1", "supplier": "ChartBoost", "access_info": { "key": "13213123213123" }, "enum": "kCampaignsChartBoost" } rv = self.app.post('/api/v1.0/campaigns', data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) game_id = data["id"] rv = self.app.delete('/api/v1.0/campaigns/' + game_id, data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) # try to get this game rv = self.app.get('/api/v1.0/campaigns/' + game_id, data=json.dumps(sample_campaigns), headers=UniversalHeader) self.assertEqual(rv.status_code, 200, "create campaigns should return 200. but got " + str(rv.status_code)) data = json.loads(rv.data) self.assertEqual(data.get("id"), None, "id should be same as the first one")
import urllib2 import datetime import time import random import os import csv import re from bs4 import BeautifulSoup seanad_yr_base_address = 'http://oireachtasdebates.oireachtas.ie/debates%20authoring/debateswebpack.nsf/datelist?readform&chamber=seanad&year=' seanad_yr_addresses = {} for yr in range(1922,2017): seanad_yr_addresses[yr] = seanad_yr_base_address + str(yr) ## from main year page: all 'opendocument' strings are in a link to a new date's minutes ## also, looks like every month name appears exactly once (unless there are no minutes from that month, eg august sometimes) ## pattern, on the main year page: ## Month ## href link to individual day address, with path after 'oireachtasdebates.oireachtas.ie', ## followed by >DD< ## align='"center" ## next month ## (four center tags before first month) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September','October', 'November', 'December'] ## function, takes as args: ## month (string, capitalized) ## text for a single year's main page html, ## base url, for the individual dates' paths to be appended to ## returns: ## dict whose keys are the dates (strings of format 'dd') for which there are legislative minutes, ## and whose values are the URLs for a specific date's minutes def find_one_months_addresses(month, yr_text, base_address): date_addresses = {} m_index = yr_text.find(month) if m_index==-1: return None end_index = yr_text[m_index:].find('align="center"') ## this is found at the end of each month's row on the table href_indices = [h.start() for h in re.finditer('href',yr_text[m_index:m_index+end_index])] for i in href_indices: path_begin_index = m_index + i + 6 ## 6 = length of string 'href="' path_end_index = yr_text[path_begin_index:].find('">') path = yr_text[path_begin_index:path_begin_index+path_end_index] dd = yr_text[path_begin_index+path_end_index+2:path_begin_index+path_end_index+4] ## each link ends with >DD< date_addresses[dd] = [base_address+path] return date_addresses ## takes a year's main page address, calls on function above, returns a dict of the following form: ## keys: months ## values: keys, representing dates for which there are minutes ## values: individual date URLs def find_one_years_addresses(yr_address): yr_page = urllib2.urlopen(yr_address) yr_soup = BeautifulSoup(yr_page.read(), "html.parser") yr_txt = str(yr_soup) addresses_by_month = {} for m in months: this_months_addresses = find_one_months_addresses(m, yr_txt, 'http://oireachtasdebates.oireachtas.ie') addresses_by_month[m] = this_months_addresses return addresses_by_month ## creating a master dict with all individual date URLs for every year all_date_addresses = {} for yr in seanad_yr_addresses.keys(): try: all_date_addresses[yr] = find_one_years_addresses(seanad_yr_addresses[yr]) ## function defined above except: print "Error with find_one_years_addresses() for yr: %s" %(yr) time.sleep(random.uniform(0,5)) pass ### FINDING NUMBER OF PAGES FOR EACH DATE, appending to that date's list ### (which contains the dat's page1 URL and is stored as a value in the all_date_addresses dict) for yr in all_date_addresses.keys(): for mo in all_date_addresses[yr].keys(): if all_date_addresses[yr][mo] is None: continue for d in all_date_addresses[yr][mo].keys(): try: date_url = all_date_addresses[yr][mo][d][0] date_page = urllib2.urlopen(date_url) date_soup = BeautifulSoup(date_page.read(), "html.parser") date_txt = str(date_soup) ## number of pages is always found after a </select> tag select_index = date_txt.find('</select>') num_index = select_index + len('</select> of ') endex = date_txt[num_index:].find('\n') n_pages = date_txt[num_index:num_index+endex] ## for each date, appending the num_pages to the end of a list which previously contained only the URL for the ## first page of that date all_date_addresses[yr][mo][d].append(n_pages) except: print "Error getting page numbers for: %s, %s, %s" %(yr, mo, d) time.sleep(random.uniform(0,5)) pass ## writing csv c = open('seanad_single_date_urls.csv', 'wb') c_writer = csv.writer(c) c_writer.writerow(["Year", "Month", "Day", "URL", "NumPages"]) for yr in all_date_addresses.keys(): for m in all_date_addresses[yr].keys(): if all_date_addresses[yr][m] is None: continue for d in all_date_addresses[yr][m].keys(): try: c_writer.writerow([yr, m, d, all_date_addresses[yr][m][d][0], all_date_addresses[yr][m][d][1] ]) except: print "ERROR: couldn't write: %s%s%s" %(yr,m,d) pass c.flush() c.close()
# coding:utf-8 import requests, re from mooc_login import get_cookie from pyquery import PyQuery as pq username = "username" password = "password" cookie = get_cookie(username, password) # 从mooc_login取回来cookies s = requests.Session() def get_course_id(): course_ids = [] postdata= { "tabIndex": 1, "searchType": 0, "schoolcourseType": 0, "pageIndex": 1 } course_page = s.post("http://sgu.chinamoocs.com/portal/ajaxMyCourseIndex.mooc", data=postdata, cookies=cookie).text #  取ajax回来的课程列表 ,下一行是解析 course_page_pqed = pq(course_page) links = course_page_pqed(".view-shadow") # 在解析的页面里寻找.view-shadow(就是去学习按钮) for link in links: course_ids.append(re.split("index/|\.mooc", link.get("href"))[1]) # 取课程ID print 'course_ids', course_ids return course_ids def get_course_info(course_id): info_page = pq(s.get("http://sgu.chinamoocs.com/portal/session/unitNavigation/"+course_id+".mooc", cookies=cookie).text) cells = info_page(".lecture-title") # 解析课程内容页,并找到每节课的div for cell in cells:  # 这里是取没上的课的item(去掉上完的,去掉习题.) cell_ele = pq(cell) # unitid_ele = cell_ele(".unitItem") if cell_ele(".icon-play-done") != [] or cell_ele(".unitItem").text() == u"练一练 章节练习": continue # unitid = unitid_ele.attr("unitid") itemid = cell_ele(".linkPlay").attr("itemid") response = s.get("http://sgu.chinamoocs.com/study/updateDurationVideo.mooc?itemId="+itemid+"&isOver=2&duration=700000&currentPosition=700000", cookies=cookie) # 发送请求,刷课 if response.status_code != 200: print "GGGG" if __name__ == '__main__': nums = get_course_id() for num in nums: get_course_info(num)
#!/u/shared/programs/x86_64/python/2.5.5/bin/python # 2013-05-09, tc # # Use: # ./pp.py data.d [lbin=1] [binstart=0] # from numpy import loadtxt from math import sqrt from sys import argv if len(argv)<2: print '*****************************************' print 'usage: ./pp.py filename [lbin=1] [binstart=0]' print '*****************************************' quit() elif len(argv)<3: print '[default]: lbin=1, binstart=0' filename = argv[1] lbin=1 binstart=0 elif len(argv)<4: print '[default]: binstart=0' filename = argv[1] lbin=int(argv[2]) binstart=0 else: filename = argv[1] lbin=int(argv[2]) binstart=int(argv[3]) fileoutput=argv[4] out = open(fileoutput,'a') UU=argv[5] gg=argv[6] #import data y=loadtxt(filename) rows=len(y) if len(y.shape)>1: print 'ERROR: only works if each row has the same number of elements' quit() #binning j=0 bin=0 ybins=[] if(rows%lbin==0): maxj=rows else: maxj=rows-lbin while j<maxj: sum=0 while j<(bin+1)*lbin: sum+=y[j] j+=1 ybins.append(sum/lbin*1.) bin+=1 nbinstot=bin nbins=nbinstot-binstart #analysis of the binned data sum=0 sum2=0 count=0 for i in range(binstart,nbinstot,1): sum+=ybins[i] sum2+=ybins[i]**2 count+=1 #check if(count!=nbins): print 'ERROR: there are',count,'bins, not',nbins,"\n" quit() av=sum/nbins av2=sum2/nbins var=av2-av**2 std=sqrt(var/nbins) #output #print 'nrows: ',nbinstot*lbin,'+',rows-nbinstot*lbin #print 'binning: ',nbinstot,'bins, L =',lbin #print 'starting bin: ',binstart #print 'n bins: ',nbins #print 'average: ',av #print 'std (av): ',std out.write("%s " % UU) out.write("%s " % gg) out.write("%s " % av) out.write("%s\n" % std) print av quit() #plot #pyplot.figure() #pyplot.plot(ybins) #pyplot.axhline(av,linewidth=1.5,color='r') #pyplot.axhline(av+std,linewidth=1,color='r') #pyplot.axhline(av-std,linewidth=1,color='r') #pyplot.draw() #pyplot.show() #
f = open('lab3-2.txt', 'r') def push(val): global top top += 1 stack[top] = val def pop(): global top fin = top top -= 1 return stack[fin] def isEmpty(): global top return top == -1 def isFull(): global top return top == len(stack) if __name__ == "__main__": a = f.read() top = -1 stack = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] print("check stack full: " + str(isFull())) print("check stack empty: " + str(isEmpty())) print() for i in range(len(a.split())): data = a.split()[i] j = 0 if (len(data) % 2 == 0): while j < (len(data) // 2): push(data[j]) j += 1 else: while j < (len(data) // 2): push(data[j]) j += 1 j += 1 while j < len(data): if (pop() == data[j]): j += 1 else: print(data + " Error") break if j == len(data): print(data + " PALINDROME")
import pygame pygame.init() screen = pygame.display.set_mode((320, 470)) color = (88, 89, 90) color_light = (208, 0, 147) color_text = (255, 255, 255) color_dark = (174, 0, 255) width = 500 height = 500 color_blue = (85, 182, 217) color_orange = (255, 110, 63) color_red = (255, 0, 0) screen.fill((50, 50, 50)) smallfont = pygame.font.Font('Moderat-Black.ttf', 35) text1 = smallfont.render('0', True, color_text) text2 = smallfont.render('.', True, color_text) text3 = smallfont.render('=', True, color_text) text4 = smallfont.render('/', True, color_text) text5 = smallfont.render('1', True, color_text) text6 = smallfont.render('2', True, color_text) text7 = smallfont.render('3', True, color_text) text8 = smallfont.render('x', True, color_text) text9 = smallfont.render('4', True, color_text) text10 = smallfont.render('5', True, color_text) text11 = smallfont.render('6', True, color_text) text12 = smallfont.render('-', True, color_text) text13 = smallfont.render('7', True, color_text) text14 = smallfont.render('8', True, color_text) text15 = smallfont.render('9', True, color_text) text16 = smallfont.render('+', True, color_text) textclear = smallfont.render('Clear', True, color_text) calcScreen = pygame.draw.rect(screen, color, [20, 20, 280, 75]) # First Row Buttons button7 = pygame.draw.rect(screen, color, [20, 120, 60, 50]) button8 = pygame.draw.rect(screen, color, [94, 120, 60, 50]) button9 = pygame.draw.rect(screen, color, [167.5, 120, 60, 50]) buttonAddition = pygame.draw.rect(screen, color_orange, [240, 120, 60, 50]) # Second Row Buttons button4 = pygame.draw.rect(screen, color, [20, 190, 60, 50]) button5 = pygame.draw.rect(screen, color, [94, 190, 60, 50]) button6 = pygame.draw.rect(screen, color, [167.5, 190, 60, 50]) buttonSubtraction = pygame.draw.rect(screen, color_orange, [240, 190, 60, 50]) # Third Row Buttons button1 = pygame.draw.rect(screen, color, [20, 260, 60, 50]) button2 = pygame.draw.rect(screen, color, [94, 260, 60, 50]) button3 = pygame.draw.rect(screen, color, [167.5, 260, 60, 50]) buttonMultiply = pygame.draw.rect(screen, color_orange, [240, 260, 60, 50]) # Fourth Row Buttons button0 = pygame.draw.rect(screen, color, [20, 330, 60, 50]) buttonDecimal = pygame.draw.rect(screen, color_blue, [94, 330, 60, 50]) buttonEqual = pygame.draw.rect(screen, color_blue, [167.5, 330, 60, 50]) buttonDivide = pygame.draw.rect(screen, color_orange, [240, 330, 60, 50]) # Clear Button buttonClear = pygame.draw.rect(screen, color_red, [20, 400, 282, 50]) #First Row Text screen.blit(text1, (20 + 20, 330 + 3)) screen.blit(text2, (100 + 20, 330 + 3)) screen.blit(text3, (167.5 + 20, 330 + 3)) screen.blit(text4, (240 + 20, 330 + 3)) #Second Row Text screen.blit(text5, (20 + 20, 260 + 3)) screen.blit(text6, (94 + 20, 260 + 3)) screen.blit(text7, (167.5 + 20, 260 + 3)) screen.blit(text8, (240 + 20, 260 + 3)) #Third Row Text screen.blit(text9, (20 + 20, 190 + 3)) screen.blit(text10, (94 + 20, 190 + 3)) screen.blit(text11, (167.5 + 20, 190 + 3)) screen.blit(text12, (240 + 20, 190 + 3)) #Fourth Row Text screen.blit(text13, (20 + 20, 120 + 3)) screen.blit(text14, (94 + 20, 120 + 3)) screen.blit(text15, (167.5 + 20, 120 + 3)) screen.blit(text16, (240 + 20, 120 + 3)) #Clear Text screen.blit(textclear, (20 + 95, 282 + 120)) # GAME LOOP answer = "" blank = "" while True: textanswer = smallfont.render(answer, True, color_text) screen.blit(textanswer, (20 + 15, 33 + 3)) for ev in pygame.event.get(): if ev.type == pygame.QUIT: pygame.quit() if ev.type == pygame.MOUSEBUTTONDOWN: if 20 <= mouse[0] <= 80 and 120 <= mouse[1] <= 170: answer+="7" elif 94 <= mouse[0] <= 154 and 120 <= mouse[1] <= 170: answer += "8" elif 167.5 <= mouse[0] <= 227.5 and 120 <= mouse[1] <= 170: answer += "9" elif 240 <= mouse[0] <= 300 and 120 <= mouse[1] <= 170: answer += "+" elif 20 <= mouse[0] <= 80 and 190 <= mouse[1] <= 240: answer += "4" elif 94 <= mouse[0] <= 154 and 190 <= mouse[1] <= 240: answer += "5" elif 167.5 <= mouse[0] <= 227.5 and 190 <= mouse[1] <= 240: answer += "6" elif 240 <= mouse[0] <= 300 and 190 <= mouse[1] <= 240: answer += "-" elif 20 <= mouse[0] <= 80 and 260 <= mouse[1] <= 310: answer += "1" elif 94 <= mouse[0] <= 154 and 260 <= mouse[1] <= 310: answer += "2" elif 167.5 <= mouse[0] <= 227.5 and 260 <= mouse[1] <= 310: answer += "3" elif 240 <= mouse[0] <= 300 and 260 <= mouse[1] <= 310: answer += "*" elif 20 <= mouse[0] <= 80 and 330 <= mouse[1] <= 380: answer += "0" elif 94 <= mouse[0] <= 154 and 330 <= mouse[1] <= 380: answer += "." elif 167.5 <= mouse[0] <= 227.5 and 330 <= mouse[1] <= 380: print ("Equal") calcScreen1 = pygame.draw.rect(screen, color, [20, 20, 280, 75]) answer = str(eval(answer)) elif 240 <= mouse[0] <= 300 and 330 <= mouse[1] <= 380: answer += "/" elif 20 <= mouse[0] <= 302 and 400 <= mouse[1] <= 450: calcScreen2 = pygame.draw.rect(screen, color, [20, 20, 280, 75]) answer = "" mouse = pygame.mouse.get_pos() pygame.display.update()
import base64 import json import Queue import ssl import time import urllib import urllib2 import uuid import random import string from threading import Thread from time import sleep from concurrent.futures import ThreadPoolExecutor from hawkeye_test_runner import (HawkeyeTestCase, HawkeyeTestSuite, DeprecatedHawkeyeTestCase) from hawkeye_utils import HawkeyeConstants __author__ = 'hiranya' ALL_PROJECTS = {} SYNAPSE_MODULES = {} def clear_kind(requests, kind): entities = requests.get( '/{{lang}}/datastore/kind_query?kind={}'.format(kind)).json() paths = [entity['path'] for entity in entities] for path in paths: encoded_path = base64.urlsafe_b64encode(json.dumps(path)) requests.delete('/{{lang}}/datastore/manage_entity' '?pathBase64={}'.format(encoded_path)) class DataStoreCleanupTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_delete('/datastore/module') self.assertEquals(response.status, 200) response = self.http_delete('/datastore/project') self.assertEquals(response.status, 200) response = self.http_delete('/datastore/transactions') self.assertEquals(response.status, 200) class SimpleKindAwareInsertTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_post('/datastore/project', 'name={0}&description=Mediation Engine&rating=8&license=L1'.format( HawkeyeConstants.PROJECT_SYNAPSE)) project_info = json.loads(response.payload) self.assertEquals(response.status, 201) self.assertTrue(project_info['success']) project_id = project_info['project_id'] self.assertTrue(project_id is not None) ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE] = project_id response = self.http_post('/datastore/project', 'name={0}&description=XML Parser&rating=6&license=L1'.format( HawkeyeConstants.PROJECT_XERCES)) project_info = json.loads(response.payload) self.assertEquals(response.status, 201) self.assertTrue(project_info['success']) project_id = project_info['project_id'] self.assertTrue(project_id is not None) ALL_PROJECTS[HawkeyeConstants.PROJECT_XERCES] = project_id response = self.http_post('/datastore/project', 'name={0}&description=MapReduce Framework&rating=10&license=L2'.format( HawkeyeConstants.PROJECT_HADOOP)) project_info = json.loads(response.payload) self.assertEquals(response.status, 201) self.assertTrue(project_info['success']) project_id = project_info['project_id'] self.assertTrue(project_id is not None) ALL_PROJECTS[HawkeyeConstants.PROJECT_HADOOP] = project_id # Allow some time to eventual consistency to run its course sleep(5) class KindAwareInsertWithParentTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_post('/datastore/module', 'name={0}&description=A Mediation Core&project_id={1}'.format( HawkeyeConstants.MOD_CORE, ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) mod_info = json.loads(response.payload) self.assertEquals(response.status, 201) self.assertTrue(mod_info['success']) module_id = mod_info['module_id'] self.assertTrue(module_id is not None) SYNAPSE_MODULES[HawkeyeConstants.MOD_CORE] = module_id response = self.http_post('/datastore/module', 'name={0}&description=Z NIO HTTP transport&project_id={1}'.format( HawkeyeConstants.MOD_NHTTP, ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) mod_info = json.loads(response.payload) self.assertEquals(response.status, 201) self.assertTrue(mod_info['success']) module_id = mod_info['module_id'] self.assertTrue(module_id is not None) SYNAPSE_MODULES[HawkeyeConstants.MOD_NHTTP] = module_id class SimpleKindAwareQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): project_list = self.assert_and_get_list('/datastore/project') for entry in project_list: response = self.http_get('/datastore/project?id={0}'. format(entry['project_id'])) entity_list = json.loads(response.payload) project_info = entity_list[0] self.assertEquals(len(entity_list), 1) self.assertEquals(project_info['name'], entry['name']) module_list = self.assert_and_get_list('/datastore/module') for entry in module_list: response = self.http_get('/datastore/module?id={0}'. format(entry['module_id'])) entity_list = json.loads(response.payload) mod_info = entity_list[0] self.assertEquals(len(entity_list), 1) self.assertEquals(mod_info['name'], entry['name']) class ZigZagQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_get('/datastore/zigzag') self.assertEquals(response.status, 200) class AncestorQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_modules?' \ 'project_id={0}'.format(ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) modules = [] for entity in entity_list: if entity['type'] == 'module': modules.append(entity['name']) self.assertEquals(len(modules), 2) self.assertTrue(modules.index(HawkeyeConstants.MOD_CORE) != -1) self.assertTrue(modules.index(HawkeyeConstants.MOD_NHTTP) != -1) class OrderedKindAncestorQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_modules?' \ 'project_id={0}&order=module_id'.format(\ ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) modules = [] for entity in entity_list: if entity['type'] == 'module': modules.append(entity['name']) entity_list = self.assert_and_get_list('/datastore/project_modules?' \ 'project_id={0}&order=description'.format(\ ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) modules = [] for entity in entity_list: if entity['type'] == 'module': modules.append(entity['name']) entity_list = self.assert_and_get_list('/datastore/project_modules?' \ 'project_id={0}&order=name'.format(\ ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) modules = [] for entity in entity_list: if entity['type'] == 'module': modules.append(entity['name']) self.assertEquals(len(modules), 2) self.assertTrue(modules.index(HawkeyeConstants.MOD_CORE) != -1) self.assertTrue(modules.index(HawkeyeConstants.MOD_NHTTP) != -1) class KindlessQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list( '/datastore/project_keys?comparator=gt&project_id={0}'.format( ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) self.assertTrue(len(entity_list) == 3 or len(entity_list) == 4) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_SYNAPSE) entity_list = self.assert_and_get_list( '/datastore/project_keys?comparator=ge&project_id={0}'.format( ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) self.assertTrue(len(entity_list) == 4 or len(entity_list) == 5) project_seen = False for entity in entity_list: if entity['name'] == HawkeyeConstants.PROJECT_SYNAPSE: project_seen = True break self.assertTrue(project_seen) class KindlessAncestorQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list( '/datastore/project_keys?ancestor=true&comparator=gt&project_id={0}'. format(ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) self.assertTrue(len(entity_list) == 1 or len(entity_list) == 2) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_SYNAPSE) self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_XERCES) self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_HADOOP) entity_list = self.assert_and_get_list( '/datastore/project_keys?ancestor=true&comparator=ge&project_id={0}'. format(ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE])) self.assertTrue(len(entity_list) == 2 or len(entity_list) == 3) project_seen = False for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_XERCES) self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_HADOOP) if entity['name'] == 'Synapse': project_seen = True break self.assertTrue(project_seen) class QueryByKeyNameTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_get('/datastore/entity_names?project_name={0}'. format(HawkeyeConstants.PROJECT_SYNAPSE)) entity = json.loads(response.payload) self.assertEquals(entity['project_id'], ALL_PROJECTS[HawkeyeConstants.PROJECT_SYNAPSE]) response = self.http_get('/datastore/entity_names?project_name={0}&' \ 'module_name={1}'. format(HawkeyeConstants.PROJECT_SYNAPSE, HawkeyeConstants.MOD_CORE)) entity = json.loads(response.payload) self.assertEquals(entity['module_id'], SYNAPSE_MODULES[HawkeyeConstants.MOD_CORE]) class SinglePropertyBasedQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=10&comparator=eq') self.assertEquals(len(entity_list), 1) self.assertEquals(entity_list[0]['name'], HawkeyeConstants.PROJECT_HADOOP) entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=6&comparator=gt') self.assertEquals(len(entity_list), 2) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_XERCES) entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=6&comparator=ge') self.assertEquals(len(entity_list), 3) entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=8&comparator=lt') self.assertEquals(len(entity_list), 1) self.assertEquals(entity_list[0]['name'], HawkeyeConstants.PROJECT_XERCES) entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=8&comparator=le') self.assertEquals(len(entity_list), 2) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_HADOOP) entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=8&comparator=ne') self.assertEquals(len(entity_list), 2) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_SYNAPSE) try: self.assert_and_get_list('/datastore/project_ratings?' 'rating=5&comparator=le') self.fail('Returned an unexpected result') except AssertionError: pass class OrderedResultQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=6&comparator=ge&desc=true') self.assertEquals(len(entity_list), 3) last_rating = 100 for entity in entity_list: self.assertTrue(entity['rating'], last_rating) last_rating = entity['rating'] class LimitedResultQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_ratings?' 'rating=6&comparator=ge&limit=2') self.assertEquals(len(entity_list), 2) entity_list = self.assert_and_get_list('/datastore/project_ratings?rating=6' '&comparator=ge&limit=2&desc=true') self.assertEquals(len(entity_list), 2) last_rating = 100 for entity in entity_list: self.assertTrue(entity['rating'], last_rating) last_rating = entity['rating'] class ProjectionQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_fields?' 'fields=project_id,name') self.assertEquals(len(entity_list), 3) for entity in entity_list: self.assertTrue(entity.get('rating') is None) self.assertTrue(entity.get('description') is None) self.assertTrue(entity['project_id'] is not None) self.assertTrue(entity['name'] is not None) entity_list = self.assert_and_get_list('/datastore/project_fields?' 'fields=name,rating&rate_limit=8') self.assertEquals(len(entity_list), 2) for entity in entity_list: self.assertTrue(entity['rating'] is not None) self.assertTrue(entity.get('description') is None) self.assertTrue(entity.get('project_id') is None) self.assertTrue(entity['name'] is not None) self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_XERCES) class GQLProjectionQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_fields?' 'fields=name,rating&gql=true') self.assertEquals(len(entity_list), 3) for entity in entity_list: self.assertTrue(entity['rating'] is not None) self.assertTrue(entity.get('description') is None) self.assertTrue(entity.get('project_id') is None) self.assertTrue(entity['name'] is not None) class CompositeQueryTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): entity_list = self.assert_and_get_list('/datastore/project_filter?' 'license=L1&rate_limit=5') self.assertEquals(len(entity_list), 2) for entity in entity_list: self.assertNotEquals(entity['name'], HawkeyeConstants.PROJECT_HADOOP) entity_list = self.assert_and_get_list('/datastore/project_filter?' 'license=L1&rate_limit=8') self.assertEquals(len(entity_list), 1) self.assertEquals(entity_list[0]['name'], HawkeyeConstants.PROJECT_SYNAPSE) entity_list = self.assert_and_get_list('/datastore/project_filter?' 'license=L2&rate_limit=5') self.assertEquals(len(entity_list), 1) self.assertEquals(entity_list[0]['name'], HawkeyeConstants.PROJECT_HADOOP) class SimpleTransactionTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): key = str(uuid.uuid1()) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=1'.format(key)) entity = json.loads(response.payload) self.assertTrue(entity['success']) self.assertEquals(entity['counter'], 1) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=1'.format(key)) entity = json.loads(response.payload) self.assertTrue(entity['success']) self.assertEquals(entity['counter'], 2) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=3'.format(key)) entity = json.loads(response.payload) self.assertFalse(entity['success']) self.assertEquals(entity['counter'], 2) class CrossGroupTransactionTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): key = str(uuid.uuid1()) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=1&xg=true'.format(key)) entity = json.loads(response.payload) self.assertTrue(entity['success']) self.assertEquals(entity['counter'], 1) self.assertEquals(entity['backup'], 1) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=1&xg=true'.format(key)) entity = json.loads(response.payload) self.assertTrue(entity['success']) self.assertEquals(entity['counter'], 2) self.assertEquals(entity['backup'], 2) response = self.http_get('/datastore/transactions?' \ 'key={0}&amount=3&xg=true'.format(key)) entity = json.loads(response.payload) self.assertFalse(entity['success']) self.assertEquals(entity['counter'], 2) self.assertEquals(entity['backup'], 2) class QueryCursorTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): project1 = self.assert_and_get_list('/datastore/project_cursor') project2 = self.assert_and_get_list('/datastore/project_cursor?' \ 'cursor={0}'.format(project1['next'])) project3 = self.assert_and_get_list('/datastore/project_cursor?' \ 'cursor={0}'.format(project2['next'])) projects = [ project1['project'], project2['project'], project3['project'] ] self.assertTrue(HawkeyeConstants.PROJECT_SYNAPSE in projects) self.assertTrue(HawkeyeConstants.PROJECT_XERCES in projects) self.assertTrue(HawkeyeConstants.PROJECT_HADOOP in projects) project4 = self.assert_and_get_list('/datastore/project_cursor?' \ 'cursor={0}'.format(project3['next'])) self.assertTrue(project4['project'] is None) self.assertTrue(project4['next'] is None) class JDOIntegrationTest(DeprecatedHawkeyeTestCase): def run_hawkeye_test(self): response = self.http_put('/datastore/jdo_project', 'name=Cassandra&rating=10') self.assertEquals(response.status, 201) project_info = json.loads(response.payload) self.assertTrue(project_info['success']) project_id = project_info['project_id'] response = self.http_get('/datastore/jdo_project?project_id=' + project_id) self.assertEquals(response.status, 200) project_info = json.loads(response.payload) self.assertEquals(project_info['name'], 'Cassandra') self.assertEquals(project_info['rating'], 10) response = self.http_post('/datastore/jdo_project', 'proj