text
stringlengths
8
6.05M
''' This is a script to split sample points into test & training sets, then fit to linear regression. INPUTS (in parameter file: -samplePointsCsv -targetField -predictFields -percentTraining -outputPath OUTPUTS: -csv of results ''' import sys, os, gdal import numpy as np from sklearn import linear_model class Struct: def __init__(self, **entries): self.__dict__.update(entries) def getTxt(file): '''reads parameter file & extracts inputs''' txt = open(file, 'r') next(txt) for line in txt: if not line.startswith('#'): lineitems = line.split(':') title = lineitems[0].strip(' \n') var = lineitems[1].strip(' \n') if title.lower() == 'samplepointscsv': inputPath = var elif title.lower() == 'targetfield': targetField = var.upper() elif title.lower() == 'predictfields': predictFields = var.split(',') elif title.lower() == 'percenttraining': percentTraining = float(var) elif title.lower() == 'outputpath': outputPath = var txt.close() return inputPath, targetField, predictFields, percentTraining, outputPath def splitTrainingSets(inputData, targetField, predictFields, percentTraining): totalPoints = len(inputData[targetField]) numTraining = int((percentTraining/100.)*totalPoints) data = inputData[[i for i in predictFields]][:numTraining] data_noTuples = [list(x) for x in data] data_as_array = np.array(data_noTuples) trainingDict = {'target': np.array(inputData[targetField][:numTraining]), 'data': data_as_array, 'x': np.array(inputData['X'][:numTraining]), 'y': np.array(inputData['Y'][:numTraining])} data = inputData[[i for i in predictFields]][numTraining:] data_noTuples = [list(x) for x in data] data_as_array = np.array(data_noTuples) testingDict = {'target': np.array(inputData[targetField][numTraining:]), 'data': data_as_array, 'x': np.array(inputData['X'][numTraining:]), 'y': np.array(inputData['Y'][numTraining:])} return Struct(**trainingDict), Struct(**testingDict) def fitLinearRegression(x_train, y_train): regr = linear_model.LinearRegression() regr.fit(x_train, y_train) return regr def testLinearRegression(x_test, y_test, regr): '''returns mean squared & R squared values''' predictions = regr.predict(x_test) mean_sq_error = np.mean((predictions-y_test)**2) r_sq = regr.score(x_test, y_test) return predictions, mean_sq_error, r_sq def main(paramFile): inputPath, targetField, predictFields, percentTraining, outputPath = getTxt(paramFile) #extract csv data print "\nExtracting Input CSV data..." inputFile = open(inputPath, 'rb') inputData = np.genfromtxt(inputFile, delimiter=',', names=True, case_sensitive=False, dtype=None) #structured array of strings inputFile.close() print "\nSplitting Sets..." trainSet, testSet = splitTrainingSets(inputData, targetField, predictFields, percentTraining) print "Training Set: ", len(trainSet.target), "pts; ", "Testing Set: ", len(testSet.target), "pts." print "\nTraining Model..." regressionModel = fitLinearRegression(trainSet.data, trainSet.target) print "\nPredicting with new Linear Regression Model..." predictions, mean_sq_error, r_sq = testLinearRegression(testSet.data, testSet.target, regressionModel) print "R Squared Value: ", r_sq #save results print "\nSaving results..." coeffs = regressionModel.coef_ labels = ['X', 'Y', 'TARGET', 'PREDICTION', 'MEAN_SQ_ERROR', 'R_SQ', 'INTERCEPT'] + ['COEFF'+str(i+1) for i in range(len(coeffs))] model_array = np.zeros(len(testSet.target),dtype=[(l,'f8') for l in labels]) #structured array model_array['X'] = testSet.x model_array['Y'] = testSet.y model_array['TARGET'] = testSet.target model_array['PREDICTION'] = predictions model_array['MEAN_SQ_ERROR'][0] = mean_sq_error model_array['R_SQ'][0] = r_sq model_array['INTERCEPT'][0] = regressionModel.intercept_ for ind,i in enumerate(labels[7:]): model_array[i][0] = coeffs[ind] np.savetxt(outputPath, model_array, delimiter=",", comments="", header=",".join(i for i in model_array.dtype.names), fmt='%s') print "\n\n Done!" if __name__ == '__main__': args = sys.argv if os.path.exists(args[1]): main(args[1]) else: sys.exit('\nParameter File Not Found. Exiting.')
import argparse import time import numpy as np import collections import torch import torch.nn as nn import torch.optim as optim from tensorboardX import SummaryWriter from trading_session_gym.envs.trading_session_gym import TradingSession MEAN_REWARD_BOUND = 0.95 GAMMA = 0 BATCH_SIZE = 20 REPLAY_SIZE = 100000 LEARNING_RATE = 1e-4 SYNC_TARGET_STEPS = 1000 REPLAY_START_SIZE = 10000 EPSILON_DECAY = 10**6 EPSILON_START = 1.0 EPSILON_FINAL = 0.02 Experience = collections.namedtuple('Experience', field_names=['state', 'action', 'reward', 'done', 'new_state']) class ExperienceBuffer: def __init__(self, capacity): self.buffer = collections.deque(maxlen=capacity) def __len__(self): return len(self.buffer) def append(self, experience): self.buffer.append(experience) def sample(self, batch_size): indices = np.random.choice(len(self.buffer), batch_size, replace=False) states, actions, rewards, dones, next_states = zip(*[self.buffer[idx] for idx in indices]) return np.array(states), np.array(actions), np.array(rewards, dtype=np.float32), \ np.array(dones), np.array(next_states) class DQN(nn.Module): """Deep Q-network with target network""" def __init__(self, n_inputs, n_outputs): super(DQN, self).__init__() # network self.fc = nn.Sequential( nn.Linear(n_inputs, 4*n_inputs), nn.ReLU(), nn.Linear(4*n_inputs, 4*n_inputs), nn.ReLU(), nn.Linear(4*n_inputs, n_outputs) ) def forward(self, x): x = x.float() return self.fc(x) class Agent: def __init__(self, env, exp_buffer): self.env = env self.exp_buffer = exp_buffer self.min_price = None self._reset() def _reset(self): self.state = self.env.reset() self.total_reward = 0.0 self.min_price = None def play_step(self, net, epsilon=0.0, device="cpu"): done_reward = None max_reward = None if self.min_price == None or self.min_price > self.env.session_prices.min(): self.min_price = self.env.session_prices.min() if np.random.random() < epsilon: action = self.env.action_space.sample() else: state_a = np.array([self.state], copy=False) state_v = torch.tensor(state_a).to(device) q_vals_v = net(state_v) _, act_v = torch.max(q_vals_v, dim=1) action = int(act_v.item()) # do step in the environment new_state, reward, is_done, _ = self.env.step(action) self.total_reward += reward exp = Experience(self.state, action, reward, is_done, new_state) self.exp_buffer.append(exp) self.state = new_state if is_done: done_reward = self.total_reward max_reward = 1e19*self.env.boundary/self.min_price**10 #print("Done: {}".format(done_reward)) #print("Max: {}".format(max_reward)) print("Perf.: {}%".format(round(100*done_reward/max_reward, 3))) self._reset() return done_reward/max_reward else: return None def calc_loss(batch, net, tgt_net, device="cpu", cuda_async=False, gamma=0): states, actions, rewards, dones, next_states = batch states_v = torch.tensor(states).to(device) next_states_v = torch.tensor(next_states).to(device) actions_v = torch.tensor(actions).to(device) rewards_v = torch.tensor(rewards).to(device) done_mask = torch.ByteTensor(dones).to(device) if device=="cuda": states_v = states_v.cuda(non_blocking=cuda_async) next_states_v = next_states_v.cuda(non_blocking=cuda_async) actions_v = actions_v.cuda(non_blocking=cuda_async) rewards_v = rewards_v.cuda(non_blocking=cuda_async) done_mask = done_mask.cuda(non_blocking=cuda_async) state_action_values = net(states_v).gather(1, actions_v.unsqueeze(-1).long()).squeeze(-1) next_state_values = tgt_net(next_states_v).max(1)[0] next_state_values[done_mask] = 0.0 next_state_values = next_state_values.detach() expected_state_action_values = next_state_values * gamma + rewards_v return nn.MSELoss()(state_action_values, expected_state_action_values) if __name__ == '__main__': writer = SummaryWriter(comment="-trading_session") if torch.cuda.is_available(): device = torch.device("cuda") print("cuda available") else: device = torch.device("cpu") print("cuda not available") env = TradingSession(action_space_config = 'discrete') net = DQN(env.observation_space.shape[0], env.action_space.n).to(device) tgt_net = DQN(env.observation_space.shape[0], env.action_space.n).to(device) buffer = ExperienceBuffer(REPLAY_SIZE) agent = Agent(env, buffer) epsilon = EPSILON_START optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE) total_rewards = [] step_idx = 0 ts_step = 0 ts = time.time() best_mean_reward = None while True: step_idx += 1 epsilon = max(EPSILON_FINAL, EPSILON_START - step_idx / EPSILON_DECAY) reward = agent.play_step(net, epsilon, device=device) if reward is not None: total_rewards.append(reward) speed = (step_idx - ts_step) / (time.time() - ts) ts_step = step_idx ts = time.time() mean_reward = np.mean(total_rewards[-100:]) print("%d: done %d episodes, mean reward %.3f, eps %.2f, speed %.2f steps/s" % (step_idx, len(total_rewards), mean_reward, epsilon, speed)) writer.add_scalar("epsilon", epsilon, step_idx) writer.add_scalar("speed", speed, step_idx) writer.add_scalar("reward_100", mean_reward, step_idx) writer.add_scalar("reward", reward, step_idx) if best_mean_reward is None or best_mean_reward < mean_reward: torch.save(net.state_dict(), "model.dat") if best_mean_reward is not None: print("Best mean reward updated %.3f -> %.3f, model saved" % (best_mean_reward, mean_reward)) best_mean_reward = mean_reward if mean_reward > MEAN_REWARD_BOUND: print("Solved in %d steps!" % step_idx) break if len(buffer) < REPLAY_START_SIZE: continue if step_idx % SYNC_TARGET_STEPS == 0: tgt_net.load_state_dict(net.state_dict()) optimizer.zero_grad() batch = buffer.sample(BATCH_SIZE) loss_t = calc_loss(batch, net, tgt_net, device=device, cuda_async = False, gamma = GAMMA) loss_t.backward() optimizer.step() writer.close()
import datetime import pickle from flask import Flask, render_template, request, flash import untangle import requests from requests import ConnectTimeout app = Flask(__name__) app.secret_key = 'fjas7df98afh879sfh8' file_name = 'todays-movie-id.txt' history_file_name = 'history.txt' section = 1 http_port = 5000 plex_server_ip = '10.0.0.14' plex_server_port = 32400 plex_server_identifier = '28cff6063535af7fd68b313ed816c6bde08d7e8d' plex_client_ip = '10.0.0.27' plex_client_port = 3005 plex_client_identifier = 'c3cf6e7d-46e2-4bf0-bf47-931b80d17a91' def write_todays_movie(movie_id): with open(file_name, 'w') as file: file.truncate() file.write(movie_id) def write_history(movies, todays_id, history): last_movie = [x for x in movies if x['id'] == todays_id][0] today = datetime.datetime.now() if today.hour < 19: today = today - datetime.timedelta(days=1) if len(history) == 0 or history[0]['title'] != last_movie['title']: history.insert(0, {"day": today.date(), "title": last_movie['title']}) pickle.dump(history, open(history_file_name, "wb")) @app.route('/', methods=['GET', 'POST']) def index(): file = open(file_name, 'r') todays_id = file.read() movies = untangle.parse('http://{plex_server_ip}:{plex_server_port}/library/sections/{section}/all'.format( plex_server_ip=plex_server_ip, plex_server_port=plex_server_port, section=section)) movies = [{'id': movie['ratingKey'], 'title': movie['title'], 'art': movie['thumb']} for movie in movies.MediaContainer.Video] try: history = pickle.load(open(history_file_name, "rb")) except EOFError: history = [] if request.method == 'POST': write_todays_movie(request.form['movie']) write_history(movies, todays_id, history) todays_id = request.form['movie'] todays_movie = [x for x in movies if x['id'] == todays_id][0] if 'play' in request.form: try: url = "http://{plex_client_ip}:{plex_client_port}/player/playback/stop" \ .format(plex_client_ip=plex_client_ip, plex_client_port=plex_client_port) requests.get(url, timeout=10) url = "http://{plex_client_ip}:{plex_client_port}/player/playback/playMedia?key=/library/metadata/{movie_id}" \ "&address={plex_server_ip}&port={plex_server_port}&X-Plex-Client-Identifier={plex_client_identifier}" \ "&machineIdentifier={plex_server_identifier}&protocol=http" \ "&path=http://{plex_server_ip}:{plex_server_port}/library/metadata/{movie_id}" \ .format(plex_client_ip=plex_client_ip, plex_client_port=plex_client_port, plex_client_identifier=plex_client_identifier, plex_server_ip=plex_server_ip, plex_server_port=plex_server_port, plex_server_identifier=plex_server_identifier, movie_id=todays_id) requests.get(url, timeout=10) flash('Started playback of movie ' + todays_movie['title'], 'info') except (ConnectionError, ConnectTimeout): flash('Could not connect to client or server', 'error') else: flash('Set next movie to ' + todays_movie['title'], 'info') context = { 'movies': movies, 'todays_id': todays_id, 'history': history[:20], 'plex_server_address': "{}:{}".format(plex_server_ip, plex_server_port) } return render_template('index.html', **context) if __name__ == '__main__': app.run(host='0.0.0.0', port=http_port, debug=True, threaded=True)
# a = ('val1', (1, 2 ), (2.5, 5.6, 8.2)) # print(a) # print(type(a)) # print(a[1][1]) '''b = [['gmc', 'audi', 'bmw', 'ford'], ['saquib', 'ayush', 'dan', 'maniac'], [1, 2, 3, 4], [2.3, 4.6, 8.2, 3.4]] print(b) print(type(b)) print(b[0][-1:-3])''' lst = [1, 1, 2, 3, 3] a = tuple(lst) print(a) b = list(a) print(len(b)) c = set(b) print(len(c)) d = list(c) print(len(d)) x = range(1, 11, 1) for i in x: print(i) e = list(x) print(type(e))
import unittest import decimal as d import complex as c import math class ComplexDecimalTest(unittest.TestCase): def decimal_almost_equals(self, lhs, rhs, epsilon=7): epsilon = pow(10, -epsilon) if abs(d.Decimal(lhs - rhs)) < epsilon: return True return False def check_type(self, result): if isinstance(result.real, d.Decimal) and isinstance(result.imag, d.Decimal): return True return False def check_answer(self, comp, real, imag, epsilon=7): if self.decimal_almost_equals(comp.real, real, epsilon) is False: return False if self.decimal_almost_equals(comp.imag, imag, epsilon) is False: return False return True def test_add(self): a = c.ComplexDecimal(5, 6) b = c.ComplexDecimal(-3, 4) result = a + b self.assertTrue(self.check_answer(result, d.Decimal(2), d.Decimal(10))) self.assertTrue(self.check_type(result)) def test_sub(self): a = c.ComplexDecimal(5, 6) b = c.ComplexDecimal(-3, 4) result = a - b self.assertTrue(self.check_answer(result, d.Decimal(8), d.Decimal(2))) self.assertTrue(self.check_type(result)) def test_mult(self): a = c.ComplexDecimal(5, 6) b = c.ComplexDecimal(-3, 4) result = a * b self.assertTrue( self.check_answer(result, d.Decimal(-39), d.Decimal(2))) self.assertTrue(self.check_type(result)) def test_div(self): a = c.ComplexDecimal(5, 6) b = c.ComplexDecimal(-3, 4) result = a / b self.assertTrue( self.check_answer(result, d.Decimal(0.36), d.Decimal(-1.52))) self.assertTrue(self.check_type(result)) def test_conjugate(self): a = c.ComplexDecimal(5, 6) result = a.conjugate() self.assertTrue(self.check_answer(result, d.Decimal(5), d.Decimal(-6))) self.assertTrue(self.check_type(result)) def test_sqrt(self): a = c.ComplexDecimal(5, 6) result = a.sqrt() self.assertTrue( self.check_answer(result, d.Decimal(2.5083), d.Decimal(1.18538), 1)) a = c.ComplexDecimal(5, 0) result = a.sqrt() self.assertTrue( self.check_answer(result, d.Decimal(2.23667), d.Decimal(0), 1)) a = c.ComplexDecimal(-5, 0) result = a.sqrt() self.assertTrue( self.check_answer(result, d.Decimal(0), d.Decimal(2.23667), 1)) self.assertTrue(self.check_type(result)) a = c.ComplexDecimal(0, -2) result = a.sqrt() self.assertTrue( self.check_answer(result, d.Decimal(1), d.Decimal(-1))) self.assertTrue(self.check_type(result)) a = c.ComplexDecimal(0, 2) result = a.sqrt() self.assertTrue( self.check_answer(result, d.Decimal(1), d.Decimal(1))) self.assertTrue(self.check_type(result)) def test_print(self): a = c.ComplexDecimal(5, 6) ans = str(a) self.assertEqual(ans, "5 + 6i") a = c.ComplexDecimal(5, 0) ans = str(a) self.assertEqual(ans, "5") a = c.ComplexDecimal(0, 6) ans = str(a) self.assertEqual(ans, "6i") a = c.ComplexDecimal(5, -6) ans = str(a) self.assertEqual(ans, "5 - 6i") if __name__ == '__main__': unittest.main()
import gdcm import numpy import sys import os from PIL import Image, ImageOps def get_gdcm_to_numpy_typemap(): """Returns the GDCM Pixel Format to numpy array type mapping.""" _gdcm_np = {gdcm.PixelFormat.UINT8 :numpy.uint8, gdcm.PixelFormat.INT8 :numpy.int8, gdcm.PixelFormat.UINT16 :numpy.uint16, gdcm.PixelFormat.INT16 :numpy.int16, gdcm.PixelFormat.UINT32 :numpy.uint32, gdcm.PixelFormat.INT32 :numpy.int32, gdcm.PixelFormat.FLOAT32:numpy.float32, gdcm.PixelFormat.FLOAT64:numpy.float64 } return _gdcm_np def get_numpy_array_type(gdcm_pixel_format): """Returns a numpy array typecode given a GDCM Pixel Format.""" return get_gdcm_to_numpy_typemap()[gdcm_pixel_format] def gdcm_to_numpy(image): """Converts a GDCM image to a numpy array. """ pf = image.GetPixelFormat().GetScalarType() print 'pf', pf print image.GetPixelFormat().GetScalarTypeAsString() assert pf in get_gdcm_to_numpy_typemap().keys(), \ "Unsupported array type %s"%pf d = image.GetDimension(0), image.GetDimension(1) print 'Image Size: %d x %d' % (d[0], d[1]) dtype = get_numpy_array_type(pf) gdcm_array = image.GetBuffer() result = numpy.frombuffer(gdcm_array, dtype=dtype) maxV = float(result[result.argmax()]) ## linear gamma adjust #result = result + .5*(maxV-result) ## log gamma result = numpy.log(result+50) ## 50 is apprx background level maxV = float(result[result.argmax()]) result = result*(2.**8/maxV) ## histogram stretch result.shape = d return result def readFile(filename): r = gdcm.ImageReader() r.SetFileName( filename ) if not r.Read(): sys.exit(1) numpy_array = gdcm_to_numpy( r.GetImage() ) pilImage = Image.frombuffer('L', numpy_array.shape, numpy_array.astype(numpy.uint8), 'raw','L',0,1) pilImage = ImageOps.autocontrast(pilImage, cutoff=.1) pilImage.save(filename+'.jpg') print(filename+'.jpg') def readFilesInDir(path): names = os.listdir(path) for name in names: fullname = os.path.join(path, name) # получаем полное имя if os.path.isfile(fullname): readFile(fullname) if os.path.isdir(fullname): readFilesInDir(fullname) if __name__ == "__main__": #readFile('75336.dcm') #readFile('64118.dcm') readFilesInDir('D:\Python\TestDicom\TEST_DB')
import random def rohanmultiplication(number): wrong = random.randint(1,9) # print(wrong) tabel = [i * number for i in range(1,11)] # print(tabel[wrong]) tabel[wrong] = tabel[wrong]+random.randint(1,8) #print(tabel) return tabel def iscorrect(table,number): for i in range(1,11): if table[i-1]!= i * number: print(table[i-1]) return i if __name__ == "__main__": number= int(input("Enter any no")) mytable = rohanmultiplication(number) print(mytable) print(iscorrect(mytable,number))
# python 2.7.3 import sys import math from collections import deque def first2second(n, magic): isBlack = [[False for x in range(magic)] for y in range(magic)] leftmost, lowest = magic, magic for i in range(n): [x, y] = map(int, sys.stdin.readline().split()) isBlack[x][y] = True if x < leftmost: leftmost = x if y < lowest: lowest = y dq = deque() dq.append((leftmost, lowest)) isBlack[leftmost][lowest] = False info = 'RTLB' Delta = [(1, 0), (0, 1), (-1, 0), (0, -1)] print leftmost, lowest while True: current = dq.popleft() # print 'current is:', current neighbour = '' for delta in Delta: [xtemp, ytemp] = map(lambda a, b: a + b, current, delta) if isBlack[xtemp][ytemp] == True: neighbour += info[Delta.index(delta)] dq.append([xtemp, ytemp]) isBlack[xtemp][ytemp] = False if len(dq) != 0: print neighbour + ',' else: print '.' break def seconde2first(data, magic): isBlack = [[False for x in range(magic)] for y in range(magic)] isBlack[data[0]][data[1]] = True dq = deque() dq.append(tuple(data)) info = 'RTLB' Delta = [(1, 0), (0, 1), (-1, 0), (0, -1)] while True: message = raw_input() current = dq.popleft() if message[:-1]: for ch in message[:-1]: delta = Delta[info.index(ch)] [xtemp, ytemp] = map(lambda a, b: a + b, current, delta) isBlack[xtemp][ytemp] = True dq.append((xtemp, ytemp)) if message[-1] == '.': break cnt = 0 for x in range(magic): for y in range(magic): if isBlack[x][y]: cnt += 1 print cnt for x in range(magic): for y in range(magic): if isBlack[x][y]: print x, y magic = 15 data = map(int, sys.stdin.readline().split()) if len(data) == 1: first2second(data[0], magic) else: seconde2first(data, magic)
# Generated by Django 2.2 on 2019-03-14 19:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wikiApp', '0006_auto_20190314_1629'), ] operations = [ migrations.RemoveField( model_name='newusermodel', name='foreignkeyToUser', ), migrations.RemoveField( model_name='relativeitemsmodel', name='foreignkeyToUser', ), migrations.CreateModel( name='wikipostModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(default='', max_length=200)), ('text', models.TextField(default='', max_length=200)), ('datecreated', models.DateField(default='', null=True)), ('lastupdate', models.DateField(default='', null=True)), ('author', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='wikiApp.newuserModel')), ], ), migrations.AddField( model_name='relativeitemsmodel', name='links', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='wikiApp.wikipostModel'), ), ]
import random TOTAL = 1000000 RANGE = 100 def main(): accumulative_count = 0 with open("binary.bin", "w") as file: while accumulative_count < TOTAL: count = random.randrange(min((RANGE, TOTAL - accumulative_count)) + 1) file.write(count * str(random.randrange(2))) accumulative_count += count if __name__ == "__main__": main()
"""The Python implementation of the GRPC client.""" from __future__ import print_function import logging import sys import os from concurrent import futures import grpc from grpc_reflection.v1alpha import reflection from keysearch.proto import keysearch_pb2 from typing import Text from keysearch.proto.keysearch_pb2_grpc import KeywordSearchStub def get_fileindex(stub: KeywordSearchStub, theword: str) -> keysearch_pb2.RepeatedResult: return stub.Whohas( keysearch_pb2.Query(word=theword) ) def anotherfunction(stub: KeywordSearchStub, sourcedId: str) -> keysearch_pb2.RepeatedResult: return None getters: dict = { 'whohas': get_fileindex, 'anotherservice':anotherfunction } def run(getter: str, word: str): #credentials = grpc.ssl_channel_credentials() with grpc.insecure_channel('localhost:50051') as channel: stub = KeywordSearchStub(channel) response = getters[getter](stub, word) print(f"response:\n{response}") #example : make client if __name__ == '__main__': logging.basicConfig() print(sys.argv[1]) run(sys.argv[1], sys.argv[2])
from yusuan_PO.BasePage.BasePage import * from yusuan_PO.BasePage.logger import * from selenium.webdriver.support.ui import Select class NewProject(Page): all_button_loc = (By.LINK_TEXT, '全部') project_list = (By.CLASS_NAME, 'list-over-effect') # 项目列表 new_button_loc = (By.CLASS_NAME, 'text-effect') # 【新建】按钮 popup_loc = (By.XPATH, '//*[@id="q"]/div/div[2]/div[3]/div[1]/label/input') submit_button_loc = (By.XPATH, '//*[@id="q"]/div/div[3]/input[1]') offer_area_loc = (By.CLASS_NAME, 'ht_52_1') area_loc = (By.XPATH, '/html/body/div[1]/div[1]/div[2]/div[2]/div[7]/div[3]/div[1]/span') regular_project_new = (By.XPATH, '//*[@id="project"]/div[1]/div[3]/div[1]/div[2]/a') # 常规项目的新增 design_part_loc = (By.XPATH, '//*[@id="project"]/div[1]/div[3]/div[1]/div[3]/div[1]/span') # 设计部分 live_decoration_loc = (By.XPATH, '//*[@id="project"]/div[1]/div[3]/div[1]/div[3]/div[2]/span') # 现场装修部分 showcase_part_loc = (By.XPATH, '//*[@id="project"]/div[1]/div[3]/div[1]/div[3]/div[3]/span') # 商业展柜部分 design_part_new_loc = (By.XPATH, '//*[@id="project"]/div[2]/div/div[1]/div[3]/div[1]/div[2]/a') # 设计部分新增 design_button_loc = (By.XPATH, '//*[@id="project"]/div[2]/div/div[1]/div[3]/div[1]/div[3]/div/span') # 设计 design_new_loc = (By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[1]/div[3]/a') # 设计新增 save_loc = (By.ID, 'create_save') # 保存 submit_loc = (By.ID, 'create_submit_aduit') # 提交审批 assessor_loc = (By.ID, 'butget_assessor') # 选择审核人 assessor_submit_loc = (By.ID, 'btnOk') # 提交审核,弹窗确认 ceiling_engineering_button = (By.XPATH, '//*[contains(@class,third_new_add) and @create-item="7"]') # 点击全部 def all_button(self): logger.info('点击全部') self.click_button(self.all_button_loc) # 点击新建 def new_button(self, pid): rows = self.find_elements(*self.project_list) for row in rows: projectId = row.find_element_by_xpath('.//div[contains(@class,"w_15")]').text if pid == projectId: global curr_row curr_row = row break sleep(2) logger.info('找到项目id,点击新建') curr_row.find_element(By.CLASS_NAME,"text-effect").click() # 编辑按钮 # 点击弹窗完全新建 def popup(self): logger.info('点击弹窗完全新建') self.click_button(self.popup_loc) # 点击确认 def submit_button(self): logger.info('点击弹窗确认') self.click_button(self.submit_button_loc) # 点击报价区域:成都 def offer_area(self): # 鼠标点击报价区域 logger.info('点击报价区域') self.click_button(self.offer_area_loc) time.sleep(1) logger.info('选择成都') self.click_button(self.area_loc) # 点击常规项目新增 def regular_new(self): logger.info('点击常规项目新增') self.click_button(self.regular_project_new) sleep(1) # 点击设计部分 def design_part(self): logger.info('点击设计部分') self.click_button(self.design_part_loc) # 点击设计部分新增 def design_part_new(self): logger.info('点击设计部分新增') self.click_button(self.design_part_new_loc) sleep(1) # 点击设计 def design_button(self): logger.info('点击设计') self.click_button(self.design_button_loc) # 点击设计新增 def design_new(self): for i in range(2): # 新增两条 logger.info('点击设计新增,两条') self.click_button(self.design_new_loc) sleep(1) # 完善设计资料 def complete_design_information(self): # 完善设计资料 logger.info('完善设计资料') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('设计1') # 第一个设计名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[1]/div[2]/input')\ .send_keys('10') # 预算数量 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[1]/div[3]/input')\ .send_keys('10') # 报价 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[1]/div[4]/div[1]/input')\ # .send_keys('9') # 含税价 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/div[1]/input[1]')\ .send_keys('设计2') # 第二个设计名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/div[2]/input')\ .send_keys('10') # 预算数量 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/div[3]/input')\ .send_keys('10') # 报价 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/div[4]/div[1]/input')\ # .send_keys('9') # 含税价 # 收起设计模块 def packup_design(self): logger.info('收起设计模块') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[1]/div[2]/div/div[1]/div[1]/span').click() # 点击现场装修部分 def live_decoration(self): logger.info('点击现场装修部分') self.click_button(self.live_decoration_loc) # 点击现场装修部分新增 def live_decoration_new(self): logger.info('点击现场装修部分新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[2]/a').click() print(self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[2]/a').text) sleep(2) # 点击天棚工程 def ceiling_engineering(self): logger.info('点击天棚工程') self.click_button(self.ceiling_engineering_button) # 点击天棚工程新增 def ceiling_engineering_new(self): for i in range(2): logger.info('点击天棚工程新增,两条') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[1]/div[3]/a').click() sleep(1) # 完善天棚工程资料 def complete_ceiling_engineering(self): logger.info('完善天棚工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('天棚工程1') # 天棚工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]')\ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[1]/div[4]/div[1]/input')\ .send_keys('这是天棚1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('天棚工程2') # 天棚工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[3]')\ .click() # 单位:m self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div/div[2]/div[2]/div[2]/div[4]/div[1]/input')\ .send_keys('这是天棚2备注信息') # 备注 # 收起天棚模块 def packup_ceiling(self): logger.info('收起天棚工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[1]/div[1]/div[1]/span').click() # 点击地面工程 def flooring_work(self): logger.info('点击地面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[2]/span').click() # 点击地面工程新增 def flooring_work_new(self): for i in range(2): logger.info('点击地面工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/a').click() sleep(1) # 完善地面工程的信息 def complete_flooring_work(self): logger.info('完善地面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('地面工程1') # 地面工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]')\ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[4]/div[1]/input')\ .send_keys('这是地面1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('地面工程2') # 地面工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[3]')\ .click() # 单位:m self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[4]/div[1]/input')\ .send_keys('这是地面2备注信息') # 备注 # 收起地面模块 def packup_flooring(self): logger.info('收起地面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/span').click() # 点击墙面工程 def metope_engineering(self): logger.info('点击墙面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[3]/span').click() # 点击墙面工程新增 def metope_engineering_new(self): for i in range(2): logger.info('点击墙面工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[1]/div[3]/a').click() sleep(1) # 完善墙面工程信息 def complete_metope_engineering(self): logger.info('完善墙面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('墙面工程1') # 墙面工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是墙面1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('墙面工程2') # 墙面工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('10') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('10') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是墙面2备注信息') # 备注 # 收起墙面模块 def packup_metope(self): logger.info('收起墙面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[3]/div[1]/div[1]/span').click() # 点击水电工程 def waterpower_engineering(self): logger.info('点击水电工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[4]/span').click() # 点击水电工程新增 def waterpower_engineering_new(self): for i in range(2): logger.info('点击水电工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[1]/div[3]/a').click() sleep(1) # 完善水电工程信息 def complete_waterpower_engineering(self): logger.info('完善地面工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('水电工程1') # 水电工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]')\ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[1]/div[4]/div[1]/input')\ .send_keys('这是水电1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('水电工程2') # 水电工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]')\ .click() # 单位:m self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[2]/div[2]/div[2]/div[4]/div[1]/input')\ .send_keys('这是水电2备注信息') # 备注 # 收起水电模块 def packup_waterpower(self): logger.info('收起水电工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[4]/div[1]/div[1]/span').click() # 点击店招工程 def signage_engineering(self): logger.info('点击店招工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[5]/span').click() # 点击店招工程新增 def signage_engineering_new(self): for i in range(2): logger.info('点击店招工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[1]/div[3]/a').click() sleep(1) # 完善店招工程信息 def complete_signage_engineering(self): logger.info('完善店招工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('店招工程1') # 店招工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]')\ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[1]/div[4]/div[1]/input')\ .send_keys('这是店招1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('店招工程2') # 店招工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]')\ .click() # 单位:m self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[1]/div[3]/input')\ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input')\ # .send_keys('10') # 材料报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input')\ .send_keys('10') # 材料报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[1]/input')\ # .send_keys('10') # 人工报价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 人工报价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input')\ # .send_keys('9') # 材料成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input')\ .send_keys('9') # 材料成本实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[1]/input')\ # .send_keys('9') # 人工成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[3]/div[2]/div/div[2]/input')\ .send_keys('9') # 人工成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[2]/div[2]/div[2]/div[4]/div[1]/input')\ .send_keys('这是店招2备注信息') # 备注 # 收起店招模块 def packup_signage(self): logger.info('完善店招工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[5]/div[1]/div[1]/span').click() # 点击拆除建渣工程 def demolition_engineering(self): logger.info('点击拆除建渣工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[6]/span').click() # 点击拆除建渣工程新增 def demolition_engineering_new(self): for i in range(2): logger.info('点击拆除建渣工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[1]/div[3]/a').click() sleep(1) # 完善拆除建渣工程资料 def complete_demolition_engineering(self): logger.info('完善拆除建渣工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('拆除建渣工程1') # 拆除建渣工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是拆除建渣工程1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('拆除建渣工程2') # 拆除建渣工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是拆除建渣2备注信息') # 备注 # 收起拆除建渣 def packup_demolition(self): logger.info('收起拆除建渣工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[6]/div[1]/div[1]/span').click() # 其它工程 def other_projects(self): logger.info('点击其它工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[7]/span').click() # 其他工程新增 def other_projects_new(self): for i in range(2): logger.info('点击其它工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[1]/div[3]/a').click() sleep(1) # 完善其它工程资料 def complete_other_projects(self): logger.info('完善其它工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('其它工程1') # 其它工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是其它工程1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('其它工程2') # 其它工程名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是其它工程2备注信息') # 备注 # 收起其它工程模块 def packup_live_other(self): logger.info('完善其它工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[2]/div[7]/div[1]/div[1]/span').click() # 收起现场装修模块 def packup_live(self): logger.info('收起现场装修模块') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[2]/div[1]/div[1]/span').click() # 点击商业展柜部分 def showcase_part(self): logger.info('点击商业展柜部分') self.click_button(self.showcase_part_loc) # 点击商业展柜部分新增 def showcase_part_new(self): logger.info('点击商业展柜部分新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[1]/div[3]/div[1]/div[2]/a').click() sleep(1) # 点击展柜制作 def under_production(self): logger.info('点击商业展柜制作') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[1]/div[3]/div[1]/div[3]/div[1]/span').click() # 点击展柜制作新增 def under_production_new(self): for i in range(2): logger.info('点击商业展柜制作新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[1]/div[3]/a').click() sleep(1) # 完善展柜制作资料 def complete_under_production(self): logger.info('完善商业展柜') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('展柜制作1') # 展柜制作名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是展柜制作1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('展柜制作2') # 展柜制作名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是展柜制作2备注信息') # 备注 # 收起展柜制作模块 def packup_under_production(self): logger.info('收起商业展柜') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[1]/div[1]/div[1]/span').click() # 点击美工制作 def artists_create(self): logger.info('点击美工制作') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[1]/div[3]/div[1]/div[3]/div[2]/span').click() # 点击美工制作新增 def artists_create_new(self): for i in range(2): logger.info('点击美工制作新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[1]/div[3]/a').click() sleep(1) # 完善美工制作资料 def complete_artists_create(self): logger.info('完善美工制作') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('美工制作1') # 美工制作名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是美工制作1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('美工制作2') # 美工制作名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是美工制作2备注信息') # 备注 # 收起美工制作模块 def packup_artists(self): logger.info('收起美工制作') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/span').click() # 点击商业展柜其它工程 def showcase_other(self): logger.info('点击其它工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[1]/div[3]/div[1]/div[3]/div[3]/span').click() # 点击商业展柜其它新增 def showcase_other_new(self): for i in range(2): logger.info('点击其它工程新增') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[1]/div[3]/a').click() sleep(1) # 完善商业展柜其它资料 def complete_showcase_other(self): logger.info('完善其它工程') self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[1]/input[1]')\ .send_keys('商业展柜其它1') # 商业展柜其它名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[1]/div[4]/div[1]/input') \ .send_keys('这是商业展柜其它1备注信息') # 备注 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[1]/input[1]')\ .send_keys('商业展柜其它2') # 商业展柜其它名称 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[2]/select/option[2]') \ .click() # 单位:平方米 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[1]/div[3]/input') \ .send_keys('10') # 预算数量 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[1]/input') \ # .send_keys('10') # 单价标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[2]/div[1]/div/div[2]/input') \ .send_keys('10') # 单价实际 # self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[1]/input') \ # .send_keys('9') # 成本标准 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[3]/div[1]/div/div[2]/input') \ .send_keys('9') # 成本实际 self.find_element(By.XPATH, '//*[@id="project"]/div[2]/div[3]/div[2]/div[3]/div[2]/div[2]/div[2]/div[4]/div[1]/input') \ .send_keys('这是商业展柜其它2备注信息') # 备注 # 全部收起、展开、滑动查看 def all_open_close(self): sleep(2) self.find_element(By.XPATH, '/html/body/div[1]/div[1]/div[2]/div[4]/div[1]/div[1]/span').click() sleep(2) js = "window.scrollTo(0,document.body.scrollHeight)" self.driver.execute_script(js) sleep(2) js = "window.scrollTo(0,0)" self.driver.execute_script(js) sleep(2) self.find_element(By.XPATH, '/html/body/div[1]/div[1]/div[2]/div[4]/div[1]/div[2]/span').click() # 添加品牌 def add_brand(self): self.find_element(By.XPATH, '/html/body/div[1]/div[1]/div[2]/div[4]/div[1]/div[3]/span').click() # 添加品牌 self.find_element(By.ID, 'brand_auto').send_keys('周大生') sleep(1) self.find_element(By.XPATH, '//*[@id="brand_list"]/div/div[1]').click() self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[1]/div[3]/div[1]/div[2]/a').click() # 品牌新增 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[1]/div[3]/div[1]/div[3]/div[1]/span').click() # 新增设计部分 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[1]/div[3]/div[1]/div[2]/a').click() # 设计部分新增 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[1]/div[3]/div[1]/div[3]/div/span').click() # 点击设计 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[2]/div/div[1]/div[3]/a').click() self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/div[1]/input[1]')\ .send_keys('品牌设计') # 品牌设计名称 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/div[2]/input')\ .send_keys('10') # 预算数量 self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/div[3]/input')\ .send_keys('10') # 报价 # self.find_element(By.XPATH, '/html/body/div[1]/div[2]/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/div[4]/div[1]/input')\ # .send_keys('9') # 含税价 # 保存 def save(self): self.find_element(*self.save_loc).click() self.alert_accept() # 提交审批 def submit(self, text): self.find_element(*self.submit_loc).click() Select(self.find_element(*self.assessor_loc)).select_by_visible_text(text) self.find_element(*self.assessor_submit_loc).click() def test_new_project_base(driver, pid): new_page = NewProject(driver) # 设计 new_page.all_button() new_page.new_button(pid) new_page.popup() new_page.submit_button() new_page.offer_area() new_page.regular_new() new_page.design_part() new_page.design_part_new() new_page.design_button() new_page.design_new() new_page.complete_design_information() new_page.packup_design() new_page.regular_new() new_page.live_decoration() # 天棚 new_page.live_decoration_new() new_page.ceiling_engineering() new_page.ceiling_engineering_new() new_page.complete_ceiling_engineering() new_page.packup_ceiling() # 地面 new_page.live_decoration_new() new_page.flooring_work() new_page.flooring_work_new() new_page.complete_flooring_work() new_page.packup_flooring() # 墙面 new_page.live_decoration_new() new_page.metope_engineering() new_page.metope_engineering_new() new_page.complete_metope_engineering() new_page.packup_metope() # 水电 new_page.live_decoration_new() new_page.waterpower_engineering() new_page.waterpower_engineering_new() new_page.complete_waterpower_engineering() new_page.packup_waterpower() # 店招 new_page.live_decoration_new() new_page.signage_engineering() new_page.signage_engineering_new() new_page.complete_signage_engineering() new_page.packup_signage() # 拆除建渣 new_page.live_decoration_new() new_page.demolition_engineering() new_page.demolition_engineering_new() new_page.complete_demolition_engineering() new_page.packup_demolition() # 其它 new_page.live_decoration_new() new_page.other_projects() new_page.other_projects_new() new_page.complete_other_projects() new_page.packup_live_other() new_page.packup_live() new_page.regular_new() new_page.showcase_part() # 展柜制作 new_page.showcase_part_new() new_page.under_production() new_page.under_production_new() new_page.complete_under_production() new_page.packup_under_production() # 美工制作 new_page.showcase_part_new() new_page.artists_create() new_page.artists_create_new() new_page.complete_artists_create() new_page.packup_artists() # 其它 new_page.showcase_part_new() new_page.showcase_other() new_page.showcase_other_new() new_page.complete_showcase_other() new_page.all_open_close() new_page.add_brand() # 保存 def test_new_project_save(driver, pid): new_page = NewProject(driver) test_new_project_base(driver, pid) new_page.save() # 提交审核 def test_new_project_submit(driver, pid, text='黑桃K'): new_page = NewProject(driver) test_new_project_base(driver, pid) new_page.submit(text)
from django.urls import path, re_path, include from . import views urlpatterns = [ path('', views.dashboard, name='dashboard'), #path('authmail/', views.auth_mail, name='authmail'), path('settings/', include('apps.users.settingsurls')), path('signup/', views.userSignup, name='usersignup'), path('fblogin/', views.fbUserLogin, name='fblogin'), path('login/', views.userLogin, name='userlogin'), path('logout/', views.userLogout, name='userlogout'), path('registercontest/', views.registerContest, name='registercontest'), re_path('u/(?P<username>[a-z0-9_]{0,})/$', views.userProfile, name='userprofile'), ]
''' This script is intended to iterate over a range of errors in natural frequency to determine the residual vibration amplitude of a boom crane subject to luff Created by: Daniel Newman Date: 01-13-2017 ''' from timeit import default_timer as timer import numpy as np from matplotlib import pyplot as plt import os from scipy.optimize import minimize import sys sys.path.append('/Users/Daniel/Github/Crawlab-Student-Code/Daniel Newman/Python Modules') import InputShaping as shaping import Boom_Crane as BC import Generate_Plots as genplt start = timer() # Use lab plot style plt.style.use('Crawlab') # define constants DEG_TO_RAD = np.pi / 180 G = 9.81 # m / s**2 vtol = 1. * DEG_TO_RAD #radians # t vector characteristics tmax = 30 t_step = .01 t = np.arange(0, tmax, t_step) #Startt = np.arange(0,2,.01) Startt = np.array([0.]) Startt_step = np.round(Startt[0]/t_step).astype(int) # Geometry of the system mass = 10 # Mass of the payload in kg r = 15 # length of the boom in meters # Initial angular conditions gamma_init = 40. # Luff angle gamma_dot_init = 0. phi_init = -5. #-0.0859 / DEG_TO_RAD # Radial swing angle phi_dot_init = 0. #-0.0147 / DEG_TO_RAD l_init = 10 l_dot_init = 0. # Actuator constraints Amax = 83.33 # deg / s^2 Vmax = 6.67 # deg / s X0 = np.array([phi_init,phi_dot_init,gamma_init, gamma_dot_init, 0,0,False]) null_guess = np.array([0.,0.,0.,0.]) X0 *= DEG_TO_RAD X0[-3] = l_init X0[-2] = l_dot_init # C = array of actuator constraints C = np.array([Amax, Vmax]) C *= DEG_TO_RAD # Desired final angles gamma_fin = 70. theta_fin = 0. Distance = np.array([gamma_fin - gamma_init]) Distance *= DEG_TO_RAD # Xf = array of final desired values Xf = np.array([gamma_fin]) Xf *= DEG_TO_RAD # Initial height of the payload above the luffing axis h_init = r*np.sin(X0[2]) - l_init # The final height of the payload is an input to the system #h_fin = h_init h_fin = r * np.sin(Xf[0]) - l_init # L = array of initial and final cable lengths and heights L = [l_init, h_init, h_fin] # Check for height constraints if h_init <= 0: print('Caution: initial height of the payload is at or below \ the luffing axis by {} meters.'.format(abs(h_init))) if h_fin >= r: print('Error: final desired height greater than boom length.') exit() disturbance = [0,0] normalized_error = np.arange(0.4,1.6,0.1) UMZV_Amp = np.zeros_like(normalized_error) ZV_IC_Amp = np.zeros_like(normalized_error) ZV_Amp = np.zeros_like(normalized_error) Unshaped_Amp = np.zeros_like(normalized_error) p = [C, l_init, r, Startt, gamma_init * DEG_TO_RAD,gamma_init * DEG_TO_RAD,t_step,'Asymmetric'] umzvd_test_response = BC.response(null_guess,X0, t, p,Distance) umzvd_test_amp = BC.response(null_guess,X0, t[Startt_step:len(t)], p, Distance,False)[0,0] print(umzvd_test_amp) p = [C, l_init, r, Startt, gamma_init * DEG_TO_RAD,gamma_init * DEG_TO_RAD,t_step,'Asymmetric'] zv_ic_phase = BC.optimize_ZV(X0,t,p,Distance) zv_ic_response = BC.response(zv_ic_phase,X0, t, p,Distance) zv_dup_response = BC.response(null_guess,X0, t, p,Distance,omega_n_error=1.) for i in np.arange(0,len(normalized_error)): ZV_IC_Amp[i] = BC.response(zv_ic_phase,X0, t[Startt_step:len(t)], p, Distance,False,omega_n_error=normalized_error[i])[0,0] X0[-3] = l_init p = [C, l_init, r, Startt, gamma_init * DEG_TO_RAD,gamma_init * DEG_TO_RAD,t_step,'UMZVIC'] umzv_phase = BC.optimize_UMZV(X0,t,p,Distance) for i in np.arange(0,len(normalized_error)): UMZV_Amp[i] = BC.response(umzv_phase,X0, t[Startt_step:len(t)], p, Distance,False,omega_n_error=normalized_error[i])[0,0] X0[-3] = l_init umzv_response = BC.response(umzv_phase,X0, t, p,Distance) umzv_dup_response = BC.response(null_guess,X0, t, p,Distance,omega_n_error=1.) # Pack relevant variables p = [C, l_init, r, Startt, gamma_init * DEG_TO_RAD,gamma_init * DEG_TO_RAD,t_step,'Unshaped'] unshaped_response = BC.response(null_guess,X0, t, p,Distance,level_luffing=False) for i in np.arange(0,len(normalized_error)): Unshaped_Amp[i] = BC.response(null_guess,X0, t, p, Distance,False,omega_n_error=normalized_error[i])[0,0] X0[-3] = l_init # Pack relevant variables p = [C, l_init, r, Startt, gamma_init * DEG_TO_RAD,gamma_fin * DEG_TO_RAD,t_step,'ZV Shaped'] # Call Boom crane response based on given values zv_response = BC.response(null_guess,X0, t, p,Distance,level_luffing=False) zv_dup_response = BC.response(null_guess,X0, t, p,Distance,omega_n_error=1.) for i in np.arange(0,len(normalized_error)): ZV_Amp[i] = BC.response(null_guess,X0, t, p, Distance,False,omega_n_error=normalized_error[i])[0,0] UMZV_IC_Amp = np.divide(ZV_IC_Amp,Unshaped_Amp)*100 UMZV_Amp = np.divide(UMZV_Amp,Unshaped_Amp)*100 ZV_Amp = np.divide(ZV_Amp,Unshaped_Amp)*100 folder = 'Figures/Normalized Error/Crane/Luff_{}_{}'.format(gamma_init,gamma_fin) genplt.compare_responses(t,zv_response[:,0],'ZV',umzv_response[:,0],'UMZV-IC',unshaped_response[:,0],'Unshaped',zv_ic_response[:,0],'ZV-IC',xlabel='Time (sec)',ylabel='Swing Angle (rad)',title='Swing Angle',folder=folder) genplt.compare_responses(t,zv_dup_response[:,0],'ZV',umzv_dup_response[:,0],'UMZV-IC',unshaped_response[:,0],'Unshaped',zv_dup_response[:,0],'UMZVD-IC',xlabel='Time (sec)',ylabel='Swing Angle (rad)',title='Swing Angle Test',folder=folder) genplt.compare_responses(normalized_error,UMZV_Amp,'UMZV',ZV_Amp,'ZV',title='Percent Vibration Vs. Normalized Error',xlabel=r'Normalized Error $(\frac{\omega}{\omega_m})$',ylabel='Percent Residual Vibration',folder=folder) genplt.compare_responses(normalized_error,ZV_IC_Amp,'ZV-IC',UMZV_Amp,'UMZV',ZV_Amp,'ZV',title='Percent Vibration Vs. Normalized Error',xlabel=r'Normalized Error $(\frac{\omega}{\omega_m})$',ylabel='Percent Residual Vibration',folder=folder)
# 用于跟python解释器进行交互 import sys # print(sys.argv) # 执行:python sys模块.py post download # 结果:['sys模块.py', 'post', 'download'] def post(): print('post') def download(): print('download') # if sys.argv[1] =='post': # post() # elif sys.argv[1] == 'download': # download() # sys.exit(0) # 0表示正常退出 import time print(sys.path) print(sys.platform) # 返回操作系统平台名称 val = sys.stdin.readline() # 输入 sys.stdout.write(val) # 输出
""" The following function verifies if, given a 'board' setup, the cell (i, j) is safe - can take a queen which would not be attacked. We should verify: - There exists an integer c for which board[i][c] = 1 ; - There exists an integer l for which board[l][j] = 1 ; - There exists an integer k for which board[l +- k][j +- k] = 1 ; If any of these conditions are verified, then the cell (i, j) is not safe. @params: board is a 2D matrix representing the chess board, cells with """ def isSafe(board, i, j): if (len(board) < 3): return False safe: bool = True size = len(board) # There exists an integer c for which board[i][c] = 1 for c in range(size): if board[i-1][c] == 1: safe = False # There exists an integer l for which board[l][j] = 1 for l in range(size): if board[l][j-1] == 1: safe = False # There exists an integer k for which board[l +- k][j +- k] = 1 ; _i = i - 1 _j = j - 1 _size = size - 1 # ERASE for k in range(size): # for down-right diagonal cells if (_i + k < size) and (_j + k < size): if board[_i + k][_j + k] == 1: safe = False # for up-right diagonal cells if (_i - k >= 0) and (_j + k < size): if board[_i - k][_j + k] == 1: safe = False # for up-left diagonal cells if (_i - k >= 0) and (_j - k >= 0): if board[_i - k][_j - k] == 1: safe = False #for up-right diagonal cells if (_i + k < size) and (_j - k >= 0): if board[_i + k][_j - k] == 1: safe = False return safe def examplePrinter(board, x, y): attacked = isSafe(board, x, y) print('isSafe ?', attacked) ## Example, based on a # case of a queen attacking from the upper-left diagonal board_up_left_unsafe = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] board_up_left_safe = [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] # examplePrinter(board_up_left_unsafe, 3, 4) # examplePrinter(board_up_left_safe, 3, 4) # case of a queen attacking from the upper-right diagonal board_up_right_unsafe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] board_up_right_safe = [[0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] # examplePrinter(board_up_left_unsafe, 3, 4) # examplePrinter(board_up_left_safe, 3, 4) # case of a queen attacking from the lower-left diagonal board_low_left_unsafe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 1, 0, 0, 0]] board_low_left_safe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 0, 0, 0, 0]] # examplePrinter(board_low_left_unsafe, 3, 4) # examplePrinter(board_low_left_safe, 3, 4) # case of a queen attacking from the lower-right diagonal board_low_right_unsafe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]] board_low_right_safe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]] # examplePrinter(board_low_right_unsafe, 3, 4) # examplePrinter(board_low_right_safe, 3, 4) # case of same column board_column_unsafe = [[0, 0, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] # examplePrinter(board_column_unsafe, 3, 4) # case of same row board_row_unsafe = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] # examplePrinter(board_row_unsafe, 3, 4) # case of small board board_small = [[0, 0], [0, 0]] examplePrinter(board_small, 2, 2)
from django.db import models class BlogPost(models.Model): """A topic the user is learning about""" title = models.CharField(max_length=200) text = models.TextField() date_added = models.DateTimeField(auto_now_add=True) def __str__(self): """Return a string representation of the model.""" return self.text
print("SCSCSSSKYKYKKK"[input()%7::7])
import scrapy class QuotesSpider(scrapy.Spider): name = "quotes" # Scrapy는 Spider의 start_requests 메소드에 의해 리턴 된 요청 오브젝트를 스케줄링한다. # 각 요청에 대한 response인스턴스를 생성하며 요청에 할당된 콜백함수를 호출한다. def start_requests(self): urls = [ 'https://quotes.toscrape.com/page/1/', 'https://quotes.toscrape.com/page/2/' ] for url in urls: # url : 요청 url # callback : response시 호출될 콜백함수 yield scrapy.Request(url=url, callback=self.parse) def parse(self,response): self.log("******response*********" ) self.log(response.url) page = response.url.split("/")[-2] filename = 'quotes-%s.html' % page with open(filename,'wb') as f: f.write(response.body) self.log('Saved file %s' % filename)
from django.shortcuts import render from .models import * from django.db.models import Q # Create your views here. def BootstrapFilterView(request): queryset = Journal.objects.all() categories = Category.objects.all() title_contains_query = request.GET.get("title_contains") id_exact_query = request.GET.get("title_exact") title_or_author_query = request.GET.get("title_or_author") view_count_min = request.GET.get("view_count_min") view_count_max = request.GET.get("view_count_max") publish_date_min = request.GET.get("publish_date_min") publish_date_max = request.GET.get("publish_date_max") category = request.GET.get("category") reviewed = request.GET.get("reviewed") not_reviewed = request.GET.get("not_reviewed") def is_valid_queryparam(param): return param != "" and param is not None if is_valid_queryparam(title_contains_query): queryset = queryset.filter(title__icontains=title_contains_query) elif is_valid_queryparam(id_exact_query): queryset = queryset.filter(id=id_exact_query) elif is_valid_queryparam(title_or_author_query): queryset = queryset.filter(Q(title__icontains=title_or_author_query) | Q(author__name__icontains=title_or_author_query)).distinct() if is_valid_queryparam(view_count_min): queryset = queryset.filter(views__gt=view_count_min) if is_valid_queryparam(view_count_max): queryset = queryset.filter(views__lt=view_count_max) if is_valid_queryparam(publish_date_min): queryset = queryset.filter(publish_date__gt=publish_date_min) if is_valid_queryparam(publish_date_max): queryset = queryset.filter(publish_date__lt=publish_date_max) if is_valid_queryparam(category) and category != "Choose...": queryset = queryset.filter(categories__name=category) if reviewed: queryset = queryset.filter(reviewed=True) elif not_reviewed: queryset = queryset.filter(reviewed=False) context = { "queryset": queryset, "categories": categories, } return render(request, "bootstrap_form.html", context )
from app import hello from flask import Flask from flask.helpers import flash app = Flask(__name__) @app.route('/home/user/<string:username>/posts/<int:id>') def function(username,id): return "Hello,"+username+" You are watching your post which id: "+str(id) @app.route('/onlyget',methods=['GET','POST']) def get_req(): return 'Hello All' if __name__=="__main__": app.run(debug=True)
#------------------------ # Romberg Method # # Lucas Motta Freire #------------------------ import numpy as np def trapz(a, b, f, t, i): '''Parameters: a, b : Points Extrems; f : integral function t : Value of T(h_i-1); i : index Return: Value of T(h_i)''' if i==0: t = (b-a)/2*(f(a)+f(b)) else: hi = (b-a)/2**i new_points = np.linspace(a + hi, b - hi, 2**(i-1)) # New points next step t = 0.5 * t + hi * np.sum(f(new_points)) # Recalculating trapezium return t def romberg(a, b, f, epsilon=1.0e-8, MaxIter=50): '''Parameters: a, b : Points Extrems; epsilon, MaxIter : Tolerance f : integral function Return: Romberg Table in array and a bollian value for the convergence of the method''' convergence = True TR = np.zeros((MaxIter, MaxIter), dtype=float) TR[0,0] = trapz(a, b, f, 0, 0) for i in range(1, MaxIter): # building the table in array format TR[i, 0] = trapz(a, b, f, TR[i-1,0], i) for k in range(1, i+1): TR[i, k] = (4**k * TR[i, k-1] - TR[i-1, k-1])/(4**k - 1) if np.abs(TR[i,k] - TR[i, k-1]) <= epsilon * np.abs(TR[i,k]): # Relative Variation break if np.abs(TR[i,k] - TR[i, k-1]) > epsilon * np.abs(TR[i,k]): # Maximum iterations reached convergence = False return TR[:i+1,:k+1], convergence def integral(a, b, f, epsilon=1.0e-8, MaxIter=50): '''Parameters: a, b : Points Extrems; epsilon, MaxIter : Tolerance f : integral function Return: Integral value obtained by the Romberg method''' table = romberg(a, b, f, epsilon, MaxIter)[0] n = len(table) if romberg(a, b, f, epsilon, MaxIter)[1]: return table[n-1 , n-1]
# my_str = "blablacarblablacar" # my_symbol = "bla" # # my_symbol_count = my_str.count(my_symbol) # print(my_symbol_count) # res_message = f"{my_symbol}\n" * my_symbol_count # print(res_message.strip()) # for _ in range(my_symbol_count): # print(my_symbol) # print(my_symbol * _ ) # my_str = "bla BLA car" # my_str = my_str.lower() # symbols_heap = [] # for symbol in my_str: # if symbol not in symbols_heap: # symbols_heap.append(symbol) # res_len = (len(symbols_heap)) # print(res_len) # my_str = "qwerty" # my_list = [] # for index in range(len(my_str)): # if not index % 2: # symbol = my_str[index] # my_list.append(symbol) # print(my_list) # for index, symbol in enumerate(my_str): # if not index % 2: # my_list.append(symbol) # print(my_list) # my_str = "qwerty" # my_list = [] # str_index = [3, 2, 5, 5, 1, 0, 5, 0, 3, 2, 1] # # for index in str_index: # symbol = my_str[index] # my_list.append(symbol) # print(my_list) # my_number = 1234567890987654345678987654741052963 # digit_count = len(str(my_number)) # print(digit_count)new_number_str = number_str # number_str = str(my_number) # max_symbol = max(number_str) # print(max_symbol) # # test_list = ["1", "2", "3", "4"] # print(max(test_list)) # number_str = str(my_number) # new_number_str = number_str[::-1] # new_number = int(new_number_str) # print(new_number) # # new_number = int(str(my_number)[::-1]) # print(new_number) # my_list = [1,2,5,3,-8,4] # my_str = 'qwerty' # sorted_list = sorted(my_list) # print(sorted_list) my_number = 123123 number_str = str(my_number) sorted_number_symbols_list = sorted(number_str) new_number_str = ''.join(sorted_number_symbols_list) new_number = int(new_number_str) print(new_number)
from ConfigParser import SafeConfigParser ### global variables ### configReader = SafeConfigParser() project_name = '' infile = '' gaincnv_path = '' losscnv_path = '' cancer_type = '' spltbams_path = '' het_path = '' nonhet_path = '' outbamfn = '' results_path='' java_path ='' beagle_path='' samtools_path='' bedtools_path='' vcftools_path='' def InitConfigReader(configFile): """init the config file""" configReader.readfp(open(configFile)) def GetConfigReader(): """return the configreader""" return configReader def GetResultsPath(): return results_path def SetResultsPath(path): global results_path results_path= path def GetSplitBamsPath(): return spltbams_path def SetSplitBamsPath(spltbams): global spltbams_path spltbams_path= spltbams def SetCancerType(can_type): global cancer_type cancer_type = can_type def GetCancerType(): return cancer_type def SetGainCNV(cnv_gain): global gaincnv_path gaincnv_path = cnv_gain def GetGainCNV(): return gaincnv_path def SetLossCNV(cnv_loss): global losscnv_path losscnv_path= cnv_loss def GetLossCNV(): return losscnv_path def SetOutputFileName(out_bam_file): global outbamfn outbamfn = out_bam_file def GetOutputFileName(): return outbamfn def SetLogPath(path): global log_path log_path = path def GetLogPath(): return log_path def SetHetPath(path): global het_path het_path = path def GetHetPath(): return het_path def SetNonHetPath(path): global nonhet_path nonhet_path = path def GetNonHetPath(): return nonhet_path def SetJavaPath(path): global java_path java_path = path def GetJavaPath(): return java_path def SetBeaglePath(path): global java_path java_path = path def GetBeaglePath(): return java_path def SetSoftwarePath(j_path, b_path, s_path, bd_path, v_path,sb_path): configReader.set('SOFTWARE','java_path',str(j_path)) configReader.set('SOFTWARE','beagle_path',str(b_path)) configReader.set('SOFTWARE','samtools_path',str(s_path)) configReader.set('SOFTWARE','bedtools_path',str(bd_path)) configReader.set('SOFTWARE','vcftools_path',str(v_path)) configReader.set('SOFTWARE','sambamba_path',str(sb_path)) def GetSoftwarePath(): java_path = configReader.get('SOFTWARE', 'java_path') beagle_path = configReader.get('SOFTWARE', 'beagle_path') samtools_path = configReader.get('SOFTWARE', 'samtools_path') bedtools_path = configReader.get('SOFTWARE', 'bedtools_path') vcftools_path = configReader.get('SOFTWARE', 'vcftools_path') sambamba_path = configReader.get('SOFTWARE', 'sambamba_path') return java_path, beagle_path,samtools_path, bedtools_path, vcftools_path,sambamba_path
import numpy as np from collections import namedtuple import os import sys os.chdir(sys.path[0]) import imgLibrary if(len(sys.argv)>1): name=sys.argv[1] image=imgLibrary.readP2(name) smooth=imgLibrary.covolve2D2D(imgLibrary.gaussian2D(3,4),image) edges=imgLibrary.detectEdge(smooth) thin=imgLibrary.supressEdge(edges) final=imgLibrary.supressNoise(thin,0.06*thin.max_shade,0.16*thin.max_shade) imgLibrary.writeP2("smooth.pgm",smooth) imgLibrary.writeP2("edges.pgm",edges) imgLibrary.writeP2("thin.pgm",thin) imgLibrary.writeP2("final.pgm",final)
import glob import os import numpy as np import warnings import matplotlib.pyplot as plt from Image_Analysis import image_analysis, write_asymetry_to_file, write_maxima_to_file, write_maxima_to_file_2, write_detections # from Image_Analysis import detect_star from scipy.optimize import minimize from utils import parallel_process from tqdm import trange from star_detection_parameters import Parameters # imgs = glob.glob('/Users/Sahl/Desktop/University/Year_Summer_4/Summer_Project/Data/5*.fits') # imgs = glob.glob('/shome/sahlr/summer_project_2017/Data/5*.fits') imgs = glob.glob('/disk1/ert/fits_images/*.fits') def write_detect_output(detect_output, filename): out_file = open(filename, 'w') out_file.write('Galaxy_name,Min_A_flux_180,detection\n') for dat in detect_output: out_file.write('{},{},{}\n'.format(*dat)) out_file.close() step_size = 10000 nsteps = len(imgs)//step_size + 1 out = [] for k in trange(nsteps, desc="Blocks"): low_limit = k*step_size high_limit = (k+1)*step_size out += parallel_process(imgs[low_limit:high_limit], image_analysis, 11) write_asymetry_to_file('Detections_best/asymmetry_267k.csv', out) write_detections('Detections_best/detections_267k.csv', out) write_maxima_to_file_2('maxima_alt_267k.csv', out) write_maxima_to_file('maxima_267k.csv', out) # step_size = 10004 # nsteps = len(out)//step_size + 1 # res = [] # with warnings.catch_warnings(): # warnings.simplefilter("ignore", category=RuntimeWarning) # parameter = Parameters(bin_size=52, n_bins_avg=8, # factor=1.72, data_file='Detections_best/asymmetry_2k.csv') # for k in trange(nsteps, desc="Blocks"): # low_limit = k*step_size # high_limit = (k+1)*step_size # res += parallel_process(out[low_limit:high_limit], parameter.star_detect, # n_jobs=3) # write_detect_output(res, 'Detections_best/{}_{}_{:.2f}.csv'.format(*parameter.get_params())) # write_asymetry_to_file('asymetry2.txt', out) # os.system('git add auto*.txt') # os.system('git commit -m "Output auto upload"') # os.system('git push')
from keras import Model, optimizers from keras.layers import Input, Dense from keras.utils import to_categorical from keras.datasets import fashion_mnist import matplotlib.pyplot as plt # パラメータ + ハイパーパラメータ img_shape = (28 * 28, ) hidden_dim = 100 output_dim = 10 batch_size = 128 learning_rate = 0.1 epochs = 15 def build_model(): # モデルを定義する _input = Input(shape=img_shape) _hidden = Dense(hidden_dim, activation='sigmoid')(_input) _hidden = Dense(hidden_dim, activation='sigmoid')(_hidden) _hidden = Dense(hidden_dim, activation='sigmoid')(_hidden) _hidden = Dense(hidden_dim, activation='sigmoid')(_hidden) _output = Dense(output_dim, activation='softmax')(_hidden) model = Model(inputs=_input, outputs=_output) return model def load_data(): # データを読み込む (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float') / 255. x_test = x_test.astype('float') / 255. print(f'Before: {y_train.shape}') print(f'y_train[0]: {y_train[0]}') y_train = to_categorical(y_train, num_classes=output_dim) print(f'After: {y_train.shape}') print(f'y_train[0]: {y_train[0]}') y_test = to_categorical(y_test, num_classes=output_dim) return x_train, y_train, x_test, y_test def set_optimizers(): # 最適化アルゴリズムの定義 optim = {} optim['SGD'] = optimizers.SGD(lr=learning_rate) optim['Adagrad'] = optimizers.Adagrad(lr=learning_rate) optim['Adadelta'] = optimizers.Adadelta(lr=learning_rate) optim['Adam'] = optimizers.Adam() optim['Nadam'] = optimizers.Nadam() return optim def main(): x_train, y_train, x_test, y_test = load_data() optim = set_optimizers() results = {} for key in optim.keys(): print(f'---Now running: {key} model---') model = build_model() model.compile(optimizer=optim[key], loss='categorical_crossentropy', metrics=['accuracy']) results[key] = model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) plt.figure() for key in optim.keys(): loss = results[key].history['loss'] plt.plot(range(1, epochs+1), loss, marker='.', label=key) plt.legend(loc='best', fontsize=10) plt.grid() plt.xlabel('Epochs') plt.ylabel('Loss') plt.savefig('loss.png') if __name__ == '__main__': main()
import matplotlib.pyplot as plt import matplotlib.ticker as plticker import sys import argparse try: from PIL import Image from PIL import ExifTags from PIL.ExifTags import TAGS except ImportError: import Image def sizeCanvas(imageHeight,imageWidth,canvasHeight,canvasWidth): if imageHeight < imageWidth: imageRatio = imageHeight/imageWidth canvasRatio = canvasHeight/canvasWidth if (imageRatio<canvasRatio): return canvasWidth*imageRatio,canvasWidth else: return canvasHeight,canvasHeight/imageRatio else: imageRatio = imageWidth/imageHeight canvasRatio = canvasWidth/canvasHeight if (imageRatio<canvasRatio): return canvasHeight,canvasHeight*imageRatio else: return canvasWidth/imageRatio,canvasWidth # references # https://stackoverflow.com/questions/44816682/drawing-grid-lines-across-the-image-uisng-opencv-python # https://stackoverflow.com/questions/4228530/pil-thumbnail-is-rotating-my-image # https://stackoverflow.com/questions/12133612/using-pil-to-auto-rotate-picture-taken-with-cell-phone-and-accelorometer def griddify(filename,canvasWidth,canvasHeight): # Open image file image = Image.open(filename) try: exifdict = image._getexif() if exifdict[274] == 3 : image=image.transpose(180,expand=True) elif exifdict[274] == 6 : image=image.rotate(-90,expand=True) elif exifdict[274] == 8 : image=image.rotate(90,expand=True) except: print("") my_dpi=200. # Set up figure imageWidth = image.size[0] imageHeight = image.size[1] print ("image height is %.2f and width is %.2f"%(imageHeight,imageWidth)) fig=plt.figure(figsize=(float(imageWidth)/my_dpi,float(imageHeight)/my_dpi),dpi=my_dpi) ax=fig.add_subplot(111) # Remove whitespace from around the image fig.subplots_adjust(left=0,right=1,bottom=0,top=1) # Set the gridding interval: here we use the major tick interval myInterval=imageHeight/8. heightPieces = 8 if (imageHeight < imageWidth): myInterval = imageHeight/5. heightPieces = 5 loc = plticker.MultipleLocator(base=myInterval) loc2 = plticker.MultipleLocator(base=myInterval) locMinor = plticker.MultipleLocator(base=myInterval/2) locMinor2 = plticker.MultipleLocator(base=myInterval/2) ax.xaxis.set_major_locator(loc) ax.yaxis.set_major_locator(loc2) ax.xaxis.set_minor_locator(locMinor) ax.yaxis.set_minor_locator(locMinor2) # Add the grid ax.grid(which='minor', axis='both', linestyle=':', linewidth=0.6,color='r') ax.grid(which='major', axis='both', linestyle='-', linewidth=1,color='g') # Add the image ax.imshow(image) # Find number of gridsquares in x and y direction #nx=abs(int(float(ax.get_xlim()[1]-ax.get_xlim()[0])/float(myInterval))) #ny=abs(int(float(ax.get_ylim()[1]-ax.get_ylim()[0])/float(myInterval))) if (not ((canvasWidth <= canvasHeight and imageWidth <=imageHeight) or (canvasWidth > canvasHeight and imageWidth > imageHeight))): heightHold = canvasHeight canvasHeight=canvasWidth canvasWidth=heightHold # Save the figure fig.savefig('gridded_image.jpg') newCanvasHeight,newCanvasWidth=sizeCanvas(imageHeight,imageWidth,canvasHeight,canvasWidth) print("Modify your canvas to have dimensions: %.2f by %.2f cm"%(newCanvasHeight,newCanvasWidth)) print("Divide the canvas into major pieces of size %.2f cm"%(newCanvasHeight/heightPieces)) for x in range(1,8): print(newCanvasHeight/heightPieces*x, end ="cm ") if __name__ == "__main__": parser = argparse.ArgumentParser() #required.add_argument('--required_arg', required=True) parser.add_argument('filename', nargs='?', default=None) parser.add_argument("-w","--width", type=float, default = 60, help="enter the width of your canvas in cm") parser.add_argument("-t","--height", type=float, default = 45,help="enter the height of your canvas in cm") args = parser.parse_args() griddify(args.filename,args.width,args.height)
# ================================================================================================== # Copyright 2012 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== from twitter.common.lang import Compatibility from twitter.common.log.tracer import Tracer, Trace from twitter.common.testing.clock import ThreadedClock def test_tracing_timed(): sio = Compatibility.StringIO() clock = ThreadedClock() final_trace = [] class PrintTraceInterceptor(Tracer): def print_trace(self, *args, **kw): final_trace.append(self._local.parent) tracer = PrintTraceInterceptor(output=sio, clock=clock, predicate=lambda v: False) assert not hasattr(tracer._local, 'parent') with tracer.timed('hello'): clock.tick(1.0) with tracer.timed('world 1'): clock.tick(1.0) with tracer.timed('world 2'): clock.tick(1.0) assert len(final_trace) == 1 final_trace = final_trace[0] assert final_trace._start == 0 assert final_trace._stop == 3 assert final_trace.duration() == 3 assert final_trace.msg == 'hello' assert len(final_trace.children) == 2 child = final_trace.children[0] assert child._start == 1 assert child._stop == 2 assert child.parent is final_trace assert child.msg == 'world 1' child = final_trace.children[1] assert child._start == 2 assert child._stop == 3 assert child.parent is final_trace assert child.msg == 'world 2' # should not log if verbosity low assert sio.getvalue() == '' def test_tracing_filter(): sio = Compatibility.StringIO() tracer = Tracer(output=sio) tracer.log('hello world') assert sio.getvalue() == 'hello world\n' sio = Compatibility.StringIO() tracer = Tracer(output=sio, predicate=lambda v: v >= 1) tracer.log('hello world') assert sio.getvalue() == '' tracer.log('hello world', V=1) assert sio.getvalue() == 'hello world\n' tracer.log('ehrmagherd', V=2) assert sio.getvalue() == 'hello world\nehrmagherd\n' sio = Compatibility.StringIO() tracer = Tracer(output=sio, predicate=lambda v: (v % 2 == 0)) tracer.log('hello world', V=0) assert sio.getvalue() == 'hello world\n' tracer.log('morf gorf', V=1) assert sio.getvalue() == 'hello world\n' tracer.log('ehrmagherd', V=2) assert sio.getvalue() == 'hello world\nehrmagherd\n'
#!/usr/bin/env python from setuptools import setup import os import springserve dir = os.path.split(os.path.abspath(__file__))[0] DESCRIPTION = "API Library for video.springserve.com" LONG_DESCRIPTION = """Springserve is a video adserver, and this library allows you to interface with its api to do read/write and reporting requests """ URL = 'http://www.springserve.com' DOWNLOAD_URL = '' CLASSIFIERS = ['Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3' ] EMAIL = '' SETUP_ARGS = {} REQUIRES = ['requests>=2.0.0', 'requests_oauthlib>=0.4.0', 'link>=0.3.1','xmltodict', 'pandas' ] # write out the version file so we can keep track on what version the built # package is # call setup so it can build the package setup(name=springserve.__title__, version=springserve.__version__, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=springserve.__license__, maintainer_email=EMAIL, maintainer=springserve.__author__, url=URL, packages=['springserve'], install_requires = REQUIRES, #data_files = DATA_FILES, classifiers=CLASSIFIERS, **SETUP_ARGS)
#!/usr/bin/python3 for i in list( range(ord('a'), ord('e')) ) + list( range(ord('f'), ord('q')) ) + list( range(ord('r'), ord('z') + 1) ): print('{:c}'.format(i), end="")
# que https://www.hackerrank.com/challenges/string-validators/problem?isFullScreen=true #solution if __name__ == '__main__': s = input() print(any([True for c in s if(c.isalnum())])) print(any([True for c in s if(c.isalpha())])) print(any([True for c in s if(c.isdigit())])) print(any([True for c in s if(c.islower())])) print(any([True for c in s if(c.isupper())]))
import heapq import sys #import queue import time from collections import namedtuple import time import threading import dummy_threading import smtplib num_workers = 10 class Empty(Exception): "Exception raised by PriorityQueue.get(block=0)/get_nowait()." pass class Full(Exception): "Exception raised by PriorityQueue.put(block=0)/put_nowait()." pass __all__ = ['event_scheduler'] Event = namedtuple('Event', 'time,priority,action,params') class PriorityQueue: """ Priority Queue maintains task in the order in which it is supposed to be executed""" def __init__(self, maxsize=0): self.maxsize = maxsize self._init(maxsize) self.mutex = threading.Lock() self.not_empty = threading.Condition(self.mutex) self.not_full = threading.Condition(self.mutex) self.all_tasks_completed = threading.Condition(self.mutex) self.unfinished_tasks = 0 def task_completed(self): """ When a task is completed, it decreases the unfinished_task count""" self.all_tasks_completed.acquire() try: unfinished = self.unfinished_tasks-1 if unfinished <=0: if unfinished < 0: raise ValueError('tasks completed! this module is called too many times!') self.all_tasks_completed.notify_all() self.unfinished_tasks = unfinished finally: self.all_tasks_completed.release() def join(self): """ When all the workers finish their task, they will be reassingned remaining tasks """ self.all_tasks_completed.acquire() try: while self.unfinished_tasks: self.all_tasks_completed.wait() finally: self.all_tasks_completed.release() def size(self): """ Returns size of queue """ self.mutex.acquire() n = self.pqsize() self.mutex.release() return n def full(self): """ Checks if queue is full """ self.mutex.acquire() n = 0 < self.maxsize == self.pqsize() self.mutex.release() return n def put(self, item, block=True, timeout=None): """ Adds event into the queue""" self.not_full.acquire() try: if self.maxsize > 0: if not block: if self.pqsize() == self.maxsize: raise Full elif timeout is None: while self.pqsize() == self.maxsize: self.not_full.wait() elif timeout < 0: raise ValueError("Timeout should be non negative no") else: end = time.time() + timeout while self.pqsize() == self.maxsize: remaining = end - time() if remaining <= 0.0: raise Full self.not_full.wait(remaining) self._put(item) self.unfinished_tasks +=1 self.not_empty.notify() finally: self.not_full.release() def put_without_wait(self, item): """ Adds task to the queue without blocking it for sometime """ return self.put(item, False) def get(self, block=True, timeout=None): """ Removes task from queue if any and returns it for execution """ self.not_empty.acquire() try: if not block: if not self.pqsize(): raise Empty elif timeout is None: while not self.pqsize(): self.not_empty.wait() elif timeout < 0: raise ValueError("Timeout should be non-negative") else: end = time.time() + timeout while not self.pqsize(): remaining = end - time.time() if remaining < 0.0: raise Empty self.not_empty.wait(remaining) item = self._get() self.not_full.notify() return item finally: self.not_empty.release() def get_without_wait(self): """ Get task from queue without getting blocked for sometime """ return self.get(False) def _init(self, maxsize): """ Creates a new queue """ self.queue = [] def pqsize(self, len=len): """ Returns no of elements in the queue """ return len(self.queue) def _put(self, item, heappush=heapq.heappush): """ Adds task to the queue. Heapq is used to maintain the tasks in the order of execution""" heapq.heappush(self.queue, item) def _get(self, heappop=heapq.heappop): """ Gets highest priority task from queue """ return heappop(self.queue) def remove(self, event, block=None): """ Removes task from queue if it hasn't been executed """ self.not_empty.acquire() try: if not self.pqsize(): raise Empty else: try: self.queue.remove(event) heapq.heapify(self.queue) except: raise ValueError("Event not present in queue!") self.not_full.notify() self.unfinished_tasks -= 1 finally: self.not_empty.release() def execute(self,item): """Calls teh function associated with the task""" print "Doing task " + str(item.action) item.action(*(item.params)) print "done" def work(self): """ Work is assigned to a worker """ while True: item = self.get() while (time.time() < item.time): time.sleep(1) self.execute(item) time.sleep(1) self.task_completed() class event_scheduler: """ Allows user to add events, remove events,run scheduler and view time expired at any point of time """ def __init__(self,delay=0): """ Creates a new priority queue of max size 1000""" self._queue = PriorityQueue(maxsize=1000) self.cur_time = time.time() self.delay_time = delay #if delay is required to compensate for time lost while adding tasks def add_event(self, time, priority, action, params): """ Adds event to queue. Takes the time of execution, priority, action and parameters required to perform the action as arguments""" time = self.cur_time + time event = Event(time,priority,action,params) self._queue.put(event) return event def cancel_event(self, event): """ Allows user to remove invalid events from the queue using the event id returned at the time of adding event to the queue""" self._queue.remove(event) def empty(self): """ checks if queue is empty """ return not self._queue def run(self): """ Creates workers to execute events from the queue """ for i in range(num_workers): worker = threading.Thread(target=self._queue.work) worker.setDaemon(True) worker.start() self._queue.join() def print_time(self): """ Prints time (in seconds) expired """ time_in_secs = time.time() - self.cur_time return "Timer: " + str(time_in_secs) def test_task1(*args): print "Executing Task 1" def test_task2(*args): print "Executing Task 2" def test_task3(*args): print "Executing Task 3" def test_send_birthday_email(*args): if(len(args)<4): print "Unsuccessful. Missing parameters!" return sender = args[0] receivers = [args[1]] message = "Subject:" + args[2] + "\n" + args[3] try: smtpObj = smtplib.SMTP('localhost') smtpObj.sendmail(sender, receivers, message) print "Successfully sent email" except: print "Error: unable to send email"
import torch __all__ = [ "RNNTLoss", "rnnt_loss", ] def _rnnt_loss_alphas( logits, targets, logit_lengths, target_lengths, blank=-1, clamp=-1, ): """ Compute alphas for RNN transducer loss. See documentation for RNNTLoss """ targets = targets.to(device=logits.device) logit_lengths = logit_lengths.to(device=logits.device) target_lengths = target_lengths.to(device=logits.device) # make sure all int tensors are of type int32. targets = targets.int() logit_lengths = logit_lengths.int() target_lengths = target_lengths.int() return torch.ops.torchaudio.rnnt_loss_alphas( logits, targets, logit_lengths, target_lengths, blank, clamp, ) def _rnnt_loss_betas( logits, targets, logit_lengths, target_lengths, blank=-1, clamp=-1, ): """ Compute betas for RNN transducer loss See documentation for RNNTLoss """ targets = targets.to(device=logits.device) logit_lengths = logit_lengths.to(device=logits.device) target_lengths = target_lengths.to(device=logits.device) # make sure all int tensors are of type int32. targets = targets.int() logit_lengths = logit_lengths.int() target_lengths = target_lengths.int() return torch.ops.torchaudio.rnnt_loss_betas( logits, targets, logit_lengths, target_lengths, blank, clamp, ) class _RNNT(torch.autograd.Function): @staticmethod def forward( ctx, logits, targets, logit_lengths, target_lengths, blank=-1, clamp=-1, fused_log_softmax=True, reuse_logits_for_grads=True, ): """ See documentation for RNNTLoss """ # move everything to the same device. targets = targets.to(device=logits.device) logit_lengths = logit_lengths.to(device=logits.device) target_lengths = target_lengths.to(device=logits.device) # make sure all int tensors are of type int32. targets = targets.int() logit_lengths = logit_lengths.int() target_lengths = target_lengths.int() if blank < 0: # reinterpret blank index if blank < 0. blank = logits.shape[-1] + blank costs, gradients = torch.ops.torchaudio.rnnt_loss( logits=logits, targets=targets, src_lengths=logit_lengths, tgt_lengths=target_lengths, blank=blank, clamp=clamp, fused_log_smax=fused_log_softmax, reuse_logits_for_grads=reuse_logits_for_grads, ) ctx.grads = gradients return costs @staticmethod def backward(ctx, output_gradients): output_gradients = output_gradients.view(-1, 1, 1, 1).to(ctx.grads) ctx.grads.mul_(output_gradients).to(ctx.grads) return ( ctx.grads, # logits None, # targets None, # logit_lengths None, # target_lengths None, # blank None, # clamp None, # fused_log_softmax None, # reuse_logits_for_grads ) def rnnt_loss( logits, targets, logit_lengths, target_lengths, blank=-1, clamp=-1, fused_log_softmax=True, reuse_logits_for_grads=True, ): """ Compute the RNN Transducer Loss. The RNN Transducer loss (`Graves 2012 <https://arxiv.org/pdf/1211.3711.pdf>`__) extends the CTC loss by defining a distribution over output sequences of all lengths, and by jointly modelling both input-output and output-output dependencies. Args: logits (Tensor): Tensor of dimension (batch, time, target, class) containing output from joiner targets (Tensor): Tensor of dimension (batch, max target length) containing targets with zero padded logit_lengths (Tensor): Tensor of dimension (batch) containing lengths of each sequence from encoder target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence blank (int, opt): blank label (Default: ``-1``) clamp (float): clamp for gradients (Default: ``-1``) runtime_check (bool): whether to do sanity check during runtime. (Default: ``False``) fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``) reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``) """ if not fused_log_softmax: logits = torch.nn.functional.log_softmax(logits, dim=-1) reuse_logits_for_grads = ( False # softmax needs the original logits value ) cost = _RNNT.apply( logits, targets, logit_lengths, target_lengths, blank, clamp, fused_log_softmax, reuse_logits_for_grads, ) return cost class RNNTLoss(torch.nn.Module): """ Compute the RNN Transducer Loss. The RNN Transducer loss (`Graves 2012 <https://arxiv.org/pdf/1211.3711.pdf>`__) extends the CTC loss by defining a distribution over output sequences of all lengths, and by jointly modelling both input-output and output-output dependencies. Args: blank (int, opt): blank label (Default: ``-1``) clamp (float): clamp for gradients (Default: ``-1``) fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``) reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``) """ def __init__( self, blank=-1, clamp=-1, fused_log_softmax=True, reuse_logits_for_grads=True, ): super().__init__() self.blank = blank self.clamp = clamp self.fused_log_softmax = fused_log_softmax self.reuse_logits_for_grads = reuse_logits_for_grads def forward( self, logits, targets, logit_lengths, target_lengths, ): """ Args: logits (Tensor): Tensor of dimension (batch, time, target, class) containing output from joiner targets (Tensor): Tensor of dimension (batch, max target length) containing targets with zero padded logit_lengths (Tensor): Tensor of dimension (batch) containing lengths of each sequence from encoder target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence """ return rnnt_loss( logits, targets, logit_lengths, target_lengths, self.blank, self.clamp, self.fused_log_softmax, self.reuse_logits_for_grads, )
import asyncio from Utils.Timer import Timer from World.Region.RegionManager import RegionManager from Server.Registry.QueuesRegistry import QueuesRegistry class WorldManager(object): def __init__(self): self.heartbeat = 0.01 self.last_update = None self.region_mgr = RegionManager() async def run(self): while True: self.last_update = Timer.get_ms_time() self._register_tasks() await asyncio.sleep(self.heartbeat) def _register_tasks(self): asyncio.gather( asyncio.ensure_future(self.process_player_enter_world()), asyncio.ensure_future(self.process_player_movement()), asyncio.ensure_future(self.process_player_exit_world()), asyncio.ensure_future(self.process_chat_message()), asyncio.ensure_future(self.process_name_query()), ) async def process_player_enter_world(self): try: player = QueuesRegistry.players_queue.get_nowait() except asyncio.QueueEmpty: return else: self.region_mgr.add_player(player) finally: await asyncio.sleep(0.01) async def process_player_movement(self): try: player, opcode, packet = QueuesRegistry.movement_queue.get_nowait() except asyncio.QueueEmpty: return else: self.region_mgr.update_player_movement(player, opcode, packet) finally: await asyncio.sleep(0.01) async def process_player_exit_world(self): try: player = QueuesRegistry.remove_player_queue.get_nowait() except asyncio.QueueEmpty: return else: self.region_mgr.remove_player(player) finally: await asyncio.sleep(0.01) async def process_chat_message(self): try: sender, text_message_packet = QueuesRegistry.text_message_queue.get_nowait() except asyncio.QueueEmpty: return else: self.region_mgr.send_chat_message(sender, text_message_packet) finally: await asyncio.sleep(0.01) async def process_name_query(self): try: requester, target_guid = QueuesRegistry.name_query_queue.get_nowait() except asyncio.QueueEmpty: return else: self.region_mgr.send_name_query(requester, target_guid) finally: await asyncio.sleep(0.01)
pDCount = 9 pDSides = 4 cDCount = 6 cDSides = 6 pSums = dict() for x in range(1,37): pSums[x] = 0 for p in range(pDSides**pDCount): pDice = [(p // (pDSides**i) % pDSides) for i in range(pDCount)] pSums[sum(pDice)+pDCount] += 1 for s in pSums: pSums[s] /= pDSides**pDCount cSums = dict() for x in range(1,37): cSums[x] = 0 for c in range(cDSides**cDCount): cDice = [(c // (cDSides**i) % cDSides) for i in range(cDCount)] cSums[sum(cDice)+cDCount] += 1 # Results very similar to https://en.wikipedia.org/wiki/Centered_pentachoric_number for s in cSums: cSums[s] /= cDSides**cDCount chance = 0 for i in range(2, 37): for j in range(1, i): chance += pSums[i] * cSums[j] print(chance)
while True: n=int(input()) if n==0: break while n>9: n=sum(list(map(int,list(str(n))))) print(n)
from omnipytent import * from omnipytent.ext.idan import * from omnipytent.completers import file_completer exe = local['./app'] dub = local['dub']['-q'] @task def compile(ctx): dub['build']['--compiler=dmd'] & ERUN.bang @task def run(ctx): dub['run'] & BANG @task def test(ctx): dub['test']['--compiler=dmd'] & BANG @task def debug(ctx): CMD.VBGstartGDBForD(exe) def mkpath(path): if not path.exists(): mkpath(path.dirname) path.mkdir() @task.complete(file_completer('/files/code/wekapp/weka')) def copy_from_wekapp(ctx, *paths): print(paths) for path in paths: source_file = local.path('/files/code/wekapp/weka') / path target_file = local.path('source/weka') / path if not target_file.exists(): mkpath(target_file.dirname) local['ln']('-s', source_file, target_file) @task def copy_fake_weka(ctx): target_root = local.path('source/weka') assert not target_root.islink(), "%s is symlink" % target_root mkpath(target_root) for faked_weka_module in local.path('../0zfake_libs'): target = target_root / faked_weka_module.basename if target.exists(): print('%s exists. %ssymlink' % (target, '' if target.islink() else 'not ')) else: local['ln']('-s', faked_weka_module, target)
import numpy as np import cv2 import cv2.cv as cv cap = cv2.VideoCapture(0) font = cv2.FONT_HERSHEY_SIMPLEX range_R = np.arange(40,205) range_G = np.arange(70,255) range_B = np.arange(0,60) lower_green = np.array([30,120,120]) upper_green = np.array([100,255,255]) while True: ret, img = cap.read() blur =cv2.GaussianBlur(img,(5,5),10) gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, lower_green, upper_green) mask_rgb = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) edges = cv2.Canny(mask,100,200) circles = cv2.HoughCircles(edges, cv.CV_HOUGH_GRADIENT, 1.6, 1000, param1 = 100,param2=40) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 4) cv2.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1) if mask_rgb[y][x][0] == 255: if mask_rgb[y][x][1] == 255: if mask_rgb[y][x][2] == 255: cv2.circle(img, (x, y), r, (0, 255, 0), 4) cv2.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1) cv2.imshow("imagem", img) cv2.imshow("output",edges) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() cv2.destroyAllWindows()
from PIL import Image import sys def main(): for args in sys.argv[1:]: image = Image.open(args) image = image.resize((200,200),Image.ANTIALIAS) image.save(args) if __name__ == "__main__": main()
import sqlalchemy from model import * def test1(): session = getSession() print(ImageList) il = session.query(ImageList).one() if __name__ == "__main__": initDb() session : sqlalchemy.orm.session.Session = getSession() simple = session.query(Simple).filter(Simple.id == 1).one() print(simple.id) session.delete(simple) session.commit()
#-*- coding:utf-8 -*- #官方推荐使用 '''#coding=utf-8'''#不推荐使用 print("the first hello world !") '''这是注释''' """这也是注释"""
''' File name: test_script.py Author: Haoyuan(Steve) Zhang Date created: 9/26/2017 ''' ''' File clarification: Check the accuracy of your algorithm ''' import numpy as np # from est_tps import est_tps # from obtain_morphed_tps import obtain_morphed_tps # from morph_tps import morph_tps from morph_tri import morph_tri from PIL import Image import imageio from cpselect import cpselect # test triangulation morphing def test_tri(im1, im2, im1_pts, im2_pts, warp_frac, dissolve_frac): # generate morphed image morphed_ims = morph_tri(im1, im2, im1_pts, im2_pts, warp_frac, dissolve_frac) # check output output image number if morphed_ims.shape[0] != 2: print("The number of output image is wrong. \n") return False morphed_im1 = morphed_ims[0, :, :, :] # check the color channel number if morphed_im1.shape[2] != 3: print("What happened to color channel? \n") return False # check the image size if morphed_im1.shape[0] != 50 or morphed_im1.shape[1] != 50: print("Something wrong about the size of output image. \n") return False print("Triangulation Morphing Test Passed!") return True # the main test code def main(): im1 = np.ones((50, 50, 3)) im2 = np.zeros((50, 50, 3)) im1_pts = np.array([[1, 1], [1, 50], [50, 1], [50, 50], [25, 25]]) im2_pts = np.array([[1, 1], [1, 50], [50, 1], [50, 50], [20, 20]]) warp_frac, dissolve_frac = np.array([0.2, 0.3]), np.array([0.1, 0.3]) if not test_tri(im1, im2, im1_pts, im2_pts, warp_frac, dissolve_frac): print("The Triangulation Morphing test failed. \n") return print("All tests passed! \n") if __name__ == "__main__": # test triangulation morphing main() im1 = np.array(Image.open('3.jpeg').convert('RGB')) im2 = np.array(Image.open('4.jpeg').convert('RGB')) resize_img1 = np.array(Image.fromarray(im1).resize([300, 300])) resize_img2 = np.array(Image.fromarray(im2).resize([300, 300])) im1_pts, im2_pts = cpselect(im1, im2) warp_frac = 1 / 60 * np.array(range(61)) dissolve_frac = 1 / 60 * np.array(range(61)) E = morph_tri(resize_img1, resize_img2, im1_pts, im2_pts, warp_frac, dissolve_frac) imageio.mimwrite('face_morph_test.avi', E, fps=15)
import httplib2 import pprint import time import os import shutil #import urllib2 #libraries for gdrive file upload from apiclient.discovery import build from apiclient.http import MediaFileUpload from oauth2client.client import OAuth2WebServerFlow from apiclient import errors from apiclient import http #libraries for web browsing from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium import webdriver from selenium.webdriver.common.keys import Keys #libraries for onedrive file upload #libraries for dropbox file upload class file:#bas class file authorized=False#whether authorization has taken place or not listupdated=False#whether file list is updated or not downloadfilepath=None def __init__(self,location): self.address=location#address of file on pc def upload(self): pass @staticmethod def authorize(): pass class gdrivefile(file): drive_service=None filelist=[] currentquota=None def upload(self): if gdrivefile.authorized==False : gdrivefile.authorize() gdrivefile.authorized=True FILENAME = self.address media_body = MediaFileUpload(FILENAME, mimetype='', resumable=True) body = { 'title': FILENAME, 'description': '', 'mimeType': '' } try: file = gdrivefile.drive_service.files().insert(body=body, media_body=media_body).execute() #iINSERT CODE TO UPDATE FILE LIST except errors.HttpError,error : print("error in uploading file") #pprint.pprint(file) @staticmethod def authorize(): CLIENT_ID = '268285193546-qpu3mbasinue8ofpiah50fu928lcf24b.apps.googleusercontent.com' CLIENT_SECRET = '0iyrUyCs-MhAIyOMeYKeeQO-' # Check https://developers.google.com/drive/scopes for all available scopes OAUTH_SCOPE = 'https://www.googleapis.com/auth/drive' # Redirect URI for installed apps REDIRECT_URI = 'urn:ietf:wg:oauth:2.0:oob' flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, OAUTH_SCOPE, redirect_uri=REDIRECT_URI) authorize_url = flow.step1_get_authorize_url() #print 'Go to the following link in your browser: ' + authorize_url driver=webdriver.Firefox()#depends on your browser driver.get(authorize_url) #login=driver.find_element_by_name("signIn") #login.send_keys(Keys.RETURN) accept= WebDriverWait(driver, 60).until(EC.element_to_be_clickable((By.ID, "submit_approve_access"))) accept.send_keys(Keys.RETURN) #accept.click() a=driver.find_element_by_id("code") code=a.get_attribute('value') driver.quit() #code = raw_input('Enter verification code: ').strip()#change here credentials = flow.step2_exchange(code) # Create an httplib2.Http object and authorize it with our credentials http = httplib2.Http() http = credentials.authorize(http) gdrivefile.drive_service = build('drive', 'v2', http=http) @staticmethod def updatefilelist():#information about files on your drive if gdrivefile.authorized==False : gdrivefile.authorize() gdrivefile.authorized=True page_token = None while True: try: param={} if page_token: param['pageToken']=page_token dfiles=gdrivefile.drive_service.files().list(**param).execute() gdrivefile.filelist.extend(dfiles['items']) page_token=dfiles.get('nextPageToken') gdrivefile.listupdated=True if not page_token: break except errors.HttpError: print("error in udating list") break @staticmethod def getfile(): if gdrivefile.listupdated==False: gdrivefile.updatefilelist() ref=[] sample=raw_input('enter the file name ').strip() for gfile in gdrivefile.filelist: if sample in gfile['title']: if sample==gfile['title']: return gfile ref.append(gfile['title']) print("No match found.Following are the related files") for name in ref: print(name) return None @staticmethod def download(): file2download=gdrivefile.getfile() if file2download==None: return else: downloadedfile=open(file2download.get('title'),"wb") download_url=file2download.get('downloadUrl') if download_url: resp ,content=gdrivefile.drive_service._http.request(download_url) if resp.status==200: #print('Status',resp) downloadedfile.write(content) #src=r"C:\\Users\\windows\\Downloads\\" + file2download.get('title') #dest=os.getcwd()+r"\\" file2download.get('title') #shutil.move(dest,src) downloadedfile.close() #os.rename(dest,src) else : print("An error occured in downloading") else: print("No such file exists ") @staticmethod def getquota(): if gdrivefile.authorized==False : gdrivefile.authorize() gdrivefile.authorized=True about=gdrivefile.drive_service.about().get().execute() gdrivefile.currentquota=[about['quotaBytesTotal'],about['quotaBytesUsed']] class odrivefile(file): def upload(self): #code for upload pass @staticmethod def authorize(): pass #code for authorization class drobboxfile(file): def upload(self): #code for upload pass @staticmethod def authorize(): pass #code for authorization #testing the new update ''' add=raw_input("enter address of a file") f1=gdrivefile(add) f1.upload() #f1.upload() ''' #gdrivefile.download() gdrivefile.getquota() a=gdrivefile.currentquota for data in a: print(data)+' bytes'
def main(): n = int(input("Insira um numero: ")) adjacente = False while n > 0: num1 = n % 10 n = n // 10 if num1 == n%10: adjacente = True if adjacente: print("sim") else: print("nao") #-------------------------------------------------- if __name__ == '__main__': main()
n = int(input("Digite seu número: ")) nao_primo = 0 numero_atual = 2 while numero_atual < n: if n % numero_atual == 0: nao_primo += 1 numero_atual += 1 if nao_primo == 0: print("É primo.") else: print("Não é primo.")
import subprocess import time import os from operator import itemgetter # -- set update/round time (seconds) period = 5 # -- set sorting order. up = most used first, use either "up" or "down" order = "up" # Inicializar variables de Tiempo Lista de Aplicaciones y Lista de ventanas t, applist, winlist = 0, [], [] # Directory where the log will be safe home = os.environ["HOME"] logdir = home+"/.usagelogs" # Metodo para ejecutar comandos y retornar la stdout||staderr def get(command): try: return subprocess.check_output(command).decode("utf-8").strip() except subprocess.CalledProcessError: pass def time_format(s): # convert time format from seconds to h:m:s m, s = divmod(s, 60); h, m = divmod(m, 60) return "%d:%02d:%02d" % (h, m, s) def currtime(tformat=None): return time.strftime("%Y_%m_%d_%H_%M_%S") if tformat == "file" \ else time.strftime("%Y-%m-%d %H:%M:%S") # path to your logfile log = logdir+"/"+currtime("file")+".txt"; startt = currtime() def summarize(): # Abrir archivo log con manejo de exepciones # wt=write text(default) with open(log, "wt") as report: totaltime = sum(it[2] for it in winlist) report.write("") alldata = [] for app in applist: appdata, windata = [], [] apptime = sum([it[2] for it in winlist if it[0] == app]) appperc = round(100*apptime/totaltime) for d in [app, apptime, appperc]: appdata.append(d) wins = [r for r in winlist if r[0] == app] for w in wins: wperc = str(round(100*w[2]/totaltime)) windata.append([w[1], w[2], wperc]) windata = sorted(windata, key=itemgetter(1)) windata = windata[::-1] if order == "up" else windata appdata.append(windata) alldata.append(appdata) alldata = sorted(alldata, key = itemgetter(1)) alldata = alldata[::-1] if order == "up" else alldata for item in alldata: app, apptime, appperc = item[0], item[1], item[2] report.write( ("-"*60) \ +"\n" \ +app \ +"\n" \ +time_format(apptime) \ +" ("+str(appperc)+"%)\n" \ +("-"*60) \ +"\n" ) for w in item[3]: wname, time, perc = w[0], w[1], w[2] report.write( " "+time_format(time)+" ("+perc+"%) " \ +(6-len(perc))*" "+wname+"\n" ) report.write( "\n"+"="*60+"\nStarted: "+startt+"\t"+"updated: " \ +currtime()+"\n"+"="*60 ) #Recoleccion de datos infinitamente while True: # Tiempo de refresco time.sleep(period) # ObteniendoPrint cross@ubuntucrossD:~$ xdotool getactivewindow getwindowpid //17305 frpid = get(["xdotool", "getactivewindow", "getwindowpid"]) # ObteniendoPrint cross@ubuntucrossD:~$ xdotool getactivewindow getwindowname //cross@ubuntucrossD: ~ frname = get(["xdotool", "getactivewindow", "getwindowname"]) # ObteniendoPrint en terminal cross@ubuntucrossD:~$ ps -p 17359 o comm= //bash si no regresa nada es Unknown app = get(["ps", "-p", frpid, "o", "comm="]) if frpid != None else "Unknown" # fix a few names if "bash" in app: app = "gnome-terminal-bash" elif app == "soffice.bin": app = "libreoffice" # Agregar app a la lista solo si es nueva entrada if not app in applist: applist.append(app) # Inicializando checklist con winlist value checklist = [item[1] for item in winlist] # Si no hay registros en checklist # inicializo winlist if not frname in checklist: winlist.append([app, frname, 1*period]) # Si ya existe un registro en la checklist solo se # se actualiza la winlist else: winlist[checklist.index(frname)][ 2] = winlist[checklist.index(frname)][2]+1*period if t == 60/period: summarize() t = 0 else: t += 1
# -*- coding: utf-8 -*- """Automatic clustering algorithms.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import os.path as op from collections import defaultdict import numpy as np from ..utils.array import (PartialArray, get_excerpts, chunk_bounds, data_chunk, _load_ndarray, _as_array, ) from ..utils._types import Bunch from ..utils.event import EventEmitter from ..utils.logging import debug, info from ..io.kwik.sparse_kk2 import sparsify_features_masks from ..traces import (Filter, Thresholder, compute_threshold, FloodFillDetector, WaveformExtractor, PCA, ) #------------------------------------------------------------------------------ # Spike detection class #------------------------------------------------------------------------------ def _keep_spikes(samples, bounds): """Only keep spikes within the bounds `bounds=(start, end)`.""" start, end = bounds return (start <= samples) & (samples <= end) def _split_spikes(groups, idx=None, **arrs): """Split spike data according to the channel group.""" dtypes = {'spike_samples': np.float64, 'waveforms': np.float32, 'masks': np.float32, } groups = _as_array(groups) if idx is not None: n_spikes_chunk = np.sum(idx) # First, remove the overlapping bands. groups = groups[idx] arrs_bis = arrs.copy() for key, arr in arrs.items(): arrs_bis[key] = arr[idx] assert len(arrs_bis[key]) == n_spikes_chunk # Then, split along the group. groups_u = np.unique(groups) out = {} for group in groups_u: i = (groups == group) out[group] = {} for key, arr in arrs_bis.items(): out[group][key] = _concat(arr[i], dtypes.get(key, None)) return out def _array_list(arrs): out = np.empty((len(arrs),), dtype=np.object) out[:] = arrs return out def _concat(arr, dtype=None): return np.array([_[...] for _ in arr], dtype=dtype) class SpikeCounts(object): def __init__(self, counts): self._counts = counts self._groups = sorted(counts) if self._groups: self._chunks = sorted(counts[self._groups[0]]) else: self._chunks = [] def __call__(self, group=None, chunk=None): if group is not None and chunk is not None: return self._counts.get(group, {}).get(chunk, 0) elif group is None and chunk is None: return sum([self(chunk=c) for c in self._chunks]) elif group is not None: return sum([self(chunk=c, group=group) for c in self._chunks]) elif chunk is not None: return sum([self(chunk=chunk, group=g) for g in self._groups]) #------------------------------------------------------------------------------ # Spike detection class #------------------------------------------------------------------------------ class SpikeDetekt(EventEmitter): def __init__(self, tempdir=None, **kwargs): super(SpikeDetekt, self).__init__() self._tempdir = tempdir self._kwargs = kwargs self._n_channels_per_group = { group: len(channels) for group, channels in self._kwargs['probe_channels'].items() } self._groups = sorted(self._n_channels_per_group) self._n_features = self._kwargs['nfeatures_per_channel'] before = self._kwargs['extract_s_before'] after = self._kwargs['extract_s_after'] self._n_samples_waveforms = before + after # Processing objects creation # ------------------------------------------------------------------------- def _create_filter(self): rate = self._kwargs['sample_rate'] low = self._kwargs['filter_low'] high = self._kwargs['filter_high'] order = self._kwargs['filter_butter_order'] return Filter(rate=rate, low=low, high=high, order=order, ) def _create_thresholder(self, thresholds=None): mode = self._kwargs['detect_spikes'] return Thresholder(mode=mode, thresholds=thresholds) def _create_detector(self): graph = self._kwargs['probe_adjacency_list'] join_size = self._kwargs['connected_component_join_size'] return FloodFillDetector(probe_adjacency_list=graph, join_size=join_size, ) def _create_extractor(self, thresholds): before = self._kwargs['extract_s_before'] after = self._kwargs['extract_s_after'] weight_power = self._kwargs['weight_power'] probe_channels = self._kwargs['probe_channels'] return WaveformExtractor(extract_before=before, extract_after=after, weight_power=weight_power, channels_per_group=probe_channels, thresholds=thresholds, ) def _create_pca(self): n_pcs = self._kwargs['nfeatures_per_channel'] return PCA(n_pcs=n_pcs) # Misc functions # ------------------------------------------------------------------------- def update_params(self, **kwargs): self._kwargs.update(kwargs) # Processing functions # ------------------------------------------------------------------------- def apply_filter(self, data): filter = self._create_filter() return filter(data).astype(np.float32) def find_thresholds(self, traces): """Find weak and strong thresholds in filtered traces.""" n_excerpts = self._kwargs['nexcerpts'] excerpt_size = self._kwargs['excerpt_size'] single = self._kwargs['use_single_threshold'] strong_f = self._kwargs['threshold_strong_std_factor'] weak_f = self._kwargs['threshold_weak_std_factor'] excerpt = get_excerpts(traces, n_excerpts=n_excerpts, excerpt_size=excerpt_size) excerpt_f = self.apply_filter(excerpt) thresholds = compute_threshold(excerpt_f, single_threshold=single, std_factor=(weak_f, strong_f)) return {'weak': thresholds[0], 'strong': thresholds[1]} def detect(self, traces_f, thresholds=None): """Detect connected waveform components in filtered traces. Parameters ---------- traces_f : array An `(n_samples, n_channels)` array with the filtered data. thresholds : dict The weak and strong thresholds. Returns ------- components : list A list of `(n, 2)` arrays with `sample, channel` pairs. """ # Threshold the data following the weak and strong thresholds. thresholder = self._create_thresholder(thresholds) # Transform the filtered data according to the detection mode. traces_t = thresholder.transform(traces_f) # Compute the threshold crossings. weak = thresholder.detect(traces_t, 'weak') strong = thresholder.detect(traces_t, 'strong') detector = self._create_detector() return detector(weak_crossings=weak, strong_crossings=strong) def extract_spikes(self, components, traces_f, thresholds=None): """Extract spikes from connected components. Parameters ---------- components : list List of connected components. traces_f : array Filtered data. thresholds : dict The weak and strong thresholds. Returns ------- spike_samples : array An `(n_spikes,)` array with the spike samples. waveforms : array An `(n_spikes, n_samples, n_channels)` array. masks : array An `(n_spikes, n_channels)` array. """ n_spikes = len(components) assert n_spikes > 0 # Transform the filtered data according to the detection mode. thresholder = self._create_thresholder() traces_t = thresholder.transform(traces_f) # Extract all waveforms. extractor = self._create_extractor(thresholds) groups, samples, waveforms, masks = zip(*[extractor(component, data=traces_f, data_t=traces_t, ) for component in components]) # Create the return arrays. groups = np.array(groups, dtype=np.int32) assert groups.shape == (n_spikes,) assert groups.dtype == np.int32 samples = np.array(samples, dtype=np.float64) assert samples.shape == (n_spikes,) assert samples.dtype == np.float64 # These are lists of arrays of various shapes (because of various # groups). waveforms = _array_list(waveforms) assert waveforms.shape == (n_spikes,) assert waveforms.dtype == np.object masks = _array_list(masks) assert masks.dtype == np.object assert masks.shape == (n_spikes,) # Reorder the spikes. idx = np.argsort(samples) groups = groups[idx] samples = samples[idx] waveforms = waveforms[idx] masks = masks[idx] return groups, samples, waveforms, masks def waveform_pcs(self, waveforms, masks): """Compute waveform principal components. Returns ------- pcs : array An `(n_features, n_samples, n_channels)` array. """ pca = self._create_pca() return pca.fit(waveforms, masks) def features(self, waveforms, pcs): """Extract features from waveforms. Returns ------- features : array An `(n_spikes, n_channels, n_features)` array. """ pca = self._create_pca() return pca.transform(waveforms, pcs=pcs) # Internal functions # ------------------------------------------------------------------------- def _path(self, name, key=None, group=None): if self._tempdir is None: raise ValueError("The temporary directory must be specified.") assert key >= 0 if group is None: path = op.join(self._tempdir, '{:s}-{:d}'.format(name, key)) else: assert group >= 0 fn = '{chunk:d}.{name:s}.{group:d}'.format( chunk=key, name=name, group=group) path = op.join(self._tempdir, fn) return path def _save(self, array, name, key=None, group=None): path = self._path(name, key=key, group=group) dtype = array.dtype assert dtype != np.object shape = array.shape debug("Save `{}` ({}, {}).".format(path, np.dtype(dtype).name, shape)) return array.tofile(path) def _load(self, name, dtype, shape=None, key=None, group=None): path = self._path(name, key=key, group=group) # Handle the case where the file does not exist or is empty. if not op.exists(path) or shape[0] == 0: assert shape is not None return np.zeros(shape, dtype=dtype) debug("Load `{}` ({}, {}).".format(path, np.dtype(dtype).name, shape)) with open(path, 'rb') as f: return _load_ndarray(f, dtype=dtype, shape=shape) def _load_data_chunks(self, name, n_samples=None, n_channels=None, groups=None, spike_counts=None, ): _, _, keys, _ = zip(*list(self.iter_chunks(n_samples, n_channels))) out = {} for group in groups: out[group] = [] n_channels_group = self._n_channels_per_group[group] for key in keys: n_spikes = spike_counts(group=group, chunk=key) shape = { 'spike_samples': (n_spikes,), 'waveforms': (n_spikes, self._n_samples_waveforms, n_channels_group), 'masks': (n_spikes, n_channels_group), 'features': (n_spikes, n_channels_group, self._n_features), }[name] dtype = np.float64 if name == 'spike_samples' else np.float32 w = self._load(name, dtype, shape=shape, key=key, group=group) out[group].append(w) return out def _pca_subset(self, wm, n_spikes_chunk=None, n_spikes_total=None): waveforms, masks = wm n_waveforms_max = self._kwargs['pca_nwaveforms_max'] p = n_spikes_chunk / float(n_spikes_total) k = int(n_spikes_chunk / float(p * n_waveforms_max)) k = np.clip(k, 1, n_spikes_chunk) return (waveforms[::k, ...], masks[::k, ...]) def iter_chunks(self, n_samples, n_channels): chunk_size = self._kwargs['chunk_size'] overlap = self._kwargs['chunk_overlap'] for bounds in chunk_bounds(n_samples, chunk_size, overlap=overlap): yield bounds # Main steps # ------------------------------------------------------------------------- def step_detect(self, bounds, chunk_data, chunk_data_keep, thresholds=None): key = bounds[2] # Apply the filter. data_f = self.apply_filter(chunk_data) assert data_f.dtype == np.float32 assert data_f.shape == chunk_data.shape # Save the filtered chunk. self._save(data_f, 'filtered', key=key) # Detect spikes in the filtered chunk. components = self.detect(data_f, thresholds=thresholds) # Return the list of components in the chunk. return components def step_extract(self, bounds, components, n_spikes_total=None, n_channels=None, thresholds=None, ): """Return the waveforms to keep for each chunk for PCA.""" assert len(components) > 0 s_start, s_end, keep_start, keep_end = bounds key = keep_start n_samples = s_end - s_start # Get the filtered chunk. chunk_f = self._load('filtered', np.float32, shape=(n_samples, n_channels), key=key) # Extract the spikes from the chunk. groups, spike_samples, waveforms, masks = self.extract_spikes( components, chunk_f, thresholds=thresholds) # Remove spikes in the overlapping bands. idx = _keep_spikes(spike_samples, (keep_start, keep_end)) n_spikes_chunk = idx.sum() debug("In chunk {}, keep {} spikes out of {}.".format( key, n_spikes_chunk, len(spike_samples))) # Split the data according to the channel groups. split = _split_spikes(groups, idx=idx, spike_samples=spike_samples, waveforms=waveforms, masks=masks, ) # Save the split arrays: spike samples, waveforms, masks. for group, out in split.items(): for name, arr in out.items(): self._save(arr, name, key=key, group=group) # Keep some waveforms in memory in order to compute PCA. wm = {group: (split[group]['waveforms'], split[group]['masks']) for group in split.keys()} # Number of counts per group in that chunk. counts = {group: len(split[group]['waveforms']) for group in split.keys()} assert sum(counts.values()) == n_spikes_chunk wm = {group: self._pca_subset(wm[group], n_spikes_chunk=n_spikes_chunk, n_spikes_total=n_spikes_total) for group in split.keys()} return wm, counts def step_pca(self, chunk_waveforms): if not chunk_waveforms: return # This is a dict {key: (waveforms, masks)}. # Concatenate all waveforms subsets from all chunks. waveforms_subset, masks_subset = zip(*chunk_waveforms.values()) waveforms_subset = np.vstack(waveforms_subset) masks_subset = np.vstack(masks_subset) assert (waveforms_subset.shape[0], waveforms_subset.shape[2]) == masks_subset.shape # Perform PCA and return the components. pcs = self.waveform_pcs(waveforms_subset, masks_subset) return pcs def step_features(self, bounds, pcs_per_group, spike_counts): s_start, s_end, keep_start, keep_end = bounds key = keep_start # Loop over the channel groups. for group, pcs in pcs_per_group.items(): # Find the waveforms shape. n_spikes = spike_counts(group=group, chunk=key) n_channels = self._n_channels_per_group[group] shape = (n_spikes, self._n_samples_waveforms, n_channels) # Save the waveforms. waveforms = self._load('waveforms', np.float32, shape=shape, key=key, group=group) # No spikes in the chunk. if waveforms is None: continue # Compute the features. features = self.features(waveforms, pcs) if features is not None: assert features.dtype == np.float32 # Save the features. self._save(features, 'features', key=key, group=group) def output_data(self, n_samples, n_channels, groups=None, spike_counts=None, ): n_samples_per_chunk = {bounds[2]: (bounds[3] - bounds[2]) for bounds in self.iter_chunks(n_samples, n_channels)} keys = sorted(n_samples_per_chunk.keys()) traces_f = [self._load('filtered', np.float32, shape=(n_samples_per_chunk[key], n_channels), key=key) for key in keys] def _load(name): return self._load_data_chunks(name, n_samples=n_samples, n_channels=n_channels, groups=groups, spike_counts=spike_counts, ) output = Bunch(n_chunks=len(keys), groups=groups, chunk_keys=keys, traces_f=traces_f, spike_samples=_load('spike_samples'), waveforms=_load('waveforms'), masks=_load('masks'), features=_load('features'), spike_counts=spike_counts, n_spikes_total=spike_counts(), n_spikes_per_group={group: spike_counts(group=group) for group in groups}, n_spikes_per_chunk={chunk: spike_counts(chunk=chunk) for chunk in keys}, ) return output def run_serial(self, traces, interval_samples=None): """Run SpikeDetekt using one CPU.""" n_samples, n_channels = traces.shape # Take a subset if necessary. if interval_samples is not None: start, end = interval_samples traces = traces[start:end, ...] else: start, end = 0, n_samples assert 0 <= start < end <= n_samples # Find the weak and strong thresholds. info("Finding the thresholds...") thresholds = self.find_thresholds(traces) debug("Thresholds: {}.".format(thresholds)) self.emit('find_thresholds', thresholds) # Pass 1: find the connected components and count the spikes. info("Detecting spikes...") # Dictionary {chunk_key: components}. # Every chunk has a unique key: the `keep_start` integer. chunk_components = {} for bounds in self.iter_chunks(n_samples, n_channels): key = bounds[2] chunk_data = data_chunk(traces, bounds, with_overlap=True) chunk_data_keep = data_chunk(traces, bounds, with_overlap=False) components = self.step_detect(bounds, chunk_data, chunk_data_keep, thresholds=thresholds, ) debug("Detected {} spikes in chunk {}.".format( len(components), key)) self.emit('detect_spikes', key=key, n_spikes=len(components)) chunk_components[key] = components n_spikes_per_chunk = {key: len(val) for key, val in chunk_components.items()} n_spikes_total = sum(n_spikes_per_chunk.values()) info("{} spikes detected in total.".format(n_spikes_total)) # Pass 2: extract the spikes and save some waveforms before PCA. info("Extracting all waveforms...") # This is a dict {group: {key: (waveforms, masks)}}. chunk_waveforms = defaultdict(dict) # This is a dict {group: {key: n_spikes}}. chunk_counts = defaultdict(dict) for bounds in self.iter_chunks(n_samples, n_channels): key = bounds[2] components = chunk_components[key] if len(components) == 0: continue # This is a dict {group: (waveforms, masks)}. wm, counts = self.step_extract(bounds, components, n_spikes_total=n_spikes_total, n_channels=n_channels, thresholds=thresholds, ) debug("Extracted {} spikes from chunk {}.".format( sum(counts.values()), key)) self.emit('extract_spikes', key=key, counts=counts) # Reorganize the chunk waveforms subsets. for group, wm_group in wm.items(): n_spikes_chunk = len(wm_group[0]) assert len(wm_group[1]) == n_spikes_chunk chunk_waveforms[group][key] = wm_group chunk_counts[group][key] = counts[group] spike_counts = SpikeCounts(chunk_counts) info("{} waveforms extracted and saved.".format(spike_counts())) # Compute the PCs. info("Performing PCA...") pcs = {} for group in self._groups: pcs[group] = self.step_pca(chunk_waveforms[group]) self.emit('compute_pca', group=group, pcs=pcs[group]) info("Principal waveform components computed.") # Pass 3: compute the features. info("Computing the features of all spikes...") for bounds in self.iter_chunks(n_samples, n_channels): self.step_features(bounds, pcs, spike_counts) self.emit('compute_features', key=bounds[2]) info("All features computed and saved.") # Return dictionary of memmapped data. return self.output_data(n_samples, n_channels, self._groups, spike_counts) #------------------------------------------------------------------------------ # Clustering class #------------------------------------------------------------------------------ class KlustaKwik(object): """KlustaKwik automatic clustering algorithm.""" def __init__(self, **kwargs): assert 'num_starting_clusters' in kwargs self._kwargs = kwargs self.__dict__.update(kwargs) # Set the version. from klustakwik2 import __version__ self.version = __version__ def cluster(self, model=None, spike_ids=None, features=None, masks=None, ): # Get the features and masks. if model is not None: if features is None: features = PartialArray(model.features_masks, 0) if masks is None: masks = PartialArray(model.features_masks, 1) # Select some spikes if needed. if spike_ids is not None: features = features[spike_ids] masks = masks[spike_ids] # Convert the features and masks to the sparse structure used # by KK. data = sparsify_features_masks(features, masks) data = data.to_sparse_data() # Run KK. from klustakwik2 import KK num_starting_clusters = self._kwargs.pop('num_starting_clusters', 100) kk = KK(data, **self._kwargs) self.params = kk.all_params self.params['num_starting_clusters'] = num_starting_clusters kk.cluster_mask_starts(num_starting_clusters) spike_clusters = kk.clusters return spike_clusters def cluster(model, algorithm='klustakwik', spike_ids=None, **kwargs): """Launch an automatic clustering algorithm on the model. Parameters ---------- model : BaseModel A model. algorithm : str Only 'klustakwik' is supported currently. **kwargs Parameters for KK. """ assert algorithm == 'klustakwik' kk = KlustaKwik(**kwargs) return kk.cluster(model=model, spike_ids=spike_ids)
a = int(input('Escreva um número: ')) b = int(input('Escreva um número: ')) c = int(input('Escreva um número: ')) if a >= b and a >= c and b >= c: print(f'A ordem decrescente é {a} , {b} e {c}') elif a >= b and a >=c and c >= b: print(f'A ordem decrescente é {a} , {c} e {b}') elif b >= a and b >= c and a >= c: print(f'A ordem decrescente é {b} , {a} e {c}') elif b >= a and b >= c and c >= a: print(f'A ordem decrescente é {b} , {c} e {a}') elif c >= a and c >= b and a >=b: print(f'A ordem decrescente é {c} , {a} e {b}') elif c >= a and c >= b and b >= a: print(f'A ordem decrescente é {c} , {b} e {a}')
from setuptools import setup, find_packages setup( name='django-sabayon', version='0.1.1', packages=find_packages(), author='w0de', author_email='harry@sysop.ooo', description='Django support for https://github.com/dmathieu/sabayon' )
#!/usr/bin/env """ ----------------------------------------------- Bardel Written By: Colton Fetters Version: 1.0 First release: 2017 ----------------------------------------------- """ # Import module import os import re import pymel.core as pm import maya.cmds as cmds import maya.mel as mel # Studio module import bd_lib.bd_config_lib as config from bd_lay.bd_scene_info import SceneInfo class Core(object): """docstring for Core""" def __init__(self, path=None): super(Core, self).__init__() self._CONFIG = config.Config() self._MAYA_PATH = cmds.file(q=True, sceneName=True) self._SCENEINFO = SceneInfo(self._MAYA_PATH) self._PROXY = '/18_Proxy' self._RED = (1, 0, 0) if not path: self._PATH = self.create_proxy_directory() else: self._PATH = path def create_proxy_directory(self): rootPath = self._SCENEINFO.get_root_dir() folder = rootPath + self._PROXY if not os.path.exists(folder): os.makedirs(folder) return folder def create_vray_proxy(self, assetName, connectMap=True, smartReduce=True, smartAmount=.25, previewFaces=10000): """[Create Vray Proxy of Selected Assets] [Goes through the selection and assigns shader's diffuse texture map] Args: assetName: [Name of proxy] """ nodeName = '{}_Proxy'.format(assetName) fileName = '{}.vrmesh'.format(nodeName) vrayMesh = '{}_vraymesh'.format(nodeName) vrayMeshMaterial = '{}_vraymeshmtl'.format(nodeName) previewType = 'combined' if smartReduce: previewFaces = self.smart_reduce(value=smartAmount) else: previewFaces = previewFaces melCommand = 'vrayCreateProxy -exportType 1 -previewFaces {} -dir "{}" -fname "{}"'.format( previewFaces, self._PATH, fileName) options = ' -overwrite -ignoreHiddenObjects -createProxyNode -node "{}" -previewType "{}";'.format( nodeName, previewType) print(melCommand + options) mel.eval(melCommand + options) if connectMap: originalMap = self.find_orignal_diffuse_map(vrayMeshMaterial) self.connect_orignal_diffuse_map(vrayMesh, vrayMeshMaterial, originalMap) def find_orignal_diffuse_map(self, vrayMeshMaterial): """[Finds Original Diffuse Map] [description] Args: vrayMeshMaterial: [description] Returns: [description] [type] """ materialConnections = cmds.listConnections( vrayMeshMaterial, s=True, d=False) for eachMaterial in materialConnections: if 'vraymesh' not in eachMaterial: colorMaps = cmds.listConnections(eachMaterial, s=True, d=False) if colorMaps: return colorMaps[0] else: return self._RED def connect_orignal_diffuse_map(self, vrayMesh, vrayMeshMaterial, originalMap): """[Connects Map to Vray Mesh for Display Purpose] [Selects the top first shader's diffuse map and connects outValue to Vray Mesh display color] Args: vrayMesh: [Name of mesh] vrayMeshMaterial: [Name of Material] originalMap: [First Diffuse Map] """ search = re.search(r'[A-Z]', originalMap) if search: cmds.connectAttr('{}.outValue'.format(originalMap), '{}.color'.format(vrayMeshMaterial)) else: cmds.setAttr('{}.color'.format(vrayMeshMaterial), type='double3') def toggle_view(self, displayType=3): """[Intellegently Changes Dipslay Type Based on User's Selection] [This method assumes the user is searching for a vray proxy to change its display setting] Args: displayType: [Geo's display option] (default: {3}) """ curSelection = pm.ls(sl=True) if not curSelection: curSelection = pm.ls(type='VRayMesh') for asset in curSelection: self.view_set(asset, displayType) if type(curSelection[0]) == pm.nodetypes.Mesh or type(curSelection[0]) == pm.nodetypes.VRayMeshPreview: print curSelection[0] assetConnections = pm.listConnections(str(curSelection[0])) for eachConnection in assetConnections: if self.type_check(eachConnection): asset = eachConnection self.view_set(asset, displayType) elif type(curSelection[0]) != pm.nodetypes.VRayMesh: print curSelection[0] assetConnections = pm.listConnections(str(curSelection[0].getShape())) for asset in assetConnections: if self.type_check(asset): self.view_set(asset, displayType) else: asset = curSelection[0] self.view_set(asset, displayType) def type_check(self, asset): """[Checks if the Asset is a VrayMesh] [Determines if the Asset is a VrayMesh and returns Bool] Args: asset: [PyMel Node] Returns: [Bool for Checking] bool """ if type(asset) == pm.nodetypes.VRayMesh: return True else: return False def view_set(self, asset, displayType): if asset.geomType.get() != displayType: asset.geomType.set(displayType) def smart_reduce(self, value): sel = pm.ls(sl=True) faceNumber = pm.polyEvaluate(sel, face=True) smallerNumber = faceNumber * (value) return smallerNumber def find_selection_shader(self): curSelection = pm.ls(sl=True, dag=True, s=True) for each in curSelection: self.selectionsShader = pm.listConnections(each, type='shadingEngine') shaderList = pm.ls(pm.listConnections(self.selectionsShader), materials=1) return(shaderList) def generate_geo_list(self): shaderList = self.find_selection_shader() if len(shaderList) == 1: self.geoList = [] objectList = pm.listConnections(self.selectionsShader) for each in objectList: if type(each) == pm.nodetypes.Transform: self.geoList.append(each) return(self.geoList) def select_geo(self): self.generate_geo_list() for each in self.geoList: pm.select(each, add=True) def main(): Core(path=None).create_vray_proxy(assetName='_Temp', connectMap=True) Core(path=None).toggle_view(displayType=3) if __name__ == '__main__': main()
class PagSeguroPaymentParserData: code = None registrationDate = None def getCode(self): return self.code def setCode(self, code): self.code = code def getRegistrationDate(self): return self.registrationDate def setRegistrationDate(self, registrationDate): self.registrationDate = registrationDate
#!/usr/bin/env python3 import gzip import os import subprocess import sys import tempfile import collections SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) try: AOSP_DIR = os.environ['ANDROID_BUILD_TOP'] except KeyError: print('error: ANDROID_BUILD_TOP environment variable is not set.', file=sys.stderr) sys.exit(1) BUILTIN_HEADERS_DIR = ( os.path.join(AOSP_DIR, 'bionic', 'libc', 'include'), os.path.join(AOSP_DIR, 'external', 'libcxx', 'include'), os.path.join(AOSP_DIR, 'prebuilts', 'clang-tools', 'linux-x86', 'clang-headers'), ) EXPORTED_HEADERS_DIR = ( os.path.join(AOSP_DIR, 'development', 'vndk', 'tools', 'header-checker', 'tests'), ) SO_EXT = '.so' SOURCE_ABI_DUMP_EXT_END = '.lsdump' SOURCE_ABI_DUMP_EXT = SO_EXT + SOURCE_ABI_DUMP_EXT_END COMPRESSED_SOURCE_ABI_DUMP_EXT = SOURCE_ABI_DUMP_EXT + '.gz' VENDOR_SUFFIX = '.vendor' DEFAULT_CPPFLAGS = ['-x', 'c++', '-std=c++11'] DEFAULT_CFLAGS = ['-std=gnu99'] DEFAULT_HEADER_FLAGS = ["-dump-function-declarations"] DEFAULT_FORMAT = 'ProtobufTextFormat' class Target(object): def __init__(self, is_2nd, product): extra = '_2ND' if is_2nd else '' build_vars_to_fetch = ['TARGET_ARCH', 'TARGET{}_ARCH'.format(extra), 'TARGET{}_ARCH_VARIANT'.format(extra), 'TARGET{}_CPU_VARIANT'.format(extra)] build_vars = get_build_vars_for_product(build_vars_to_fetch, product) self.primary_arch = build_vars[0] assert self.primary_arch != '' self.arch = build_vars[1] self.arch_variant = build_vars[2] self.cpu_variant = build_vars[3] def get_arch_str(self): """Return a string that represents the architecture and the architecture variant. If TARGET_ARCH == TARGET_ARCH_VARIANT, soong makes targetArchVariant empty. This is the case for aosp_x86_64. """ if not self.arch_variant or self.arch_variant == self.arch: arch_variant = '' else: arch_variant = '_' + self.arch_variant return self.arch + arch_variant def get_arch_cpu_str(self): """Return a string that represents the architecture, the architecture variant, and the CPU variant.""" if not self.cpu_variant or self.cpu_variant == 'generic': cpu_variant = '' else: cpu_variant = '_' + self.cpu_variant return self.get_arch_str() + cpu_variant def copy_reference_dump(lib_path, reference_dump_dir, compress): reference_dump_path = os.path.join( reference_dump_dir, os.path.basename(lib_path)) if compress: reference_dump_path += '.gz' os.makedirs(os.path.dirname(reference_dump_path), exist_ok=True) output_content = read_output_content(lib_path, AOSP_DIR) if compress: with gzip.open(reference_dump_path, 'wb') as f: f.write(bytes(output_content, 'utf-8')) else: with open(reference_dump_path, 'wb') as f: f.write(bytes(output_content, 'utf-8')) print('Created abi dump at', reference_dump_path) return reference_dump_path def read_output_content(output_path, replace_str): with open(output_path, 'r') as f: return f.read().replace(replace_str, '') def run_header_abi_dumper(input_path, cflags=tuple(), export_include_dirs=EXPORTED_HEADERS_DIR, flags=tuple()): """Run header-abi-dumper to dump ABI from `input_path` and return the output.""" with tempfile.TemporaryDirectory() as tmp: output_path = os.path.join(tmp, os.path.basename(input_path)) + '.dump' run_header_abi_dumper_on_file(input_path, output_path, export_include_dirs, cflags, flags) return read_output_content(output_path, AOSP_DIR) def run_header_abi_dumper_on_file(input_path, output_path, export_include_dirs=tuple(), cflags=tuple(), flags=tuple()): """Run header-abi-dumper to dump ABI from `input_path` and the output is written to `output_path`.""" input_ext = os.path.splitext(input_path)[1] cmd = ['header-abi-dumper', '-o', output_path, input_path] for dir in export_include_dirs: cmd += ['-I', dir] cmd += flags if '-output-format' not in flags: cmd += ['-output-format', DEFAULT_FORMAT] if input_ext == ".h": cmd += DEFAULT_HEADER_FLAGS cmd += ['--'] cmd += cflags if input_ext in ('.cpp', '.cc', '.h'): cmd += DEFAULT_CPPFLAGS else: cmd += DEFAULT_CFLAGS for dir in BUILTIN_HEADERS_DIR: cmd += ['-isystem', dir] # The export include dirs imply local include dirs. for dir in export_include_dirs: cmd += ['-I', dir] subprocess.check_call(cmd) def run_header_abi_linker(output_path, inputs, version_script, api, arch, flags=tuple()): """Link inputs, taking version_script into account""" cmd = ['header-abi-linker', '-o', output_path, '-v', version_script, '-api', api, '-arch', arch] cmd += flags if '-input-format' not in flags: cmd += ['-input-format', DEFAULT_FORMAT] if '-output-format' not in flags: cmd += ['-output-format', DEFAULT_FORMAT] cmd += inputs subprocess.check_call(cmd) return read_output_content(output_path, AOSP_DIR) def make_targets(product, variant, targets): make_cmd = ['build/soong/soong_ui.bash', '--make-mode', '-j', 'TARGET_PRODUCT=' + product, 'TARGET_BUILD_VARIANT=' + variant] make_cmd += targets subprocess.check_call(make_cmd, cwd=AOSP_DIR) def make_tree(product, variant): """Build all lsdump files.""" return make_targets(product, variant, ['findlsdumps']) def make_libraries(product, variant, vndk_version, targets, libs): """Build lsdump files for specific libs.""" lsdump_paths = read_lsdump_paths(product, variant, vndk_version, targets, build=True) make_target_paths = [] for name in libs: make_target_paths.extend(path for tag, path in lsdump_paths[name].values()) make_targets(product, variant, make_target_paths) def get_lsdump_paths_file_path(product, variant): """Get the path to lsdump_paths.txt.""" product_out = get_build_vars_for_product( ['PRODUCT_OUT'], product, variant)[0] return os.path.join(product_out, 'lsdump_paths.txt') def _is_sanitizer_variation(variation): """Check whether the variation is introduced by a sanitizer.""" return variation in {'asan', 'hwasan', 'tsan', 'intOverflow', 'cfi', 'scs'} def _get_module_variant_dir_name(tag, vndk_version, arch_cpu_str): """Return the module variant directory name. For example, android_x86_shared, android_vendor.R_arm_armv7-a-neon_shared. """ if tag in ('LLNDK', 'NDK', 'PLATFORM'): return 'android_%s_shared' % arch_cpu_str if tag.startswith('VNDK'): return 'android_vendor.%s_%s_shared' % (vndk_version, arch_cpu_str) raise ValueError(tag + ' is not a known tag.') def _read_lsdump_paths(lsdump_paths_file_path, vndk_version, targets): """Read lsdump paths from lsdump_paths.txt for each libname and variant. This function returns a dictionary, {lib_name: {arch_cpu: (tag, path)}}. For example, { "libc": { "x86_x86_64": ( "NDK", "path/to/libc.so.lsdump" ) } } """ lsdump_paths = collections.defaultdict(dict) suffixes = collections.defaultdict(dict) with open(lsdump_paths_file_path, 'r') as lsdump_paths_file: for line in lsdump_paths_file: tag, path = (x.strip() for x in line.split(':', 1)) if not path: continue dirname, filename = os.path.split(path) if not filename.endswith(SOURCE_ABI_DUMP_EXT): continue libname = filename[:-len(SOURCE_ABI_DUMP_EXT)] if not libname: continue variant = os.path.basename(dirname) if not variant: continue for target in targets: arch_cpu = target.get_arch_cpu_str() prefix = _get_module_variant_dir_name(tag, vndk_version, arch_cpu) if not variant.startswith(prefix): continue new_suffix = variant[len(prefix):] # Skip if the suffix contains APEX variations. new_variations = [x for x in new_suffix.split('_') if x] if new_variations and not all(_is_sanitizer_variation(x) for x in new_variations): continue old_suffix = suffixes[libname].get(arch_cpu) if not old_suffix or new_suffix > old_suffix: lsdump_paths[libname][arch_cpu] = (tag, path) suffixes[libname][arch_cpu] = new_suffix return lsdump_paths def read_lsdump_paths(product, variant, vndk_version, targets, build=True): """Build lsdump_paths.txt and read the paths.""" lsdump_paths_file_path = get_lsdump_paths_file_path(product, variant) if build: make_targets(product, variant, [lsdump_paths_file_path]) lsdump_paths_file_abspath = os.path.join(AOSP_DIR, lsdump_paths_file_path) return _read_lsdump_paths(lsdump_paths_file_abspath, vndk_version, targets) def find_lib_lsdumps(lsdump_paths, libs, target): """Find the lsdump corresponding to libs for the given target. This function returns a list of (tag, absolute_path). For example, [ ( "NDK", "/path/to/libc.so.lsdump" ) ] """ arch_cpu = target.get_arch_cpu_str() result = [] if libs: for lib_name in libs: result.append(lsdump_paths[lib_name][arch_cpu]) else: result.extend(paths[arch_cpu] for paths in lsdump_paths.values()) return [(tag, os.path.join(AOSP_DIR, path)) for tag, path in result] def run_abi_diff(old_test_dump_path, new_test_dump_path, arch, lib_name, flags=tuple()): abi_diff_cmd = ['header-abi-diff', '-new', new_test_dump_path, '-old', old_test_dump_path, '-arch', arch, '-lib', lib_name] with tempfile.TemporaryDirectory() as tmp: output_name = os.path.join(tmp, lib_name) + '.abidiff' abi_diff_cmd += ['-o', output_name] abi_diff_cmd += flags if '-input-format-old' not in flags: abi_diff_cmd += ['-input-format-old', DEFAULT_FORMAT] if '-input-format-new' not in flags: abi_diff_cmd += ['-input-format-new', DEFAULT_FORMAT] try: subprocess.check_call(abi_diff_cmd) except subprocess.CalledProcessError as err: return err.returncode return 0 def get_build_vars_for_product(names, product=None, variant=None): """ Get build system variable for the launched target.""" if product is None and 'ANDROID_PRODUCT_OUT' not in os.environ: return None env = os.environ.copy() if product: env['TARGET_PRODUCT'] = product if variant: env['TARGET_BUILD_VARIANT'] = variant cmd = [ os.path.join('build', 'soong', 'soong_ui.bash'), '--dumpvars-mode', '-vars', ' '.join(names), ] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=AOSP_DIR, env=env) out, err = proc.communicate() if proc.returncode != 0: print("error: %s" % err.decode('utf-8'), file=sys.stderr) return None build_vars = out.decode('utf-8').strip().splitlines() build_vars_list = [] for build_var in build_vars: value = build_var.partition('=')[2] build_vars_list.append(value.replace('\'', '')) return build_vars_list
''' Created on Sep 15, 2015 @author: Jonathan Yu ''' def repeat(word,number): vowels = ["a", "e", "i", "o", "u"] a = word.lower() if vowels.count(a[0]) != 0: return word if len(a) == 1: return word if len(a) == 2: if vowels.count(a[1]) != 0: a = a * number return word[0] + a[1:] else: return word if vowels.count(a[2]) != 0: if len(a) == 3: a = a[0:3] * number return word[0] + a[1:] else: a = a[0:3] * number + a[3:] return word[0] + a[1:] if vowels.count(a[1]) != 0: a = a[0:2] * number + a[2:] return word[0] + a[1:] return word if __name__ == '__main__': pass
from functools import cached_property from onegov.core.utils import normalize_for_url from onegov.election_day import _ from onegov.election_day.layouts.detail import DetailLayout from onegov.election_day.utils import pdf_filename from onegov.election_day.utils import svg_filename class VoteLayout(DetailLayout): def __init__(self, model, request, tab='entities'): super().__init__(model, request) self.tab = tab tabs_with_embedded_tables = ( 'entities', 'districts', 'statistics', 'proposal-entities', 'proposal-districts', 'proposal-statistics', 'counter-proposal-entities', 'counter-proposal-districts', 'counter-proposal-statistics', 'tie-breaker-entities', 'tie-breaker-districts', 'tie-breaker-statistics', ) @cached_property def all_tabs(self): """Return all tabs. Ordering is important for the main view.""" return ( 'entities', 'districts', 'statistics', 'proposal-entities', 'proposal-districts', 'proposal-statistics', 'counter-proposal-entities', 'counter-proposal-districts', 'counter-proposal-statistics', 'tie-breaker-entities', 'tie-breaker-districts', 'tie-breaker-statistics', 'data' ) def title(self, tab=None): tab = (self.tab if tab is None else tab) or '' if tab == 'entities': return self.principal.label('entities') if tab == 'districts': return self.app.principal.label('districts') if tab == 'statistics': return _("Statistics") if tab.startswith('proposal'): return _("Proposal") if tab.startswith('counter-proposal'): return _("Counter Proposal") if tab.startswith('tie-breaker'): return _("Tie-Breaker") if tab == 'data': return _("Downloads") return '' def subtitle(self, tab=None): tab = (self.tab if tab is None else tab) or '' if tab.endswith('-entities'): return self.principal.label('entities') if tab.endswith('-districts'): return self.app.principal.label('districts') if tab.endswith('-statistics'): return _("Statistics") return '' def tab_visible(self, tab): if self.hide_tab(tab): return False if not self.has_results: return False if tab == 'entities': return self.type == 'simple' if tab == 'proposal-entities': return self.type == 'complex' if tab == 'counter-proposal-entities': return self.type == 'complex' if tab == 'tie-breaker-entities': return self.type == 'complex' if tab == 'districts': return self.has_districts and self.type == 'simple' if tab == 'proposal-districts': return self.has_districts and self.type == 'complex' if tab == 'counter-proposal-districts': return self.has_districts and self.type == 'complex' if tab == 'tie-breaker-districts': return self.has_districts and self.type == 'complex' if tab == 'statistics': return self.type == 'simple' if tab == 'proposal-statistics': return self.type == 'complex' if tab == 'counter-proposal-statistics': return self.type == 'complex' if tab == 'tie-breaker-statistics': return self.type == 'complex' return True @cached_property def visible(self): return self.tab_visible(self.tab) @cached_property def type(self): return self.model.type @cached_property def scope(self): if 'entities' in self.tab: return 'entities' if 'district' in self.tab: return 'districts' @cached_property def ballot(self): if self.type == 'complex' and 'counter' in self.tab: return self.model.counter_proposal if self.type == 'complex' and 'tie-breaker' in self.tab: return self.model.tie_breaker return self.model.proposal @cached_property def map_link(self): if self.scope == 'entities': return self.request.link( self.model, f'{self.ballot.type}-by-entities-map', query_params={'locale': self.request.locale} ) if self.scope == 'districts': return self.request.link( self.model, f'{self.ballot.type}-by-districts-map', query_params={'locale': self.request.locale} ) def table_link(self, query_params=None): query_params = query_params or {} if self.tab not in self.tabs_with_embedded_tables: return None query_params['locale'] = self.request.locale if self.scope == 'entities': return self.request.link( self.model, f'{self.ballot.type}-by-entities-table', query_params=query_params ) if self.scope == 'districts': return self.request.link( self.model, f'{self.ballot.type}-by-districts-table', query_params=query_params ) return self.request.link( self.model, f'{self.ballot.type}-statistics-table', query_params=query_params ) @cached_property def widget_link(self): return self.request.link( self.model, name='vote-header-widget' ) @cached_property def summarize(self): return self.ballot.results.count() != 1 @cached_property def main_view(self): if self.type == 'complex': return self.request.link(self.model, 'proposal-entities') for tab in self.all_tabs: if not self.hide_tab(tab): return self.request.link(self.model, tab) return self.request.link(self.model, 'entities') @cached_property def answer(self): return self.model.answer @cached_property def menu(self): if self.type == 'complex': result = [] for title, prefix in ( (_("Proposal"), 'proposal'), (_("Counter Proposal"), 'counter-proposal'), (_("Tie-Breaker"), 'tie-breaker') ): submenu = [ ( self.subtitle(tab), self.request.link(self.model, tab), self.tab == tab, [] ) for tab in ( f'{prefix}-entities', f'{prefix}-districts', f'{prefix}-statistics' ) if self.tab_visible(tab) ] if submenu: result.append(( title, '', self.tab.startswith(prefix), submenu )) if self.tab_visible('data'): result.append(( self.title('data'), self.request.link(self.model, 'data'), self.tab == 'data', [] )) return result return [ ( self.title(tab), self.request.link(self.model, tab), self.tab == tab, [] ) for tab in self.all_tabs if self.tab_visible(tab) ] @cached_property def pdf_path(self): """ Returns the path to the PDF file or None, if it is not available. """ path = 'pdf/{}'.format( pdf_filename( self.model, self.request.locale, last_modified=self.last_modified ) ) if self.request.app.filestorage.exists(path): return path return None @cached_property def svg_prefix(self): return 'districts-map' if 'districts' in self.tab else 'entities-map' @cached_property def svg_path(self): """ Returns the path to the SVG file or None, if it is not available. """ if not self.ballot: return None path = 'svg/{}'.format( svg_filename( self.ballot, self.svg_prefix, self.request.locale, last_modified=self.last_modified ) ) if self.request.app.filestorage.exists(path): return path return None @cached_property def svg_link(self): """ Returns a link to the SVG download view. """ return self.request.link( self.ballot, name='{}-svg'.format(self.svg_prefix) ) @cached_property def svg_name(self): """ Returns a nice to read SVG filename. """ return '{}.svg'.format( normalize_for_url( '{}-{}-{}'.format( self.model.id, self.request.translate(self.title() or ''), self.request.translate(self.subtitle() or '') ).rstrip('-') ) )
from config import db import random import web class Question(): def __init__(self, description,answer): self.description=description self.answer=answer def get_obf_dot_number(self): return ((len(self.description) % 10)+2)*2 def get_obf_busted(self): busted='..' for count in range(1,self.get_obf_dot_number()): busted=busted+'.' return busted def get_obf_plausible(self): plausible='.' for count in range(1,self.get_obf_dot_number()): plausible=plausible+'.' return plausible def get_obf_confirmed(self): confirmed='...' for count in range(1,self.get_obf_dot_number()): confirmed=confirmed+'.' return confirmed def get_obf_answer(self): if self.answer=='B': return self.get_obf_busted() elif self.answer=='P': return self.get_obf_plausible() elif self.answer=='C': return self.get_obf_confirmed() class SpecialQuestion(): def __init__(self, description,question_list): self.description=description self.question_list=question_list def shuffle_question_list(): question_list = [row['ID_question'] for row in list(db.select('questions',what='ID_question',where='ID_special_question is NULL'))] random.shuffle(question_list) return question_list def shuffle_special_question_list(): question_list = [row['ID_special_question'] for row in list(db.select('special_questions',what='ID_special_question'))] random.shuffle(question_list) return question_list def get_question(ID_question): question_row = web.listget(list(db.select('questions',dict(ID_question=ID_question),where='ID_question=$ID_question')), 0, default=None) if question_row is None: return None else: return Question(question_row['Description'],question_row['Answer']) def get_special_question(ID_special_question): special_question_row = web.listget(list(db.select('special_questions',dict(ID_special_question=ID_special_question),where='ID_special_question=$ID_special_question')), 0, default=None) if special_question_row is None: return None else: ID_special_question=special_question_row['ID_special_question'] description_special_question=special_question_row['Description'] question_list = [Question(row['Description'],row['Answer']) for row in list(db.select('questions',dict(ID_special_question=ID_special_question),where='ID_special_question=$ID_special_question'))] return SpecialQuestion(description_special_question,question_list)
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="magic_config", version="0.1.0", author="mogaiskii", author_email="sani.mog@gmail.com", description="declarative settings with multiple backends", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/mogaiskii/magic_config", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", license="MIT", keywords=["config", "settings", "configuration"], install_requires=[ 'pyyaml~=5.4.1', ] )
import torch import torch.nn as nn import numpy as np '''Q Network''' class ImageConv(nn.Module): def _initialize_weights(self): for module in self.modules(): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): nn.init.orthogonal_(module.weight, nn.init.calculate_gain('relu')) nn.init.constant_(module.bias, 0) def __init__(self, image_shape: tuple) -> None: ''' image_shape:(channel, w, h), such as: (3, 200, 240). ''' assert len(image_shape) == 3, ValueError("wrong image shape.") super(ImageConv, self).__init__() channels, w, h = image_shape filters = 32 self.net = nn.Sequential( nn.Conv2d(channels, filters, 3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(filters, filters, 3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(filters, filters, 3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(filters, filters, 3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(filters, filters, 3, stride=2, padding=1), nn.ReLU(), nn.Flatten(), ) with torch.no_grad(): tmp = torch.rand((1, channels, w, h)) self.out_dim = self.net(tmp).shape[1] self._initialize_weights() def forward(self, x): return self.net(x) class QNet(nn.Module): # nn.Module is a standard PyTorch Network def __init__(self, mid_dim, state_dim, action_dim): super(QNet, self).__init__() self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) def forward(self, state): return self.net(state) # Q value class QNetDuel(nn.Module): # Dueling DQN def __init__(self, mid_dim, state_dim, action_dim): super(QNetDuel, self).__init__() self.net_state = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU()) self.net_val = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1)) # Q value self.net_adv = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) # advantage function value 1 def forward(self, state): t_tmp = self.net_state(state) q_val = self.net_val(t_tmp) q_adv = self.net_adv(t_tmp) return q_val + q_adv - q_adv.mean(dim=1, keepdim=True) # dueling Q value class QNetTwin(nn.Module): # Double DQN def __init__(self, mid_dim, state_dim, action_dim): super(QNetTwin, self).__init__() self.net_state = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU()) # state self.net_q1 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) # q1 value self.net_q2 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) # q2 value def forward(self, state): tmp = self.net_state(state) return self.net_q1(tmp) # one Q value def get_q1_q2(self, state): tmp = self.net_state(state) q1 = self.net_q1(tmp) q2 = self.net_q2(tmp) return q1, q2 # two Q values class QNetTwinDuel(nn.Module): # D3QN: Dueling Double DQN def __init__(self, mid_dim, state_dim, action_dim): super(QNetTwinDuel, self).__init__() self.net_state = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU()) self.net_val1 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1)) # q1 value self.net_val2 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1)) # q2 value self.net_adv1 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) # advantage function value 1 self.net_adv2 = nn.Sequential(nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) # advantage function value 1 def forward(self, state): t_tmp = self.net_state(state) q_val = self.net_val1(t_tmp) q_adv = self.net_adv1(t_tmp) return q_val + q_adv - q_adv.mean(dim=1, keepdim=True) # one dueling Q value def get_q1_q2(self, state): tmp = self.net_state(state) val1 = self.net_val1(tmp) adv1 = self.net_adv1(tmp) q1 = val1 + adv1 - adv1.mean(dim=1, keepdim=True) val2 = self.net_val2(tmp) adv2 = self.net_adv2(tmp) q2 = val2 + adv2 - adv2.mean(dim=1, keepdim=True) return q1, q2 # two dueling Q values '''Policy Network (Actor)''' class Actor(nn.Module): # DPG: Deterministic Policy Gradient def __init__(self, mid_dim, state_dim, action_dim): super(Actor, self).__init__() self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, action_dim)) def forward(self, state): # [batch_size, state_dim],eg:[254, 3] return self.net(state).tanh() # action.tanh() def get_action(self, state, action_std): action = self.net(state).tanh() noise = (torch.randn_like(action) * action_std).clamp(-0.5, 0.5) return (action + noise).clamp(-1.0, 1.0) ### Hongying: add RNN into Reinforcement. class ActorRNN(nn.Module): # DPG: Deterministic Policy Gradient def __init__(self, mid_dim, state_dim, action_dim): super(ActorRNN, self).__init__() self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU() ) self.hidden_dim = mid_dim self.num_layers = 1 self.rnn = nn.LSTM(input_size=mid_dim, hidden_size=mid_dim, num_layers=self.num_layers) self.action = nn.Linear(mid_dim, action_dim) def init_hidden(self, batch_size): #TODO: 将lstm怎么加入到网络中考虑清楚。 weight = next(self.parameters()) return ( weight.new_zeros(self.num_layers, batch_size, self.hidden_dim), weight.new_zeros(self.num_layers, batch_size, self.hidden_dim) ) def forward(self, state, hidden): out = self.net(state).detach_() out = out.view(1, state.shape[0], -1) #(seq_len, batch, input_size) # Initialize hidden state with zeros out, hidden = self.rnn(out, hidden) out = out.squeeze() return self.action(out).tanh(), hidden # action.tanh() def get_action(self, state, hidden, action_std): with torch.no_grad(): action, hidden = self.forward(state, hidden) noise = (torch.randn_like(action) * action_std).clamp(-0.5, 0.5) return (action + noise).clamp(-1.0, 1.0), hidden def get_full_state_and_action(self, state, hidden, action_std): action, hidden = self.get_action(state, hidden, action_std) h, c = hidden h, c = h.squeeze(), c.squeeze() new_state = torch.cat([state, h, c], dim=1) new_action = torch.cat([action, h, c], dim=1) return new_state, new_action class Critic(nn.Module): def __init__(self, mid_dim, state_dim, action_dim): super(Critic, self).__init__() self.net = nn.Sequential(nn.Linear(state_dim + action_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1)) def forward(self, state, action): return self.net(torch.cat((state, action), dim=1)) # Q value class CriticAdv(nn.Module): def __init__(self, state_dim, mid_dim): super(CriticAdv, self).__init__() if isinstance(state_dim, int): self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, 1)) else: def set_dim(i): return int(12 * 1.5 ** i) self.net = nn.Sequential(NnnReshape(*state_dim), # -> [batch_size, 4, 96, 96] nn.Conv2d(state_dim[0], set_dim(0), 4, 2, bias=True), nn.LeakyReLU(), nn.Conv2d(set_dim(0), set_dim(1), 3, 2, bias=False), nn.ReLU(), nn.Conv2d(set_dim(1), set_dim(2), 3, 2, bias=False), nn.ReLU(), nn.Conv2d(set_dim(2), set_dim(3), 3, 2, bias=True), nn.ReLU(), nn.Conv2d(set_dim(3), set_dim(4), 3, 1, bias=True), nn.ReLU(), nn.Conv2d(set_dim(4), set_dim(5), 3, 1, bias=True), nn.ReLU(), NnnReshape(-1), nn.Linear(set_dim(5), mid_dim), nn.ReLU(), nn.Linear(mid_dim, 1)) layer_norm(self.net[-1], std=0.5) # output layer for Q value def forward(self, state): return self.net(state) # Q value class CriticTwin(nn.Module): def __init__(self, mid_dim, state_dim, action_dim, if_use_dn=False): super().__init__() if if_use_dn: # use DenseNet (DenseNet has both shallow and deep linear layer) nn_dense = DenseNet(mid_dim) lay_dim = nn_dense.out_dim self.net_sa = nn.Sequential(nn.Linear(state_dim + action_dim, mid_dim), nn.ReLU(), nn_dense, ) # state-action value function else: # use a simple network for actor. Deeper network does not mean better performance in RL. lay_dim = mid_dim self.net_sa = nn.Sequential(nn.Linear(state_dim + action_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, lay_dim), nn.ReLU()) self.net_q1 = nn.Linear(lay_dim, 1) self.net_q2 = nn.Linear(lay_dim, 1) layer_norm(self.net_q1, std=0.1) layer_norm(self.net_q2, std=0.1) def forward(self, state, action): tmp = self.net_sa(torch.cat((state, action), dim=1)) return self.net_q1(tmp) # one Q value def get_q1_q2(self, state, action): tmp = self.net_sa(torch.cat((state, action), dim=1)) return self.net_q1(tmp), self.net_q2(tmp) # two Q values '''Integrated Network (Parameter sharing)''' class InterDPG(nn.Module): # DPG means deterministic policy gradient def __init__(self, state_dim, action_dim, mid_dim): super().__init__() self.enc_s = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim)) self.enc_a = nn.Sequential(nn.Linear(action_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim)) self.net = DenseNet(mid_dim) net_out_dim = self.net.out_dim self.dec_a = nn.Sequential(nn.Linear(net_out_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, action_dim), nn.Tanh()) self.dec_q = nn.Sequential(nn.Linear(net_out_dim, mid_dim), nn.Hardswish(), nn.utils.spectral_norm(nn.Linear(mid_dim, 1))) @staticmethod def add_noise(a, noise_std): a_temp = torch.normal(a, noise_std) mask = torch.tensor((a_temp < -1.0) + (a_temp > 1.0), dtype=torch.float32).cuda() noise_uniform = torch.rand_like(a) a_noise = noise_uniform * mask + a_temp * (-mask + 1) return a_noise def forward(self, s, noise_std=0.0): # actor s_ = self.enc_s(s) a_ = self.net(s_) a = self.dec_a(a_) return a if noise_std == 0.0 else self.add_noise(a, noise_std) def critic(self, s, a): s_ = self.enc_s(s) a_ = self.enc_a(a) q_ = self.net(s_ + a_) q = self.dec_q(q_) return q def next_q_action(self, s, s_next, noise_std): s_ = self.enc_s(s) a_ = self.net(s_) a = self.dec_a(a_) '''q_target (without noise)''' a_ = self.enc_a(a) s_next_ = self.enc_s(s_next) q_target0_ = self.net(s_next_ + a_) q_target0 = self.dec_q(q_target0_) '''q_target (with noise)''' a_noise = self.add_noise(a, noise_std) a_noise_ = self.enc_a(a_noise) q_target1_ = self.net(s_next_ + a_noise_) q_target1 = self.dec_q(q_target1_) q_target = (q_target0 + q_target1) * 0.5 return q_target, a class NnnReshape(nn.Module): def __init__(self, *args): super().__init__() self.args = args def forward(self, x): return x.view((x.size(0),) + self.args) class DenseNet(nn.Module): # plan to hyper-param: layer_number def __init__(self, mid_dim): super().__init__() assert (mid_dim / (2 ** 3)) % 1 == 0 def set_dim(i): return int((3 / 2) ** i * mid_dim) self.dense1 = nn.Sequential(nn.Linear(set_dim(0), set_dim(0) // 2), nn.Hardswish()) self.dense2 = nn.Sequential(nn.Linear(set_dim(1), set_dim(1) // 2), nn.Hardswish()) self.out_dim = set_dim(2) layer_norm(self.dense1[0], std=1.0) layer_norm(self.dense2[0], std=1.0) def forward(self, x1): x2 = torch.cat((x1, self.dense1(x1)), dim=1) x3 = torch.cat((x2, self.dense2(x2)), dim=1) return x3 def layer_norm(layer, std=1.0, bias_const=1e-6): torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) def demo_conv2d_state(): state_dim = (3, 96, 96) batch_size = 3 def set_dim(i): return int(12 * 1.5 ** i) mid_dim = 128 net = nn.Sequential(NnnReshape(*state_dim), # -> [batch_size, 4, 96, 96] nn.Conv2d(state_dim[0], set_dim(0), 4, 2, bias=True), nn.LeakyReLU(), nn.Conv2d(set_dim(0), set_dim(1), 3, 2, bias=False), nn.ReLU(), nn.Conv2d(set_dim(1), set_dim(2), 3, 2, bias=False), nn.ReLU(), nn.Conv2d(set_dim(2), set_dim(3), 3, 2, bias=True), nn.ReLU(), nn.Conv2d(set_dim(3), set_dim(4), 3, 1, bias=True), nn.ReLU(), nn.Conv2d(set_dim(4), set_dim(5), 3, 1, bias=True), nn.ReLU(), NnnReshape(-1), nn.Linear(set_dim(5), mid_dim), nn.ReLU()) inp_shape = list(state_dim) inp_shape.insert(0, batch_size) inp = torch.ones(inp_shape, dtype=torch.float32) inp = inp.view(3, -1) print(inp.shape) out = net(inp) print(out.shape) exit() if __name__ == '__main__': state_dim = 16 mid_dim = 128 action_dim = 2 batch_size = 64 actor = ActorRNN(mid_dim=mid_dim, state_dim=state_dim, action_dim=action_dim) observation = torch.FloatTensor(torch.rand(size=(batch_size, state_dim))) ho = actor.init_hidden(batch_size) act, hidden = actor(observation, ho) act, hidden = actor.get_action(observation, hidden, 1) h_0, c_0 = hidden print(f'state dim:{(batch_size, state_dim)}') print(f'action shape:{act.shape}') print(f'hidden state:{h_0.shape}') newstate, newaction = actor.get_full_state_and_action(observation, hidden, 1) critic = Critic(mid_dim=mid_dim, state_dim=mid_dim * 2 + state_dim, action_dim=mid_dim * 2 + action_dim) print(critic) print("newstate:", newstate.shape) print("newaction:",newaction.shape) critic.forward(newstate, newaction)
from julia.core import which pytest_plugins = ["pytester"] def test__using_default_setup(testdir, request): if request.config.getoption("runpytest") != "subprocess": raise ValueError("Need `-p pytester --runpytest=subprocess` options.") # create a temporary conftest.py file testdir.makeini( """ [pytest] addopts = -p julia.pytestplugin """ ) testdir.makepyfile( """ import pytest @pytest.mark.pyjulia__using_default_setup def test(): pass """ ) args = ("-p", "julia.pytestplugin", "--no-julia") r0 = testdir.runpytest(*args) r0.assert_outcomes(passed=1) r1 = testdir.runpytest("--julia-runtime", which("julia"), *args) r1.assert_outcomes(skipped=1) r2 = testdir.runpytest("--julia-inline=yes", *args) r2.assert_outcomes(skipped=1)
from flask.ext.mail import Message from loghub import mail def send_email(subject, sender, recipients, text_body, html_body): msg = Message(subject, sender = sender, recipients = recipients) msg.body = text_body msg.html = html_body mail.send(msg)
# -*- coding: utf-8 -*- import urllib, urllib2, cookielib, time, socket,gzip,StringIO,zlib,inspect,sys from datetime import datetime, timedelta,tzinfo try: import xml.etree.cElementTree as ElementTree except: from xml.etree import ElementTree from epg import * BASE=[ u'http://supertv.3owl.com/USA.xml', u'http://supertv.3owl.com/United%20Kingdom.xml', u'http://supertv.3owl.com/Deutschland.xml', #u'http://supertv.3owl.com/Espana.xml', u'http://supertv.3owl.com/France.xml', u'http://supertv.3owl.com/Italia.xml', #u'http://supertv.3owl.com/Oesterreich.xml', #u'http://supertv.3owl.com/Portugal.xml', #u'http://supertv.3owl.com/Svizzera%20Schweiz%20Suisse.xml', #u'http://supertv.3owl.com/Viet%20Nam.xml', #u'http://apps.ohlulz.com/rtmpgui/list.xml', #u'http://home.no/chj191/LiveTV.xml', #'http://home.no/chj191/xxx.xml', ] TITLE = 'SuperTV' ICON = 'icon-default.png' HTTP.CacheTime = 60*5 def Start(): # Initialize the plug-in Plugin.AddViewGroup("InfoList", viewMode="InfoList", mediaType="items") Plugin.AddViewGroup("List", viewMode="List", mediaType="items") # Setup the default attributes for the ObjectContainer ObjectContainer.title1 = TITLE ObjectContainer.view_group = 'List' # Setup the default attributes for the other objects DirectoryObject.thumb = R(ICON) VideoClipObject.thumb = R(ICON) @handler('/video/SuperTV', 'SuperTV') def Main(): objs=[] if len(BASE) < 2: return ListLanguages(0) for b in BASE: objs.append(DirectoryObject( key = Callback(ListLanguages, src=BASE.index(b)), title = urllib.unquote(b.split('/')[-1][:-4]).replace('Espana','España').replace('Viet Nam','Việt Nam').replace('Oesterreich','Österreich') )) oc = ObjectContainer(objects=objs) return oc def ListLanguages(src): xml=getURL(BASE[src],None) tree = ElementTree.XML(xml) if len(tree.findall('channel')) > 0: return listChannels(src) streams = tree.findall('stream') languages = [] for stream in streams: language = stream.findtext('language').strip().capitalize() if not language in languages and language.find('Link down') == -1: languages.append(language) if len(languages) < 2: return listVideos(src=src,lang=languages[0]) languages = list(set(languages)) languages.sort() Log(languages) objs = [] for l in languages: objs.append(DirectoryObject( key = Callback(listVideos,src=src, lang=l), title = l )) oc = ObjectContainer(objects=objs) return oc def listVideos(src=0, lang=0): boldStart = '' boldEnd = '' #if Client.Platform == ClientPlatform.MacOSX: # boldStart = '[B]' # boldEnd = '[/B]' xml=getURL(BASE[src],None) tree = ElementTree.XML(xml) if len(tree.findall('channel')) > 0: return listChannels(src) streams = tree.findall('stream') #dir = MediaContainer(title='SuperTV', title2=urllib.unquote(BASE[src].split('/')[-1][:-4]).replace('Espana','España').replace('Viet Nam','Việt Nam').replace('Oesterreich','Österreich'),view_group='InfoList') #objs = [] oc = ObjectContainer(view_group='InfoList',title1='SuperTV', title2=urllib.unquote(BASE[src].split('/')[-1][:-4]).replace('Espana','España').replace('Viet Nam','Việt Nam').replace('Oesterreich','Österreich')) for stream in streams: language = stream.findtext('language').strip().capitalize() if language == lang and language.find('Link down') == -1: title = boldStart+stream.findtext('title')+boldEnd epgid=stream.findtext('epgid', default=None) subtitle='' rtmplink = stream.findtext('link') if rtmplink[:4] != "http": for l in stream.findall('backup'): if l.findtext('link')[:4] == "http": rtmplink = l.findtext('link') if rtmplink[:4] != "http": continue if epgid: ep=epgid.split(":") if ep[0] in EPGs.keys(): e=EPGs[ep[0]](ep[1]) hasEPG = True desc = '' epg=e.getEntries() i=len(epg) for e in epg: desc += e[1].strftime("%I:%M")+'-'+e[2].strftime("%I:%M")+":\n"+e[0]+u"\n\n" if len(epg) > 0: title += ' - '+epg[0][0] if len(epg) > 1: subtitle = 'Next: '+epg[1][0] #dir.Append(VideoItem(rtmplink, clip='', title=title, summary=desc, thumb=stream.findtext('logourl',''))) vco = VideoClipObject(title = title, summary = desc, thumb = stream.findtext('logourl',''), url = rtmplink) vco.add(MediaObject( container = Container.MP4, video_codec = VideoCodec.H264, audio_codec = AudioCodec.AAC, audio_channels = 2, optimized_for_streaming = True, parts = [PartObject(key = rtmplink)])) oc.add(vco) #oc.add(VideoItem(rtmplink, clip='', title=title, summary=desc, thumb=stream.findtext('logourl',''))) #if stream.findtext('playpath'): # rtmplink += ' playpath='+stream.findtext('playpath').strip() #if stream.findtext('swfUrl'): # rtmplink += ' swfurl='+stream.findtext('swfUrl').strip() #if stream.findtext('pageUrl'): # rtmplink += ' pageurl='+stream.findtext('pageUrl').strip() #if stream.findtext('proxy'): # rtmplink += ' socks='+stream.findtext('proxy').strip() #if stream.findtext('advanced','').find('live=') == -1 and rtmplink.find('mms://') == -1: # rtmplink += ' live=1 ' #rtmplink += ' '+stream.findtext('advanced','').replace('-v','').replace('live=1','').replace('live=true','') #Log(rtmplink) #dir.Append(VideoItem(url=rtmplink, title=title, thumb=stream.findtext('logourl'), art='',summary=desc)) #return dir return oc
#!/usr/bin/env python3 # # Convert a test specification to command-line options import pscheduler from validate import spec_is_valid spec = pscheduler.json_load(exit_on_error=True, max_schema=1) valid, message = spec_is_valid(spec) if not valid: pscheduler.fail(message) result = pscheduler.speccli_build_args(spec, strings=[ ( 'duration', 'duration' ), ( 'host', 'host' ), ( 'interval', 'interval' ), ( 'starting-comment', 'starting-comment' ), ( 'parting-comment', 'parting-comment' ), ]) pscheduler.succeed_json(result)
#!/usr/bin/python3 # -*- coding: utf-8 -*- from telegram.ext import Updater, CommandHandler from telegram.utils.helpers import escape_markdown from telegram import ParseMode import telegram.constants import configparser import logging import requests import strings import feedparser from sqlalchemy import create_engine, Column, Integer, UnicodeText, UniqueConstraint from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, scoped_session # initializing config file config = configparser.ConfigParser() config.read("properties.ini") # getting bot owner ID from config file owner_id = int(config.get("OWNER", "owner_id")) def start(bot, update): update.effective_message.reply_text(strings.stringHelp) def help_message(bot, update): # gather all commands help messages from the strings.py file help_all = strings.help_message + strings.help_url + strings.help_list + strings.help_add + strings.help_remove update.effective_message.reply_text(text=help_all) def test(bot, update): update.effective_message.reply_text("Bot status: Online, duh") def server_ip(bot, update): # gather user data like username, first name, last name user = update.message.from_user # gather telegram user ID tg_user_id = update.effective_user.id # check if the sender's ID is the same as the owner's ID set in the config. for security purposes if tg_user_id == owner_id: # access the site row = requests.get("http://ipinfo.io/ip") # save the text into a variable to be sent later by the bot ip = row.text update.effective_message.reply_text("Server IP: " + ip) else: update.effective_message.reply_text("I'm sorry " + user.first_name + ", but I can't let you do that.") def show_url(bot, update, args): # gather telegram chat ID (might be the same as user ID if message is sent to the bot via PM) tg_chat_id = str(update.effective_chat.id) # check if there is anything written as argument (will give out of range if there's no argument) if len(args[0]) < 3: # there's nothing written or it's too less text to be an actual link update.effective_message.reply_text(strings.stringInvalidURL) else: # there is an actual link written tg_feed_link = args[0] link_processed = feedparser.parse(tg_feed_link) feed_title = link_processed.feed.title feed_description = link_processed.feed.description feed_link = link_processed.feed.link entry_title = link_processed.entries[0].title entry_description = link_processed.entries[0].description entry_link = link_processed.entries[0].link # check if there's any * in the title so that proper markdown can be applied if '*' in feed_title: # there is a * in the title string print("# Found * in feed title. Parsing...") # strips the * from the title string feed_title.rstrip('*') else: # there is no * in the title string print("# No * found in feed title. Proceeding...") # check if there's any * in the title so that proper markdown can be applied if '*' in entry_title: # there is a * in the title string print("# Found * in entry title. Parsing...") # strips the * from the title string entry_title.rstrip('*') else: # there is no * in the title string print("# No * found in entry title. Proceeding...") final_message = "feed title: " + "*" + feed_title + "*" + "\n\n" + "feed description: " + escape_markdown(feed_description) + "\n\n" + "feed link: " + escape_markdown(feed_link) + "\n\n" + "entry title: " + "*" + entry_title + "*" + "\n\n" + "entry description: " + escape_markdown(entry_description) + "\n\n" + "entry link: " + escape_markdown(entry_link) bot.send_message(chat_id=tg_chat_id, text=final_message, parse_mode=ParseMode.MARKDOWN) def list_urls(bot, update): # gather telegram chat ID (might be the same as user ID if message is sent to the bot via PM) tg_chat_id = str(update.effective_chat.id) # gather telegram user ID tg_user_id = update.effective_user.id # gather link data from DB based on who sent the message and from where user_data = SESSION.query(RSS_Feed).filter(RSS_Feed.user_id == tg_user_id, RSS_Feed.chat_id == tg_chat_id).all() # make an empty list for later usage links_list = [] # this loops gets every link from the DB based on the filter above and appends it to the list for row in user_data: links_list.append(row.feed_link) # make an empty string for later usage final_content = "" # this neatly arranges the links from links_list to be properly sent by the bot final_content += "\n\n".join(links_list) # check if the length of the message is too long to be posted in 1 chat bubble if len(final_content) <= telegram.constants.MAX_MESSAGE_LENGTH: bot.send_message(chat_id=tg_chat_id, text= "This chat is subscribed to the following links:" + "\n" + final_content) else: bot.send_message(chat_id=tg_chat_id, text="*Warning: *" + strings.errorMsgLong) print("\n" + "# Message too long for chat " + str(tg_chat_id)) def add_url(bot, update, args): # check if there is anything written as argument (will give out of range if there's no argument) if len(args[0]) < 3: # there's nothing written or it's too less text to be an actual link update.effective_message.reply_text(strings.stringInvalidURL) else: # there is an actual link written # gather telegram chat data chat = update.effective_chat # gather telegram user ID tg_user_id = update.effective_user.id # gather telegram chat ID (might be the same as user ID if message is sent to the bot via PM) tg_chat_id = str(update.effective_chat.id) # gather the feed link from the command sent by the user tg_feed_link = args[0] # check if the user who issued the command is the chat's admin or owner (to prevent spam) if chat.get_member(tg_user_id).status == 'administrator' or chat.get_member(tg_user_id).status == 'owner' or tg_user_id == owner_id: # pass the link to be processed by feedparser link_processed = feedparser.parse(tg_feed_link) # check if link is a valid RSS Feed link if link_processed.bozo == 1: # it's not a valid RSS Feed link update.effective_message.reply_text(strings.stringInvalidURLbozo) else: # the RSS Feed link is valid # set old_entry_link as the last entry from the rss link to be stored in the DB so it can later be changed when updates occur tg_old_entry_link = link_processed.entries[0].link # gather the row which contains exactly that telegram user ID, group ID and link for later comparison row = SESSION.query(RSS_Feed).filter(RSS_Feed.user_id == tg_user_id, RSS_Feed.feed_link == tg_feed_link, RSS_Feed.chat_id == tg_chat_id).all() # check if there is an entry already added to the DB by the same user in the same group with the same link if row: # there is already a link added to the DB update.effective_message.reply_text(strings.stringURLalreadyAdded) else: # there is no link added, so we'll add it now # prepare the action for the DB push action = RSS_Feed(tg_user_id, tg_chat_id, tg_feed_link, tg_old_entry_link) # add the action to the DB query SESSION.add(action) # commit the changes to the DB SESSION.commit() update.effective_message.reply_text(strings.stringURLadded) print("\n" + "# New subscription for user " + str(tg_user_id) + " with link " + tg_feed_link + "\n") else: update.effective_message.reply_text(strings.errorAdmin) def remove_url(bot, update, args): # check if there is anything written as argument (will give out of range if there's no argument) if len(args[0]) < 3: # there's nothing written or it's too less text to be an actual link update.effective_message.reply_text(strings.stringInvalidURL) else: # there is an actual link written # gather telegram chat data chat = update.effective_chat # gather telegram user ID tg_user_id = update.effective_user.id # gather telegram chat ID (might be the same as user ID if message is sent to the bot via PM) tg_chat_id = str(update.effective_chat.id) # gather the feed link from the command sent by the user tg_feed_link = args[0] # check if the user who issued the command is the chat's admin or owner (to prevent spam) if chat.get_member(tg_user_id).status == 'administrator' or chat.get_member(tg_user_id).status == 'owner' or tg_user_id == owner_id: # pass the link to be processed by feedparser link_processed = feedparser.parse(tg_feed_link) # check if link is a valid RSS Feed link if link_processed.bozo == 1: # it's not a valid RSS Feed link update.effective_message.reply_text(strings.stringInvalidURLbozo) else: # the RSS Feed link is valid # gather all duplicates (if possible) for the same TG User ID, TG Chat ID and link user_data = SESSION.query(RSS_Feed).filter(RSS_Feed.chat_id == tg_chat_id, RSS_Feed.feed_link == tg_feed_link).all() # check if it finds the link in the database if user_data: # there is an link in the DB # this loops to delete any possible duplicates for the same TG User ID, TG Chat ID and link for i in user_data: # add the action to the DB query SESSION.delete(i) # commit the changes to the DB SESSION.commit() update.effective_message.reply_text(strings.stringURLremoved) else: update.effective_message.reply_text(strings.stringURLalreadyRemoved) else: update.effective_message.reply_text(strings.errorAdmin) def rss_update(bot, job): # get all of the DB data user_data = SESSION.query(RSS_Feed).all() # this loop checks for every row in the DB for row in user_data: # get telegram chat ID from DB tg_chat_id = row.chat_id # get RSS link from DB tg_feed_link = row.feed_link # process the feed from DB feed_processed = feedparser.parse(tg_feed_link) # get the last update's entry from the DB tg_old_entry_link = row.old_entry_link # define empty list of entry links for when there's new updates to a RSS link new_entry_links = [] # define empty list of entry titles for when there's new updates to a RSS link new_entry_titles = [] # this loop checks for every entry from the RSS Feed link from the DB row for entry in feed_processed.entries: # check if there are any new updates to the RSS Feed from the old entry if entry.link != tg_old_entry_link: # there is a new entry, so it's link is added to the new_entry_links list for later usage new_entry_links.append(entry.link) # there is a new entry, so it's title is added to the new_entry_titles list for later usage new_entry_titles.append(entry.title) else: break # check if there's any new entries queued from the last check if new_entry_links: # set the new old_entry_link with the latest update from the RSS Feed row.old_entry_link = new_entry_links[0] # commit the changes to the DB SESSION.commit() else: # there's no new entries print("\n" + "# No new updates for chat " + str(tg_chat_id) + " with link " + tg_feed_link + "\n") # this loop sends every new update to each user from each group based on the DB entries for link, title in zip(reversed(new_entry_links), reversed(new_entry_titles)): print("\n" + "# New entry from " + title + " with link " + link) # check if there's any * in the title so that proper markdown can be applied if '*' in title: # there is a * in the title string print("# Found * in title. Parsing...") # strips the * from the title string title.rstrip('*') else: # there is no * in the title string print("# No * found in title. Proceeding...") # make the final message with the layout: "<rss_feed_title> <rss_feed_link>" final_message = "*" + title + "*" + "\n\n" + escape_markdown(link) # check if the length of the message is too long to be posted in 1 chat bubble if len(final_message) <= telegram.constants.MAX_MESSAGE_LENGTH: print("\n" + "# Check passed. Message doesn't exceed Telegram limit " + "\n") bot.send_message(chat_id=tg_chat_id, text=final_message, parse_mode=ParseMode.MARKDOWN) else: print("\n" + "# Message too long for entry link " + link) bot.send_message(chat_id=tg_chat_id, text="*Warning: *" + strings.errorMsgLong) BASE = declarative_base() engine = create_engine(config.get("DB", "db_url"), client_encoding="utf8") BASE.metadata.bind = engine BASE.metadata.create_all(engine) SESSION = scoped_session(sessionmaker(bind=engine, autoflush=False)) class RSS_Feed(BASE): __tablename__ = "RSS_Feed" id = Column(Integer, primary_key=True) user_id = Column(Integer, nullable=False) chat_id = Column(UnicodeText, nullable=False) feed_link = Column(UnicodeText) old_entry_link = Column(UnicodeText) def __init__(self, user_id, chat_id, feed_link, old_entry_link): self.user_id = user_id self.chat_id = chat_id self.feed_link = feed_link self.old_entry_link = old_entry_link def __repr__(self): return "<RSS_Feed for {} with chatID {} at feed_link {} with old entry {}>".format(self.user_id, self.chat_id, self.feed_link, self.old_entry_link) BASE.metadata.create_all() def main(): logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') updater = Updater(config.get("KEY", "tg_API_token")) job = updater.job_queue job_minute = job.run_repeating(rss_update, int(config.get("UPDATE", "update_interval")), first=0) job_minute.enabled = True dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler("start", start)) dispatcher.add_handler(CommandHandler("help", help_message)) dispatcher.add_handler(CommandHandler("ip", server_ip)) dispatcher.add_handler(CommandHandler("url", show_url, pass_args=True)) dispatcher.add_handler(CommandHandler("list", list_urls)) dispatcher.add_handler(CommandHandler("feed", rss_update)) dispatcher.add_handler(CommandHandler("test", test)) dispatcher.add_handler(CommandHandler("add", add_url, pass_args=True)) dispatcher.add_handler(CommandHandler("remove", remove_url, pass_args=True)) updater.start_polling() updater.idle() if __name__ == '__main__': main()
import unittest from mytodo.database import User, Todo, Base, dbdriver from datetime import date from mytodo.mytodo import default_time class DbTestCase(unittest.TestCase): def test_get_todos_month(self): result = self.dbdriver.get_todos("test_user1", date(2021, 6, 11), date(2021, 6, 12)) self.assertEqual(len(result), 0) result = self.dbdriver.get_todos("test_user1", date(2021, 7, 15), date(2021, 7, 15)) print(result) self.assertEqual(len(result), 7) result = self.dbdriver.get_todos("test_user1", date(2021, 7, 16), date(2021, 7, 22)) self.assertEqual(len(result), 6) result = self.dbdriver.get_todos("test_user2", date(2021, 7, 15), date(2021, 7, 15)) self.assertEqual(len(result), 0) result = self.dbdriver.get_todos("test_user3", date(2021, 1, 1), date(2021, 12, 31)) self.assertEqual(len(result), 0) def test_add_todo(self): self.dbdriver.add_todo(1, "add1", "add1", date(2021,8,31),default_time,default_time) result = self.dbdriver.get_todos("test_user1", date(2021, 8, 31), date(2021, 8, 31)) self.assertEqual(len(result), 1) result = result[0] self.assertEqual(result['date'], date(2021, 8, 31)) self.assertEqual(result['title'], 'add1') self.assertEqual(result['description'], "add1") @classmethod def setUpClass(cls) -> None: cls.dbdriver = dbdriver # clear database Base.metadata.drop_all(bind=cls.dbdriver.eng) Base.metadata.create_all(bind=cls.dbdriver.eng) users = [User(user_id=1, token="test_user1"), User(user_id=2, token="test_user2"), User(user_id=3, token="test_user3")] session = cls.dbdriver.get_session() session.add_all(users) session.commit() todos = [ Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title1", description="desc1"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title2", description="desc2"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title3", description="desc3"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title4", description="desc4"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title5", description="desc5"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title6", description="desc6"), Todo(user_id=1, date=date(2021,7,15), start="", end="", title="title7", description="desc7"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title1", description="desc1"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title2", description="desc2"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title3", description="desc3"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title4", description="desc4"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title5", description="desc5"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title6", description="desc6"), Todo(user_id=2, date=date(2021,7,16), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,16), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,17), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,18), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,19), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,20), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,7,21), start="", end="", title="title7", description="desc7"), Todo(user_id=1, date=date(2021,8,15), start="", end="", title="title7", description="desc7"), ] session.add_all(todos) session.commit() if __name__ == '__main__': unittest.main()
from django import forms from books.models import ClubHouseRoom, Book class ClubHouseRoomForm(forms.ModelForm): class Meta: fields = ['room_name'] model = ClubHouseRoom class BookForm(forms.ModelForm): class Meta: fields = ['author', 'title', 'cover'] model = Book
#!/usr/bin/python # Setup and connect the bot to the server, pass along strings to docbot_core from ircutils3 import bot from docbot_core import response # Settings BOT_NAME = "DR" NETWORK = "irc.gamesurge.net" CHANNELS = ["#thefuture",] class DocBot(bot.SimpleBot): def on_welcome(self, event): for chan in CHANNELS: self.join(chan) def on_join(self, event): pass def on_message(self, event): payload = response(event) try: self.send_message(event.target, payload['message']) except: pass if __name__ == "__main__": docbot = DocBot(BOT_NAME) docbot.connect(NETWORK) docbot.start()
'''This module extends PTP for Nikon devices. Use it in a master module that determines the vendor and automatically uses its extension. This is why inheritance is not explicit. ''' from ..util import _main_thread_alive from construct import ( Container, PrefixedArray, Struct, ) from contextlib import contextmanager from six.moves.queue import Queue from threading import Thread, Event from time import sleep import atexit import logging logger = logging.getLogger(__name__) __all__ = ('Nikon',) class Nikon(object): '''This class implements Nikon's PTP operations.''' def __init__(self, *args, **kwargs): logger.debug('Init Nikon') super(Nikon, self).__init__(*args, **kwargs) # TODO: expose the choice to poll or not Nikon events self.__no_polling = False self.__nikon_event_shutdown = Event() self.__nikon_event_proc = None @contextmanager def session(self): ''' Manage Nikon session with context manager. ''' # When raw device, do not perform if self.__no_polling: with super(Nikon, self).session(): yield return # Within a normal PTP session with super(Nikon, self).session(): # launch a polling thread self.__event_queue = Queue() self.__nikon_event_proc = Thread( name='NikonEvtPolling', target=self.__nikon_poll_events ) self.__nikon_event_proc.daemon = False atexit.register(self._nikon_shutdown) self.__nikon_event_proc.start() try: yield finally: self._nikon_shutdown() def _shutdown(self): self._nikon_shutdown() super(Nikon, self)._shutdown() def _nikon_shutdown(self): logger.debug('Shutdown Nikon events') self.__nikon_event_shutdown.set() # Only join a running thread. if self.__nikon_event_proc and self.__nikon_event_proc.is_alive(): self.__nikon_event_proc.join(2) def _PropertyCode(self, **product_properties): props = { 'ShootingBank': 0xD010, 'ShootingBankNameA': 0xD011, 'ShootingBankNameB': 0xD012, 'ShootingBankNameC': 0xD013, 'ShootingBankNameD': 0xD014, 'ResetBank0': 0xD015, 'RawCompression': 0xD016, 'WhiteBalanceAutoBias': 0xD017, 'WhiteBalanceTungstenBias': 0xD018, 'WhiteBalanceFluorescentBias': 0xD019, 'WhiteBalanceDaylightBias': 0xD01A, 'WhiteBalanceFlashBias': 0xD01B, 'WhiteBalanceCloudyBias': 0xD01C, 'WhiteBalanceShadeBias': 0xD01D, 'WhiteBalanceColorTemperature': 0xD01E, 'WhiteBalancePresetNo': 0xD01F, 'WhiteBalancePresetName0': 0xD020, 'WhiteBalancePresetName1': 0xD021, 'WhiteBalancePresetName2': 0xD022, 'WhiteBalancePresetName3': 0xD023, 'WhiteBalancePresetName4': 0xD024, 'WhiteBalancePresetVal0': 0xD025, 'WhiteBalancePresetVal1': 0xD026, 'WhiteBalancePresetVal2': 0xD027, 'WhiteBalancePresetVal3': 0xD028, 'WhiteBalancePresetVal4': 0xD029, 'ImageSharpening': 0xD02A, 'ToneCompensation': 0xD02B, 'ColorModel': 0xD02C, 'HueAdjustment': 0xD02D, 'NonCPULensDataFocalLength': 0xD02E, 'NonCPULensDataMaximumAperture': 0xD02F, 'ShootingMode': 0xD030, 'JPEGCompressionPolicy': 0xD031, 'ColorSpace': 0xD032, 'AutoDXCrop': 0xD033, 'FlickerReduction': 0xD034, 'RemoteMode': 0xD035, 'VideoMode': 0xD036, 'NikonEffectMode': 0xD037, 'Mode': 0xD038, 'CSMMenuBankSelect': 0xD040, 'MenuBankNameA': 0xD041, 'MenuBankNameB': 0xD042, 'MenuBankNameC': 0xD043, 'MenuBankNameD': 0xD044, 'ResetBank': 0xD045, 'A1AFCModePriority': 0xD048, 'A2AFSModePriority': 0xD049, 'A3GroupDynamicAF': 0xD04A, 'A4AFActivation': 0xD04B, 'FocusAreaIllumManualFocus': 0xD04C, 'FocusAreaIllumContinuous': 0xD04D, 'FocusAreaIllumWhenSelected': 0xD04E, 'FocusAreaWrap': 0xD04F, 'VerticalAFON': 0xD050, 'AFLockOn': 0xD051, 'FocusAreaZone': 0xD052, 'EnableCopyright': 0xD053, 'ISOAuto': 0xD054, 'EVISOStep': 0xD055, 'EVStep': 0xD056, 'EVStepExposureComp': 0xD057, 'ExposureCompensation': 0xD058, 'CenterWeightArea': 0xD059, 'ExposureBaseMatrix': 0xD05A, 'ExposureBaseCenter': 0xD05B, 'ExposureBaseSpot': 0xD05C, 'LiveViewAFArea': 0xD05D, 'AELockMode': 0xD05E, 'AELAFLMode': 0xD05F, 'LiveViewAFFocus': 0xD061, 'MeterOff': 0xD062, 'SelfTimer': 0xD063, 'MonitorOff': 0xD064, 'ImgConfTime': 0xD065, 'AutoOffTimers': 0xD066, 'AngleLevel': 0xD067, 'D1ShootingSpeed': 0xD068, 'D2MaximumShots': 0xD069, 'ExposureDelayMode': 0xD06A, 'LongExposureNoiseReduction': 0xD06B, 'FileNumberSequence': 0xD06C, 'ControlPanelFinderRearControl': 0xD06D, 'ControlPanelFinderViewfinder': 0xD06E, 'D7Illumination': 0xD06F, 'NrHighISO': 0xD070, 'SHSetCHGUIDDisp': 0xD071, 'ArtistName': 0xD072, 'NikonCopyrightInfo': 0xD073, 'FlashSyncSpeed': 0xD074, 'FlashShutterSpeed': 0xD075, 'E3AAFlashMode': 0xD076, 'E4ModelingFlash': 0xD077, 'BracketSet': 0xD078, 'E6ManualModeBracketing': 0xD079, 'BracketOrder': 0xD07A, 'E8AutoBracketSelection': 0xD07B, 'BracketingSet': 0xD07C, 'F1CenterButtonShootingMode': 0xD080, 'CenterButtonPlaybackMode': 0xD081, 'F2Multiselector': 0xD082, 'F3PhotoInfoPlayback': 0xD083, 'F4AssignFuncButton': 0xD084, 'F5CustomizeCommDials': 0xD085, 'ReverseCommandDial': 0xD086, 'ApertureSetting': 0xD087, 'MenusAndPlayback': 0xD088, 'F6ButtonsAndDials': 0xD089, 'NoCFCard': 0xD08A, 'CenterButtonZoomRatio': 0xD08B, 'FunctionButton2': 0xD08C, 'AFAreaPoint': 0xD08D, 'NormalAFOn': 0xD08E, 'CleanImageSensor': 0xD08F, 'ImageCommentString': 0xD090, 'ImageCommentEnable': 0xD091, 'ImageRotation': 0xD092, 'ManualSetLensNo': 0xD093, 'MovScreenSize': 0xD0A0, 'MovVoice': 0xD0A1, 'MovMicrophone': 0xD0A2, 'MovFileSlot': 0xD0A3, 'MovRecProhibitCondition': 0xD0A4, 'ManualMovieSetting': 0xD0A6, 'MovQuality': 0xD0A7, 'LiveViewScreenDisplaySetting': 0xD0B2, 'MonitorOffDelay': 0xD0B3, 'Bracketing': 0xD0C0, 'AutoExposureBracketStep': 0xD0C1, 'AutoExposureBracketProgram': 0xD0C2, 'AutoExposureBracketCount': 0xD0C3, 'WhiteBalanceBracketStep': 0xD0C4, 'WhiteBalanceBracketProgram': 0xD0C5, 'LensID': 0xD0E0, 'LensSort': 0xD0E1, 'LensType': 0xD0E2, 'FocalLengthMin': 0xD0E3, 'FocalLengthMax': 0xD0E4, 'MaxApAtMinFocalLength': 0xD0E5, 'MaxApAtMaxFocalLength': 0xD0E6, 'FinderISODisp': 0xD0F0, 'AutoOffPhoto': 0xD0F2, 'AutoOffMenu': 0xD0F3, 'AutoOffInfo': 0xD0F4, 'SelfTimerShootNum': 0xD0F5, 'VignetteCtrl': 0xD0F7, 'AutoDistortionControl': 0xD0F8, 'SceneMode': 0xD0F9, 'SceneMode2': 0xD0FD, 'SelfTimerInterval': 0xD0FE, 'NikonExposureTime': 0xD100, 'ACPower': 0xD101, 'WarningStatus': 0xD102, 'MaximumShots': 0xD103, 'AFLockStatus': 0xD104, 'AELockStatus': 0xD105, 'FVLockStatus': 0xD106, 'AutofocusLCDTopMode2': 0xD107, 'AutofocusArea': 0xD108, 'FlexibleProgram': 0xD109, 'LightMeter': 0xD10A, 'RecordingMedia': 0xD10B, 'USBSpeed': 0xD10C, 'CCDNumber': 0xD10D, 'CameraOrientation': 0xD10E, 'GroupPtnType': 0xD10F, 'FNumberLock': 0xD110, 'ExposureApertureLock': 0xD111, 'TVLockSetting': 0xD112, 'AVLockSetting': 0xD113, 'IllumSetting': 0xD114, 'FocusPointBright': 0xD115, 'ExternalFlashAttached': 0xD120, 'ExternalFlashStatus': 0xD121, 'ExternalFlashSort': 0xD122, 'ExternalFlashMode': 0xD123, 'ExternalFlashCompensation': 0xD124, 'NewExternalFlashMode': 0xD125, 'FlashExposureCompensation': 0xD126, 'HDRMode': 0xD130, 'HDRHighDynamic': 0xD131, 'HDRSmoothing': 0xD132, 'OptimizeImage': 0xD140, 'Saturation': 0xD142, 'BWFillerEffect': 0xD143, 'BWSharpness': 0xD144, 'BWContrast': 0xD145, 'BWSettingType': 0xD146, 'Slot2SaveMode': 0xD148, 'RawBitMode': 0xD149, 'ActiveDLighting': 0xD14E, 'FlourescentType': 0xD14F, 'TuneColourTemperature': 0xD150, 'TunePreset0': 0xD151, 'TunePreset1': 0xD152, 'TunePreset2': 0xD153, 'TunePreset3': 0xD154, 'TunePreset4': 0xD155, 'BeepOff': 0xD160, 'AutofocusMode': 0xD161, 'AFAssist': 0xD163, 'PADVPMode': 0xD164, 'ImageReview': 0xD165, 'AFAreaIllumination': 0xD166, 'NikonFlashMode': 0xD167, 'FlashCommanderMode': 0xD168, 'FlashSign': 0xD169, '_ISOAuto': 0xD16A, 'RemoteTimeout': 0xD16B, 'GridDisplay': 0xD16C, 'FlashModeManualPower': 0xD16D, 'FlashModeCommanderPower': 0xD16E, 'AutoFP': 0xD16F, 'DateImprintSetting': 0xD170, 'DateCounterSelect': 0xD171, 'DateCountData': 0xD172, 'DateCountDisplaySetting': 0xD173, 'RangeFinderSetting': 0xD174, 'CSMMenu': 0xD180, 'WarningDisplay': 0xD181, 'BatteryCellKind': 0xD182, 'ISOAutoHiLimit': 0xD183, 'DynamicAFArea': 0xD184, 'ContinuousSpeedHigh': 0xD186, 'InfoDispSetting': 0xD187, 'PreviewButton': 0xD189, 'PreviewButton2': 0xD18A, 'AEAFLockButton2': 0xD18B, 'IndicatorDisp': 0xD18D, 'CellKindPriority': 0xD18E, 'BracketingFramesAndSteps': 0xD190, 'LiveViewMode': 0xD1A0, 'LiveViewDriveMode': 0xD1A1, 'LiveViewStatus': 0xD1A2, 'LiveViewImageZoomRatio': 0xD1A3, 'LiveViewProhibitCondition': 0xD1A4, 'MovieShutterSpeed': 0xD1A8, 'MovieFNumber': 0xD1A9, 'MovieISO': 0xD1AA, 'LiveViewMovieMode': 0xD1AC, 'ExposureDisplayStatus': 0xD1B0, 'ExposureIndicateStatus': 0xD1B1, 'InfoDispErrStatus': 0xD1B2, 'ExposureIndicateLightup': 0xD1B3, 'FlashOpen': 0xD1C0, 'FlashCharged': 0xD1C1, 'FlashMRepeatValue': 0xD1D0, 'FlashMRepeatCount': 0xD1D1, 'FlashMRepeatInterval': 0xD1D2, 'FlashCommandChannel': 0xD1D3, 'FlashCommandSelfMode': 0xD1D4, 'FlashCommandSelfCompensation': 0xD1D5, 'FlashCommandSelfValue': 0xD1D6, 'FlashCommandAMode': 0xD1D7, 'FlashCommandACompensation': 0xD1D8, 'FlashCommandAValue': 0xD1D9, 'FlashCommandBMode': 0xD1DA, 'FlashCommandBCompensation': 0xD1DB, 'FlashCommandBValue': 0xD1DC, 'ApplicationMode': 0xD1F0, 'ActiveSlot': 0xD1F2, 'ActivePicCtrlItem': 0xD200, 'ChangePicCtrlItem': 0xD201, 'MovieNrHighISO': 0xD236, 'D241': 0xD241, 'D244': 0xD244, 'D247': 0xD247, 'GUID': 0xD24F, 'D250': 0xD250, 'D251': 0xD251, 'ISO': 0xF002, 'ImageCompression': 0xF009, 'NikonImageSize': 0xF00A, 'NikonWhiteBalance': 0xF00C, # TODO: Are these redundant? Or product-specific? '_LongExposureNoiseReduction': 0xF00D, 'HiISONoiseReduction': 0xF00E, '_ActiveDLighting': 0xF00F, '_MovQuality': 0xF01C, } product_properties.update(props) return super(Nikon, self)._PropertyCode( **product_properties ) def _OperationCode(self, **product_operations): return super(Nikon, self)._OperationCode( GetProfileAllData=0x9006, SendProfileData=0x9007, DeleteProfile=0x9008, SetProfileData=0x9009, AdvancedTransfer=0x9010, GetFileInfoInBlock=0x9011, Capture=0x90C0, AFDrive=0x90C1, SetControlMode=0x90C2, DelImageSDRAM=0x90C3, GetLargeThumb=0x90C4, CurveDownload=0x90C5, CurveUpload=0x90C6, CheckEvents=0x90C7, DeviceReady=0x90C8, SetPreWBData=0x90C9, GetVendorPropCodes=0x90CA, AFCaptureSDRAM=0x90CB, GetPictCtrlData=0x90CC, SetPictCtrlData=0x90CD, DelCstPicCtrl=0x90CE, GetPicCtrlCapability=0x90CF, GetPreviewImg=0x9200, StartLiveView=0x9201, EndLiveView=0x9202, GetLiveViewImg=0x9203, MfDrive=0x9204, ChangeAFArea=0x9205, AFDriveCancel=0x9206, InitiateCaptureRecInMedia=0x9207, GetVendorStorageIDs=0x9209, StartMovieRecInCard=0x920A, EndMovieRec=0x920B, TerminateCapture=0x920C, GetDevicePTPIPInfo=0x90E0, GetPartialObjectHiSpeed=0x9400, GetDevicePropEx=0x9504, **product_operations ) def _ResponseCode(self, **product_responses): return super(Nikon, self)._ResponseCode( HardwareError=0xA001, OutOfFocus=0xA002, ChangeCameraModeFailed=0xA003, InvalidStatus=0xA004, SetPropertyNotSupported=0xA005, WbResetError=0xA006, DustReferenceError=0xA007, ShutterSpeedBulb=0xA008, MirrorUpSequence=0xA009, CameraModeNotAdjustFNumber=0xA00A, NotLiveView=0xA00B, MfDriveStepEnd=0xA00C, MfDriveStepInsufficiency=0xA00E, AdvancedTransferCancel=0xA022, **product_responses ) def _EventCode(self, **product_events): return super(Nikon, self)._EventCode( ObjectAddedInSDRAM=0xC101, CaptureCompleteRecInSdram=0xC102, AdvancedTransfer=0xC103, PreviewImageAdded=0xC104, **product_events ) def _FilesystemType(self, **product_filesystem_types): return super(Nikon, self)._FilesystemType( **product_filesystem_types ) def _NikonEvent(self): return PrefixedArray( self._UInt16, Struct( 'EventCode' / self._EventCode, 'Parameter' / self._UInt32, ) ) def _set_endian(self, endian): logger.debug('Set Nikon endianness') super(Nikon, self)._set_endian(endian) self._NikonEvent = self._NikonEvent() # TODO: Add event queue over all transports and extensions. def check_events(self): '''Check Nikon specific event''' ptp = Container( OperationCode='CheckEvents', SessionID=self._session, TransactionID=self._transaction, Parameter=[] ) response = self.recv(ptp) return self._parse_if_data(response, self._NikonEvent) # TODO: Provide a single camera agnostic command that will trigger a camera def capture(self): '''Nikon specific capture''' ptp = Container( OperationCode='Capture', SessionID=self._session, TransactionID=self._transaction, Parameter=[] ) return self.mesg(ptp) def af_capture_sdram(self): '''Nikon specific autofocus and capture to SDRAM''' ptp = Container( OperationCode='AFCaptureSDRAM', SessionID=self._session, TransactionID=self._transaction, Parameter=[] ) return self.mesg(ptp) def event(self, wait=False): '''Check Nikon or PTP events If `wait` this function is blocking. Otherwise it may return None. ''' # TODO: Do something reasonable on wait=True evt = None timeout = None if wait else 0.001 # TODO: Join queues to preserve order of Nikon and PTP events. if not self.__event_queue.empty(): evt = self.__event_queue.get(block=not wait, timeout=timeout) else: evt = super(Nikon, self).event(wait=wait) return evt def __nikon_poll_events(self): '''Poll events, adding them to a queue.''' while (not self.__nikon_event_shutdown.is_set() and _main_thread_alive()): try: evts = self.check_events() if evts: for evt in evts: logger.debug('Event queued') self.__event_queue.put(evt) except Exception as e: logger.error(e) sleep(3) self.__nikon_event_shutdown.clear()
#import libs import RPi.GPIO as GPIO import time GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(40,GPIO.OUT) #Initiakize PWM servo = GPIO.PWM(40,50) servo.start(0) while True: print("0") servo.ChangeDutyCycle(2.5) time.sleep(1) print("180") servo.ChangeDutyCycle(12.5) time.sleep(1) servo.stop() GPIO.cleanup() break
# -*- coding: utf-8 -*- """ Created on Wed Nov 6 21:06:25 2013 @author: miguel """ class Simbolo(object): def __init__(self,dato,p): self.simbolo = dato self.probabilidad = p self.codigo = "" self.sucesor = None def getProbabilidad(self): return self.probabilidad def getSucesor(self): return self.sucesor def getSimbolo(self): return self.simbolo def setSucesor(self,nuevo): self.sucesor = nuevo def setCodigo(self,c): self.codigo += c def getCodigo(self): return self.codigo
from django.db import models from account_app.models import Account from product_mgr_app.models import Product, Rating class Recommend(models.Model): account = models.ForeignKey(Account, on_delete=models.CASCADE) product = models.ForeignKey(Product, on_delete=models.CASCADE) date = models.DateTimeField('date published')
odometer_seq = [] def odometer_speed(x): x = 100000 while x < 999996: x += 1 odometer_seq.append(str(x)) odometer_speed(1000) four_digit_palindromic = [] five_digit_palindromic = [] middle_four_palindromic = [] six_digit_palindromic = [] def four_digit(zz): for i in zz: if i[2:] == i[2:][::-1] and len(i[2:]) == 4: four_digit_palindromic.append(int(i)) four_digit(odometer_seq) def five_digit(z1): for j in z1: if j[1:] == j[1:][::-1] and len(j[1:]) == 5: five_digit_palindromic.append(int(j)) five_digit(odometer_seq) def middle_four(z2): for k in z2: if k[1:][:-1] == k[1:][:-1][::-1] and len(k[1:][:-1]) == 4: middle_four_palindromic.append(int(k)) middle_four(odometer_seq) def six_digit(z3): for h in z3: if h[:] == h[::-1] and len(h[:]) == 6: six_digit_palindromic.append(int(h)) six_digit(odometer_seq) def checker(list_a,list_b,list_c,list_d): for i in list_a: i+=1 if i in list_b: i+=1 if i in list_c: i+=1 if i in list_d: print(i) Final_result=checker(four_digit_palindromic,five_digit_palindromic,middle_four_palindromic,six_digit_palindromic) print(Final_result)
from __future__ import print_function import markovify #import tweepy import random import datetime #from keys import keys from unidecode import unidecode import textwrap from Adafruit_Thermal import * # Starts the api and auth #consumer_key = keys['consumer_key'] #consumer_secret = keys['consumer_secret'] #access_token = keys['access_token'] #access_token_secret = keys['access_token_secret'] #auth = tweepy.OAuthHandler(consumer_key, consumer_secret) #auth.set_access_token(access_token, access_token_secret) #api = tweepy.API(auth) # Creates the post and logs to a file def generate_post(): with open('cleaned.txt') as f: text = f.read() text_model = markovify.Text(text, state_size=2) mash_text = text_model.make_short_sentence(129) # was 140 wrapped_text = textwrap.fill(mash_text, 32) output_text = "@acoluthon " + mash_text printer = Adafruit_Thermal("/dev/ttyAMA0", 19200, timeout=5) printer.justify('L') printer.feed(3) printer.doubleHeightOn() printer.println("Mash Note") printer.doubleHeightOff() printer.feed(1) printer.println(wrapped_text) printer.feed(3) # Write the status to a file, for debugging with open('history.txt', 'a') as f: f.write('mashed: ' + mash_text + ' | tweeted: ' + output_text + '\n') return output_text generate_post() # Post the status to Twitter #api.update_status(status=generate_post())
from flask import Flask from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() def create_app(): # flask app 实例化 app = Flask(__name__, static_folder="../fronted", static_url_path="/html", ) # 加载配置 app.config.from_object("config.Config") # 初始化db db.init_app(app) # 路由 @app.route('/') def hello_world(): return 'Hello World!' # 蓝图注册 # 前台用户登录 from myapp.front.auth import front_auth app.register_blueprint(front_auth, url_prefix="/front_auth/") # 前台 Blueprint from myapp.front.view import front app.register_blueprint(front, url_prefix="/front") # 后台验证 from myapp.admin.auth import admin_auth app.register_blueprint(admin_auth, url_prefix="/admin_auth/") # 后台Blueprint from myapp.admin.view import admin app.register_blueprint(admin, url_prefix="/admin/") # 文件上传与下载 from myapp.api.file import file app.register_blueprint(file, url_prefix="/file/") # api from myapp.api.api import api app.register_blueprint(api, url_prefix="/api/") return app
pocketMoney=int(input('Enter your pocket money:')) if(pocketMoney>500): print('Ew stitnky rich kid') elif(pocketMoney>100): print('I live life') else: print("im purr ")
#!/usr/bin/python3 """select states module""" from sys import argv import MySQLdb if __name__ == "__main__": db = MySQLdb.connect(host="localhost", port=3306, user=argv[1], password=argv[2], database=argv[3]) cursor = db.cursor() cursor.execute("SELECT * FROM `states` ORDER BY `id` ASC;") [print(state) for state in cursor.fetchall()] db.close()
# 给一些字符串,然后再给一个,判断这个字符串是不是距离一开始中的 # 任意一个编辑距离为一。构造字典,键为给定的单词,值为它可能改变 # 的样子,用 '_' 填充空位,将要查找的单词修改成可能的样子,检查 # 在不在字典的值中,并且键和给定的单词不相等 class MagicDictionary: def __init__(self): """ Initialize your data structure here. """ self.magic = {} def buildDict(self, words): """ Build a dictionary through a list of words :type words: List[str] :rtype: void """ value = [] for word in words: i = 0 while i < len(word): value.append(word[:i]+'_'+word[i+1:]) i += 1 self.magic[word] = value.copy() value.clear() def search(self, word): """ Returns if there is any word in the trie that equals to the given word after modifying exactly one character :type word: str :rtype: bool """ i = 0 temp = [] while i < len(word): temp.append(word[:i]+'_'+word[i+1:]) i += 1 for uglyword in temp: for key in self.magic.keys(): if word != key and uglyword in self.magic[key]: return True return False # Your MagicDictionary object will be instantiated and called as such: obj = MagicDictionary() obj.buildDict(['a', 'b', 'ab']) param_2 = obj.search('ba') print(param_2)
class WindowRendererStratgey: def __init__(self): self.pixels_per_unit = None self.x_tiles = None self.y_tiles = None self.screen_width = None self.screen_height = None def reset(self, x_tiles, y_tiles, screen_width, screen_height): self.x_tiles = x_tiles self.y_tiles = y_tiles self.screen_width = screen_width self.screen_height = screen_height self.pixels_per_unit = min( int(screen_width/x_tiles), int(screen_height/y_tiles) ) def world_cords_to_screen_cords(self, x_pos, y_pos, width, height): x_pos = self.x_offset + x_pos * self.pixels_per_unit y_pos = self.y_offset + y_pos * self.pixels_per_unit width = width * self.pixels_per_unit height = height * self.pixels_per_unit return x_pos, y_pos, width, height @property def x_offset(self): ofsset = self.screen_width ofsset = ofsset - self.x_tiles * self.pixels_per_unit ofsset = ofsset/2 return ofsset @property def y_offset(self): ofsset = self.screen_height ofsset = ofsset - self.y_tiles * self.pixels_per_unit ofsset = ofsset/2 return ofsset
from pennclubs.settings.base import * # noqa: F401, F403 TEST_RUNNER = "xmlrunner.extra.djangotestrunner.XMLTestRunner" TEST_OUTPUT_VERBOSE = 2 TEST_OUTPUT_DIR = "test-results" # Use dummy cache for testing CACHES = {"default": {"BACKEND": "django.core.cache.backends.dummy.DummyCache"}}
#should REALLY get this commented up import math ffac = 0 sfac = 0 a = int(input("Input the a of the polynomial: ")) b = int(input("Input the b of the polynomial: ")) c = int(input("Input the c of the polynomial: ")) ac = a * c radical = 1 def findgcf(a, b): #returns the greatest common factor of a and b with the sign of b while b: a, b = b, a%b return int(a) def radicalreduce(radical):#returns a reduced radical in the form x*sqrt(y) radreturn = "" gf = 1 a = 1 if(radical < 0): #divide out an i if applicable radreturn = "i" radical = abs(radical) for i in range (1, 100): #check if it is a perfect square and return the root if it is if (i**2 == radical): radreturn = str(math.sqrt(radical)) for i in range (1, 100): #brute force check if radical is divisible by any perfect square a = i**2 #print(str(i) + " was checked") if(radical % a == 0) and (a != radical): #record the largest perfect square that divides radical if(a > gf): gf = a if (gf == 1): #if there is no perfect square factor, return the input radical in a square root sign radreturn = radreturn + "(" + u'\u221a' + str(int(radical)) + ")" #print("We got here") else: #return a big ugly string that says the #print("GF = " + str(gf)) radreturn = str(int(math.sqrt(gf))) + radreturn + u'\u221a' + str(int(radical / gf)) return(radreturn) def quadsolve(x, y, z): #prints the result of the quadratic formula in radical form + decimal form if real radreturn = radicalreduce((y**2) - (4 * x * z)) if (4 * x * z) > (y**2): print("(" + str(-y) + " " + u"\u00b1" + " " + str(radreturn) + ")/" + str(2 * x)) else: quadpos = (-y + math.sqrt((y**2) - (4 * x * z))) / (2 * x) quadneg = (-y - math.sqrt((y**2) - (4 * x * z))) / (2 * x) print("(" + str(-y) + u" \u00b1 " + str(radreturn) + ")/" + str(2 * x)) print(str(quadpos) + " or " + str(quadneg)) #this only outputs raw values, should adjust to output stuff w/sqrts as well def polyfactor(a, b, c): #take the three given inputs for i in range (-100, 100): #brute force check if (i == 0): continue ffac = (ac / i) #divide the ac by i for the check sfac = (ac / ffac) #take the co-factor of ac if (ffac + sfac) == b and (ac % ffac) == 0: #if the two factors also add up to the b, continue. simulates factoring by grouping #ffac and a become the two terms of the first grouping, sfac and c become the two terms of second grouping firstgcf = int(findgcf(int(ffac), a)) #simulate factoring by grouping by finding gcf of two grouped terms and recording it secgcf = int(findgcf(c, int(sfac))) fpodfterm = a / firstgcf fpodsterm = ffac / firstgcf spodfterm = firstgcf spodsterm = secgcf fpodgcf = abs(findgcf(fpodfterm, fpodsterm)) #find the gcf of each pod, only positive ints spodgcf = abs(findgcf(spodfterm, spodsterm)) fpodfterm = int(fpodfterm / fpodgcf) #divide through by gcf of the respective pod fpodsterm = int(fpodsterm / fpodgcf) spodfterm = int(spodfterm / spodgcf) spodsterm = int(spodsterm / spodgcf) if(fpodgcf == 1) or (fpodgcf == -1): #if the gcf is 1, null the variable so it doesn't show up fpodgcf = "" if(spodgcf == 1) or (spodgcf == -1): spodgcf = "" print(str(fpodgcf) + str(spodgcf) + "(" + str(int(fpodfterm)) + "x + " + str(int(fpodsterm)) + ")(" + str(spodfterm) + "x + " + str(spodsterm) + ")") #print("firstgcf = " + str(firstgcf)) #print("secgcf = " + str(secgcf)) #print("ffac = " + str(ffac)) #print("sfac = " + str(sfac)) break if (i == 99): #if no soln is found, send the data to the quadsolve function quadsolve(a, b, c) polyfactor(a, b, c)
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from tensorflow.keras import Sequential, Model, Input from tensorflow.keras import layers from tensorflow.keras.layers import ReLU, Dense, Conv2D, Conv2DTranspose from tensorflow.keras.layers import DepthwiseConv2D, SeparableConv2D, Dropout from tensorflow.keras.layers import GlobalAveragePooling2D, Activation, BatchNormalization from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam, SGD from tensorflow.compat.v1.keras.initializers import glorot_uniform, he_normal from tensorflow.keras.callbacks import LearningRateScheduler from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.utils import to_categorical import tensorflow_datasets as tfds import tensorflow.keras.backend as K import numpy as np from sklearn.model_selection import train_test_split import random import math import sys from layers_c import Layers from preprocess_c import Preprocess from pretraining_c import Pretraining from hypertune_c import HyperTune class Composable(Layers, Preprocess, Pretraining, HyperTune): ''' Composable base (super) class for Models ''' def __init__(self, init_weights=None, reg=None, relu=None, bias=True): """ Constructor init_weights : kernel initializer reg : kernel regularizer relu : clip value for ReLU bias : whether to use bias """ Layers.__init__(self, init_weights, reg, relu, bias) Preprocess.__init__(self) Pretraining.__init__(self) HyperTune.__init__(self) # Feature maps encoding at the bottleneck layer in classifier (high dimensionality) self._encoding = None # Pooled and flattened encodings at the bottleneck layer (low dimensionality) self._embedding = None # Pre-activation conditional probabilities for classifier self._probabilities = None # Post-activation conditional probabilities for classifier self._softmax = None self._model = None @property def model(self): return self._model @model.setter def model(self, _model): self._model = _model @property def encoding(self): return self._encoding @encoding.setter def encoding(self, layer): self._encoding = layer @property def embedding(self): return self._embedding @embedding.setter def embedding(self, layer): self._embedding = layer @property def probabilities(self): return self._probabilities @probabilities.setter def probabilities(self, layer): self._probabilities = layer ### # Training ### def compile(self, loss='categorical_crossentropy', optimizer=Adam(lr=0.001, decay=1e-5), metrics=['acc']): """ Compile the model for training loss : the loss function optimizer: the optimizer metrics : metrics to report """ self.model.compile(loss=loss, optimizer=optimizer, metrics=metrics) # training variables hidden_dropout = None # hidden dropout in classifier i_lr = 0 # initial rate during full training e_decay = 0 # weight decay rate during full training e_steps = 0 # number of steps (batches) in an epoch t_steps = 0 # total number of steps in training job def time_decay(self, epoch, lr): """ Time-based Decay """ return lr * (1. / (1. + self.e_decay[1] * epoch)) def step_decay(self, epoch, lr): """ Step-based (polynomial) decay """ return self.i_lr * self.e_decay[1]**(epoch) def exp_decay(self, epoch, lr): """ Exponential Decay """ return self.i_lr * math.exp(-self.e_decay[1] * epoch) def cosine_decay(self, epoch, lr, alpha=0.0): """ Cosine Decay """ cosine_decay = 0.5 * (1 + np.cos(np.pi * (self.e_steps * epoch) / self.t_steps)) decayed = (1 - alpha) * cosine_decay + alpha return lr * decayed def training_scheduler(self, epoch, lr): """ Learning Rate scheduler for full-training epoch : epoch number lr : current learning rate """ # First epoch (not started) - do nothing if epoch == 0: return lr # Hidden dropout unit in classifier if self.hidden_dropout is not None: # If training accuracy and validation accuracy more than 3% apart if self.model.history.history['acc'][epoch-1] > self.model.history.history['val_acc'][epoch-1] + 0.03: if self.hidden_dropout.rate == 0.0: self.hidden_dropout.rate = 0.5 elif self.hidden_dropout.rate < 0.75: self.hidden_dropout.rate *= 1.1 print("*** Overfitting, set dropout to", self.hidden_dropout.rate) else: if self.hidden_dropout.rate != 0.0: print("*** Turning off dropout") self.hidden_dropout.rate = 0.0 if self.e_decay[0] is None: return lr # Decay the learning rate if self.e_decay[0] == 'time': lr = self.time_decay(epoch, lr) elif self.e_decay[0] == 'step': lr = self.step_decay(epoch, lr) elif self.e_decay[0] == 'exp': lr = self.exp_decay(epoch, lr) else: lr = self.cosine_decay(epoch, lr) return lr def training(self, x_train, y_train, epochs=10, batch_size=32, lr=0.001, decay=(None, 0), split=0.1, loss='categorical_crossentropy', metrics=['acc']): """ Full Training of the Model x_train : training images y_train : training labels epochs : number of epochs batch_size : size of batch lr : learning rate decay : step-wise learning rate decay split : percent to use as validation data loss : loss function metrics : metrics to report during training """ print("*** Full Training") # Check for hidden dropout layer in classifier for layer in self.model.layers: if isinstance(layer, Dropout): self.hidden_dropout = layer break if decay is None or 0: decay = (None, 0) elif isinstance(decay, float): decay = ('time', decay) elif not isinstance(decay, tuple): raise Exception("Training: decay must be (time, value)") elif decay[0] not in [None, 'time', 'step', 'exp', 'cosine']: raise Exception("Training: invalid method for decay") self.i_lr = lr self.e_decay = decay self.e_steps = x_train.shape[0] // batch_size self.t_steps = self.e_steps * epochs self.compile(optimizer=Adam(lr=lr, decay=decay[1]), loss=loss, metrics=metrics) lrate = LearningRateScheduler(self.training_scheduler, verbose=1) self.model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=split, verbose=1, callbacks=[lrate]) def evaluate(self, x_test, y_test): """ Call underlying evaluate() method """ return self._model.evaluate(x_test, y_test) def cifar10(self, epochs=10, decay=('cosine', 0)): """ Train on CIFAR-10 epochs : number of epochs for full training """ from tensorflow.keras.datasets import cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = self.standardization(x_train, x_test) y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) y_train = self.label_smoothing(y_train, 10, 0.1) # compile the model self.compile(loss='categorical_crossentropy', metrics=['acc']) self.warmup(x_train, y_train) lr, batch_size = self.random_search(x_train, y_train, x_test, y_test) self.training(x_train, y_train, epochs=epochs, batch_size=batch_size, lr=lr, decay=decay) self.evaluate(x_test, y_test) def cifar100(self, epochs=20, decay=('cosine', 0)): """ Train on CIFAR-100 epochs : number of epochs for full training """ from tensorflow.keras.datasets import cifar100 (x_train, y_train), (x_test, y_test) = cifar100.load_data() x_train, x_test = self.normalization(x_train, x_test) y_train = to_categorical(y_train, 100) y_test = to_categorical(y_test, 100) y_train = self.label_smoothing(y_train, 10, 0.1) self.compile(loss='categorical_crossentropy', metrics=['acc']) self.warmup(x_train, y_train) lr, batch_size = self.grid_search(x_train, y_train, x_test, y_test) self.training(x_train, y_train, epochs=epochs, batch_size=batch_size, lr=lr, decay=decay) self.evaluate(x_test, y_test) def coil100(self, epochs=20, decay=('cosine', 0)): """ """ # Get TF.dataset generator for COIL100 train, info = tfds.load('coil100', split='train', shuffle_files=True, with_info=True, as_supervised=True) n_classes = info.features['label'].num_classes n_images = info.splits['train'].num_examples input_shape = info.features['image'].shape # Get the dataset into memory train = train.shuffle(n_images).batch(n_images) for images, labels in train.take(1): pass images = np.asarray(images) images, _ = self.standardization(images, None) labels = to_categorical(np.asarray(labels), n_classes) # split the dataset into train/test x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=0.2) self.compile(loss='categorical_crossentropy', metrics=['acc']) self.warmup(x_train, y_train) lr, batch_size = self.grid_search(x_train, y_train, x_test, y_test) self.training(x_train, y_train, epochs=epochs, batch_size=batch_size, lr=lr, decay=decay) self.evaluate(x_test, y_test)
def main(): # here we create a file access object fout = open('out.txt', 'at') # 'at' append text 'wt' (over)write text 'xt' exclusive - fails if exists # we can switch the context of our print statement so it output to this file access object print('here is some text', file=fout) fout.close() # always good to clean up def my_read(): fin = open('out.txt', 'rt') # 'rt' read text received = fin.read() fin.close() print(received) if __name__ == '__main__': main() # write some text my_read() # read it back!
#!/usr/bin/env python import neutronclient.v2_0.client as ntclient from.credentials import get_neutron_credits __author__ = 'Yuvv' cred = get_neutron_credits() neutron = ntclient.Client(**cred) # TODO: ''' >>> ops.neutron.list_networks() {'networks': [{u'status': u'ACTIVE', u'subnets': [u'0050c144-91fa-494d-89e7-fb4c7a76e40c'], u'name': u'public', u'provider:physical_network': u'public', u'admin_state_up': True, u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'mtu': 0, u'router:external': False, u'port_security_enabled': True, u'shared': True, u'provider:network_type': u'flat', u'id': u'111e3af7-71d0-4dcb-b0f7-a068eaf20e7e', u'provider:segmentation_id': None}]} >>> ops.neutron.list_agents() {u'agents': [{u'binary': u'neutron-dhcp-agent', u'description': None, u'admin_state_up': True, u'heartbeat_timestamp': u'2016-05-25 01:18:58', u'alive': True, u'id': u'2131b624-cd64-4139-9f05-2578b44157c5', u'topic': u'dhcp_agent', u'host': u'controller', u'agent_type': u'DHCP agent', u'started_at': u'2016-05-25 00:53:28', u'created_at': u'2016-04-26 06:49:13', u'configurations': {u'subnets': 1, u'use_namespaces': True, u'dhcp_lease_duration': 86400, u'dhcp_driver': u'neutron.agent.linux.dhcp.Dnsmasq', u'ports': 2, u'log_agent_heartbeats': False, u'networks': 1}}, {u'binary': u'neutron-linuxbridge-agent', u'description': None, u'admin_state_up': True, u'heartbeat_timestamp': u'2016-05-25 01:18:58', u'alive': True, u'id': u'26c1648e-6e5c-4a9f-bf71-e2f8465859c4', u'topic': u'N/A', u'host': u'controller', u'agent_type': u'Linux bridge agent', u'started_at': u'2016-05-25 00:53:28', u'created_at': u'2016-04-26 06:49:13', u'configurations': {u'interface_mappings': {u'public': u'eth1'}, u'bridge_mappings': {}, u'devices': 1}}, {u'binary': u'neutron-metadata-agent', u'description': None, u'admin_state_up': True, u'heartbeat_timestamp': u'2016-05-25 01:18:59', u'alive': True, u'id': u'91bd88af-2e88-4298-9f9f-5a6752bed2f9', u'topic': u'N/A', u'host': u'controller', u'agent_type': u'Metadata agent', u'started_at': u'2016-05-25 00:53:29', u'created_at': u'2016-04-26 06:49:13', u'configurations': {u'log_agent_heartbeats': False, u'nova_metadata_ip': u'controller', u'nova_metadata_port': 8775, u'metadata_proxy_socket': u'/var/lib/neutron/metadata_proxy'}}, {u'binary': u'neutron-linuxbridge-agent', u'description': None, u'admin_state_up': True, u'heartbeat_timestamp': u'2016-05-25 01:19:05', u'alive': True, u'id': u'cc8252c8-5967-4e1a-8388-297bde87346c', u'topic': u'N/A', u'host': u'compute', u'agent_type': u'Linux bridge agent', u'started_at': u'2016-05-25 00:53:36', u'created_at': u'2016-04-26 06:55:51', u'configurations': {u'interface_mappings': {u'public': u'eth1'}, u'bridge_mappings': {}, u'devices': 0}}]} >>> ops.neutron.list_subnets() {'subnets': [{u'name': u'public', u'enable_dhcp': True, u'network_id': u'111e3af7-71d0-4dcb-b0f7-a068eaf20e7e', u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'dns_nameservers': [u'192.168.23.2'], u'ipv6_ra_mode': None, u'allocation_pools': [{u'start': u'192.168.23.10', u'end': u'192.168.23.99'}], u'gateway_ip': u'192.168.23.1', u'ipv6_address_mode': None, u'ip_version': 4, u'host_routes': [], u'cidr': u'192.168.23.0/24', u'id': u'0050c144-91fa-494d-89e7-fb4c7a76e40c', u'subnetpool_id': None}]} >>> ops.neutron.list_security_groups() {'security_groups': [{u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'name': u'default', u'description': u'Default security group', u'security_group_rules': [{u'remote_group_id': None, u'direction': u'ingress', u'remote_ip_prefix': u'0.0.0.0/0', u'protocol': u'icmp', u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': None, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': None, u'ethertype': u'IPv4', u'id': u'0c7c5f57-6d64-4549-afd2-465abd7f5d74'}, {u'remote_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'direction': u'ingress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': None, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': None, u'ethertype': u'IPv4', u'id': u'13b58bce-9029-4fb0-8130-9d3f8dfd5c54'}, {u'remote_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'direction': u'ingress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': None, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': None, u'ethertype': u'IPv6', u'id': u'77eeabcd-24a7-49a7-b504-5109f1f32255'}, {u'remote_group_id': None, u'direction': u'egress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': None, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': None, u'ethertype': u'IPv4', u'id': u'0ebc3d23-19c3-4286-ae74-0ff8b8ac3f21'}, {u'remote_group_id': None, u'direction': u'ingress', u'remote_ip_prefix': u'0.0.0.0/0', u'protocol': u'tcp', u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': 22, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': 22, u'ethertype': u'IPv4', u'id': u'a9e648e9-087d-4175-b44b-4fe7c2be335e'}, {u'remote_group_id': None, u'direction': u'egress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'1e5cd29a7daf4a6eaa8bd981d2215521', u'port_range_max': None, u'security_group_id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6', u'port_range_min': None, u'ethertype': u'IPv6', u'id': u'9eaa2679-74ee-45e3-b37a-51712bd33813'}], u'id': u'447f5fd8-f7f2-4938-8fb2-413c42b3afc6'}, {u'tenant_id': u'01715308e32e4f6c9cfeff963e01ee71', u'name': u'default', u'description': u'Default security group', u'security_group_rules': [{u'remote_group_id': None, u'direction': u'egress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'01715308e32e4f6c9cfeff963e01ee71', u'port_range_max': None, u'security_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'port_range_min': None, u'ethertype': u'IPv4', u'id': u'c4d14382-7d19-442f-8f6a-4818fa5cbd15'}, {u'remote_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'direction': u'ingress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'01715308e32e4f6c9cfeff963e01ee71', u'port_range_max': None, u'security_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'port_range_min': None, u'ethertype': u'IPv4', u'id': u'6cdbd10b-1594-4b6d-b5bb-1c11860e2fc1'}, {u'remote_group_id': None, u'direction': u'egress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'01715308e32e4f6c9cfeff963e01ee71', u'port_range_max': None, u'security_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'port_range_min': None, u'ethertype': u'IPv6', u'id': u'0e355680-e9ae-4643-aebd-ca5c6e66916f'}, {u'remote_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'direction': u'ingress', u'remote_ip_prefix': None, u'protocol': None, u'tenant_id': u'01715308e32e4f6c9cfeff963e01ee71', u'port_range_max': None, u'security_group_id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5', u'port_range_min': None, u'ethertype': u'IPv6', u'id': u'2610cc74-f264-4980-8d04-79ad8b24fcdd'}], u'id': u'6e4436d5-327d-478f-867e-f8780ee0d6a5'}]} '''
vertices = [] with open('./obj/people.obj','r',encoding='utf-8') as f: for line in f.readlines(): if (line.startswith('v ')): line = line.replace('\n', '') value = line.split(' ') vertices.append(str(round(float(value[1]) * 50, 2) - 17)) vertices.append(str(round(float(value[2]) * 50, 2) - 7)) vertices.append(str(round(float(value[3]) * 50, 2))) # 写文件 f = open('output.txt','w', encoding='utf-8') outputData = '{name:"test", vertices: ' + str(vertices) + '}' f.write(outputData) f.close() # print(vertices)
# 引用计数的缺陷 class Person(object): def __init__(self, name): self.name = name self.next = None self.pre = None def __del__(self): super() print("%s执行了del函数" % self.name) while True: p1 = Person('p1') p2 = Person('p2') # 循环引用 p1.next = p2 p2.pre = p1 del p1 del p2 a = input("*************")
#find the sum of all multiples of 3 or 5 below 1000. import sys; def threefivesum(): multiple = 3 counter = 0 while multiple < 1000: counter += multiple multiple += 3 multiple = 5 while multiple < 1000: counter += multiple multiple += 5 multiple = 15 while multiple < 1000: counter -= multiple multiple += 15 return counter def evenfibsum(): fib1 = 1 fib2 = 2 counter = 0 answer = 0 limit = 4000000 #even fib numbers come every 3 in the sequence 2 - 0 3 - 1 5 - 2 8 - 3 while fib1 < limit & fib2 < limit: if counter % 3 == 0 : if fib1 > fib2: answer += fib1 else: answer += fib2 if fib1 < fib2: fib1 += fib2 else: fib2 += fib1 counter += 1 return answer print "Two Project Euler Problems" print "Sum of all multiples of 3 and 5 below 1000" print threefivesum(); print "Sum of even Fibonacci numbers below 4 million" print evenfibsum() + " coudn't get this one to work";
from chess.pieces import Pawn from chess.board import Board import pytest def test_pawn_init(): pawn = Pawn(1, 0, False) assert pawn.row == 1 assert pawn.col == 0 assert pawn.is_white is False assert pawn.first_move is True assert pawn.unit == 'p' assert pawn.name == 'bp' assert pawn.enpassantable is False rep = pawn.__repr__() assert rep == "Pawn(1, 0, is_white=False)" def test_pawn_init_not_first_move(): pawn = Pawn(3, 1, False, False) assert pawn.first_move is False @pytest.fixture def board(): arr = [ ["br", "bn", "bb", "bq", "bk", "bb", "wp", "br"], ["--", "--", "--", "bp", "--", "bp", "--", "--"], ["--", "--", "bp", "--", "bp", "--", "--", "--"], ["bp", "bp", "--", "--", "--", "--", "--", "bp"], ["wp", "wp", "--", "--", "--", "--", "--", "wp"], ["--", "--", "wp", "--", "wp", "--", "--", "--"], ["--", "wp", "--", "wp", "--", "wp", "--", "--"], ["wr", "wn", "wb", "wq", "wk", "wb", "bp", "wr"] ] return Board(array=arr) @pytest.mark.parametrize( "coord, piece_name, moves", [ ((6, 3), 'wp', [(5, 3), (4, 3)]), # white first move ((1, 3), 'bp', [(2, 3), (3, 3)]), # black first move ((5, 4), 'wp', [(4, 4)]), # white second move ((2, 4), 'bp', [(3, 4)]), # black second move ((4, 7), 'wp', []), # white blocked ((3, 7), 'bp', []), # black blocked ((4, 1), 'wp', [(3, 0)]), # white capture ((3, 1), 'bp', [(4, 0)]), # black capture ((4, 0), 'wp', [(3, 1)]), # white capture on board edge ((3, 0), 'bp', [(4, 1)]) # black capture on board edge ] ) def test_pawn_get_moves(board, coord, piece_name, moves): pawn = board[coord] assert pawn.name == piece_name assert pawn.get_moves(board) == moves @pytest.mark.parametrize( "move_from, capt_coord, move_to, enpass", [ ((3, 1), (3, 0), (2, 0), True), # enpassantable, white on black ((4, 6), (4, 7), (5, 7), False) # not enpassantable, black on white ] ) def test_enpassant(enpassant_board, move_from, capt_coord, move_to, enpass): move_pawn = enpassant_board[move_from] capt_pawn = enpassant_board[capt_coord] capt_pawn.enpassantable = enpass result = move_to in move_pawn.get_moves(enpassant_board) assert result is enpass @pytest.fixture def enpassant_board(): arr = [ ["br", "bn", "bb", "bq", "bk", "bb", "wp", "br"], ["--", "--", "--", "bp", "--", "bp", "--", "--"], ["--", "--", "bp", "--", "bp", "--", "--", "--"], ["bp", "wp", "--", "--", "--", "--", "--", "bp"], ["wp", "--", "--", "--", "--", "--", "bp", "wp"], ["--", "--", "wp", "--", "wp", "--", "--", "--"], ["--", "--", "--", "wp", "--", "wp", "--", "--"], ["wr", "wn", "wb", "wq", "wk", "wb", "bp", "wr"] ] return Board(array=arr)
#find if a node is connected or not #l = [[1, 3], [3, 4], [2, 4], [1, 2], [2, 3], [5, 6] , [5 , 7]] l = [[1, 2], [3 , 4] , [5 , 6]] def isReachable(l , m , s , d): visited = [False] * (len(m)) #print(visited) q = [] q.append(s) visited[m.index(s)] = True while q: n = q.pop(0) if n == d: return True for i in l: if i[0] == n: #print(i[1]) if visited[m.index(i[1])] == False: q.append(i[1]) visited[m.index(i[1])] = True return False m = [1, 2, 3, 4 , 5 , 6] re = [] nr = [] for i in m: for j in range(i + 1 , len(m) + 1): print(i , j , isReachable(l , m , i , j)) if isReachable(l , m , i , j): re.append(i) re.append(j) else: nr.append(j) print(len(l)) print(list(set(re))) print(list(set(nr)))
from onegov.chat import Message from onegov.org.models.message import TicketMessageMixin class AgencyMutationMessage(Message, TicketMessageMixin): __mapper_args__ = { 'polymorphic_identity': 'agency_mutation' } @classmethod def create(cls, ticket, request, change): return super().create(ticket, request, change=change) class PersonMutationMessage(Message, TicketMessageMixin): __mapper_args__ = { 'polymorphic_identity': 'person_mutation' } @classmethod def create(cls, ticket, request, change): return super().create(ticket, request, change=change)
""" Definitions for model that classifies dispatch messages into 24 categories. """ from functools import partial import re from autocorrect import spell, word from sklearn.base import TransformerMixin, BaseEstimator from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from xgboost import XGBClassifier import nltk def preprocess(msg, sub_dict, correct=True): """ Preprocess dispatch message in the following order: 1. Convert to lower case. 2. Replace abbreviations in sub_dict. 3. Select only the following sections of the message: comments, type, problem, and responder script. 4. Remove non-alphabetic characters. 5. Correct spelling of words. """ msg = msg.lower() for k, v in sub_dict.items(): msg = re.sub(r'(?:[^\w]|^){}(?:[^\w]|$)'.format(k), ' {} '.format(v), msg) msg = ' '.join(re.findall(r'(?:comments?):(?P<info>.*?)(?:(?:,[\w\s]*:))', msg) + \ re.findall(r'(?:type?):(?P<info>.*?)(?:(?:,[\w\s]*:))', msg) + \ re.findall(r'(?:problem?):(?P<info>.*?)(?:(?:,[\w\s]*:))', msg) + \ re.findall(r'(?:responder script?):(?P<info>.*?)(?:(?:,[\w\s]*:))', msg)) msg = re.sub(r'[^a-z]', ' ', msg) msg = msg.split() if correct: return ' '.join([(w if w in word.KNOWN_WORDS else spell(w)) for w in msg]) return ' '.join(msg) class DispatchPreprocessor(BaseEstimator, TransformerMixin): """ Mixin for transforming dispatch messages by preprocessing. """ def __init__(self, sub_dict): self.sub_dict = sub_dict def fit(self, X, y=None): """ Obligatory fit method. """ return self def transform(self, X): """ Apply preprocess function to input. """ return X.apply(partial(preprocess, sub_dict=self.sub_dict)) class TextSelector(BaseEstimator, TransformerMixin): """ Select a specific field in a dataframe. """ def __init__(self, field): self.field = field def fit(self, X, y=None): """ Obligatory fit method. """ return self def transform(self, X): """ Select the pre-specified field from the input. """ return X[self.field] def tokenizer(str_input): """ Tokenizer for string input. """ words = re.sub(r"[^A-Za-z0-9\-]", " ", str_input).lower().split() porter_stemmer = nltk.PorterStemmer() words = [porter_stemmer.stem(word) for word in words] return words SUB_DICT = { 'edp': 'emotionally disturbed person', 'unk': 'unknown', 'als': 'advanced life support', 'bls': 'basic life support', 'ams': 'altered mental state', 'intox': 'intoxicated', 'cath': 'catheter', 'poss': 'possible' } class IncidentClassifier(BaseEstimator, TransformerMixin): """ Definition for incident classifier. It consists of a pipeline: select message column, preprocess, vectorize tfidf, svd, XGBClassifier. """ def __init__(self, stop_words=nltk.corpus.stopwords.words()): self.clf_ = Pipeline([ ('colext', TextSelector('Message')), ('preprocessor', DispatchPreprocessor(SUB_DICT)), ('tfidf', TfidfVectorizer(tokenizer=tokenizer, stop_words=stop_words, min_df=.0025, max_df=0.25, ngram_range=(1, 3))), ('svd', TruncatedSVD(algorithm='randomized', n_components=300)), ('clf', XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.1)) ]) def fit(self, X, y=None): """ Fit underlying pipeline. """ self.clf_.fit(X, y) return self def predict(self, X): """ Predict using underlying pipeline. """ return self.clf_.predict(X) def predict_proba(self, X): """ Use predict_proba with underlying pipeline. """ return self.clf_.predict_proba(X)
import random # висновок,що не дуже підходить, бо ти можеш завжди вводити максимально велике число # (або може взагалі не число ввести) # (або можеш ввести більше число ніж комп введе) n1 = random.randint(1, 10) answer = input('Enter some integer: ') answer = int(answer) print(f'You choose {answer}, computer {n1}') if n1 > answer: print(f'{n1} Bigger {answer}') elif n1 < answer: print(f'{n1} Less {answer}') else: print(f'{n1} Equal {answer}')
#!/usr/bin/python2 # coding=utf-8 import os,sys,time,datetime,random,hashlib,re,threading,json,urllib,cookielib,requests,mechanize from multiprocessing.pool import ThreadPool from requests.exceptions import ConnectionError from mechanize import Browser reload(sys) sys.setdefaultencoding('utf8') br = mechanize.Browser() br.set_handle_robots(False) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(),max_time=1) br.addheaders = [('User-Agent', 'Opera/9.80 (Android; Opera Mini/32.0.2254/85. U; id) Presto/2.12.423 Version/12.16')] def keluar(): print "\033[1;96m[!] \x1b[1;91mExit" os.sys.exit() def acak(x): w = 'mhkbpcP' d = '' for i in x: d += '!'+w[random.randint(0,len(w)-1)]+i return cetak(d) def cetak(x): w = 'mhkbpcP' for i in w: j = w.index(i) x= x.replace('!%s'%i,'\033[%s;1m'%str(31+j)) x += '\033[0m' x = x.replace('!0','\033[0m') sys.stdout.write(x+'\n') def jalan(z): for e in z + '\n': sys.stdout.write(e) sys.stdout.flush() time.sleep(0.05) logo = """ \x1b[1;93m______ \x1b[1;92m_______ \x1b[1;94m______ \x1b[1;91m___ _\n \x1b[1;93m| | \x1b[1;92m| _ |\x1b[1;94m| _ | \x1b[1;91m| | | |\n \x1b[1;93m| _ |\x1b[1;92m| |_| |\x1b[1;94m| | || \x1b[1;91m| |_| |\n \x1b[1;93m| | | |\x1b[1;92m| |\x1b[1;94m| |_||_ \x1b[1;91m| _|\n \x1b[1;93m| |_| |\x1b[1;92m| |\x1b[1;94m| __ |\x1b[1;91m| |_ \n \x1b[1;93m| |\x1b[1;92m| _ |\x1b[1;94m| | | |\x1b[1;91m| _ |\n \x1b[1;93m|______| \x1b[1;92m|__| |__|\x1b[1;94m|___| |_|\x1b[1;91m|___| |_| \x1b[1;96mFB\n\n \x1b[1;95m●▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬●\n ✫╬─ \x1b[1;92mReCode \x1b[1;91m: \x1b[1;93mRidwan58 \x1b[1;95m─╬✫\n ✫╬─ \x1b[1;92mFB \x1b[1;92m \x1b[1;91m: \x1b[1;96mFacebook.com/Ridwankechil \x1b[1;95m─╬✫\n ✫╬─ \x1b[1;92mGitHub \x1b[1;91m: \x1b[1;94mGithub.com/RidwanKechil \x1b[1;95m─╬✫\n ●▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬● """ def tik(): titik = ['. ','.. ','... '] for o in titik: print("\r\033[1;96m[●] \x1b[1;93mSedang masuk \x1b[1;97m"+o),;sys.stdout.flush();time.sleep(1) back = 0 threads = [] berhasil = [] cekpoint = [] oks = [] id = [] listgrup = [] vulnot = "\033[31mNot Vuln" vuln = "\033[32mVuln" def siapa(): os.system('clear') nama = raw_input("\033[1;97mSiapa nama kamu ? \033[1;91m: \033[1;92m") if nama =="": print"\033[1;96m[!] \033[1;91mIsi yang benar" time.sleep(1) siapa() else: os.system('clear') jalan("\033[1;97mSelamat datang \033[1;92m" +nama+ "\n\033[1;97mTerimakasih telah menggunakan tools ini !!") time.sleep(1) loginSC() def loginSC(): os.system('clear') print"\033[1;97mSilahkan login SC nya dulu bosque\n" username = raw_input("\033[1;96m[*] \033[1;97mUsername \033[1;91m: \033[1;92m") password = raw_input("\033[1;96m[*] \033[1;97mPassword \033[1;91m: \033[1;92m") if username =="Ridwan" and password =="Kechil": print"\033[1;96m[✓] \033[1;92mLogin success" time.sleep(1) login() else: print"\033[1;96m[!] \033[1;91mSalah!!" time.sleep(1) LoginSC()
from launch import LaunchDescription import launch_ros.actions def generate_launch_description(): return LaunchDescription([ launch_ros.actions.Node( package='topic_subscriber_pkg', executable='simple_sub_node', output='screen'), ])
from rest_api.app import setup_app from rest_api.config import DebugConfig, ProductionConfig app = setup_app(config=ProductionConfig) if __name__ == "__main__": app = setup_app(config=DebugConfig) app.run(host="localhost", port=5000)
import sys import threading from functools import wraps from typing import Union, Tuple, Callable, Optional, List, Type from bugsnag.configuration import Configuration, RequestConfiguration from bugsnag.event import Event from bugsnag.handlers import BugsnagHandler from bugsnag.sessiontracker import SessionTracker import bugsnag __all__ = ('Client',) class Client: """ A Bugsnag monitoring and reporting client. >>> client = Client(api_key='...') # doctest: +SKIP """ def __init__(self, configuration: Optional[Configuration] = None, install_sys_hook=True, **kwargs): self.configuration = configuration or Configuration() # type: Configuration # noqa: E501 self.session_tracker = SessionTracker(self.configuration) self.configuration.configure(**kwargs) if install_sys_hook: self.install_sys_hook() def capture(self, exceptions: Union[Tuple[Type, ...], Callable, None] = None, **options): """ Run a block of code within the clients context. Any exception raised will be reported to bugsnag. >>> with client.capture(): # doctest: +SKIP ... raise Exception('an exception passed to bugsnag then reraised') The context can optionally include specific types to capture. >>> with client.capture((TypeError,)): # doctest: +SKIP ... raise Exception('an exception which does get captured') Alternately, functions can be decorated to capture any exceptions thrown during execution and reraised. >>> @client.capture # doctest: +SKIP ... def foo(): ... raise Exception('an exception passed to bugsnag then reraised') The decoration can optionally include specific types to capture. >>> @client.capture((TypeError,)) # doctest: +SKIP ... def foo(): ... raise Exception('an exception which does not get captured') """ if callable(exceptions): return ClientContext(self, (Exception,))(exceptions) return ClientContext(self, exceptions, **options) def notify(self, exception: BaseException, asynchronous=None, **options): """ Notify bugsnag of an exception. >>> client.notify(Exception('Example')) # doctest: +SKIP """ event = Event(exception, self.configuration, RequestConfiguration.get_instance(), **options) self.deliver(event, asynchronous=asynchronous) def notify_exc_info(self, exc_type, exc_value, traceback, asynchronous=None, **options): """ Notify bugsnag of an exception via exc_info. >>> client.notify_exc_info(*sys.exc_info()) # doctest: +SKIP """ exception = exc_value options['traceback'] = traceback event = Event(exception, self.configuration, RequestConfiguration.get_instance(), **options) self.deliver(event, asynchronous=asynchronous) def excepthook(self, exc_type, exc_value, traceback): if self.configuration.auto_notify: self.notify_exc_info( exc_type, exc_value, traceback, severity='error', unhandled=True, severity_reason={ 'type': 'unhandledException' }) def install_sys_hook(self): self.sys_excepthook = sys.excepthook def excepthook(*exc_info): self.excepthook(*exc_info) if self.sys_excepthook: self.sys_excepthook(*exc_info) sys.excepthook = excepthook sys.excepthook.bugsnag_client = self if hasattr(threading, 'excepthook'): self.threading_excepthook = threading.excepthook def threadhook(args): self.excepthook(args[0], args[1], args[2]) if self.threading_excepthook: self.threading_excepthook(args) threading.excepthook = threadhook threading.excepthook.bugsnag_client = self def uninstall_sys_hook(self): client = getattr(sys.excepthook, 'bugsnag_client', None) if client is self: sys.excepthook = self.sys_excepthook self.sys_excepthook = None if hasattr(threading, 'excepthook'): client = getattr(threading.excepthook, 'bugsnag_client', None) if client is self: threading.excepthook = self.threading_excepthook self.threading_excepthook = None def deliver(self, event: Event, asynchronous: Optional[bool] = None): """ Deliver the exception event to Bugsnag. """ if not self.should_deliver(event): return def run_middleware(): initial_severity = event.severity initial_reason = event.severity_reason.copy() def send_payload(): if asynchronous is None: options = {} else: options = {'asynchronous': asynchronous} if event.api_key is None: bugsnag.logger.warning( "No API key configured, couldn't notify") return if initial_severity != event.severity: event.severity_reason = { 'type': 'userCallbackSetSeverity' } else: event.severity_reason = initial_reason payload = event._payload() try: self.configuration.delivery.deliver(self.configuration, payload, options) except Exception as e: bugsnag.logger.exception('Notifying Bugsnag failed %s', e) # Trigger session delivery self.session_tracker.send_sessions() self.configuration.middleware.run(event, send_payload) self.configuration.internal_middleware.run(event, run_middleware) def should_deliver(self, event: Event) -> bool: # Return early if we shouldn't notify for current release stage if not self.configuration.should_notify(): return False # Return early if we should ignore exceptions of this type if self.configuration.should_ignore(event.exception): return False return True def log_handler(self, extra_fields: List[str] = None) -> BugsnagHandler: return BugsnagHandler(client=self, extra_fields=extra_fields) class ClientContext: def __init__(self, client, exception_types: Optional[Tuple[Type, ...]] = None, **options): self.client = client self.options = options if 'severity' in options: options['severity_reason'] = dict(type='userContextSetSeverity') self.exception_types = exception_types or (Exception,) def __call__(self, function: Callable): @wraps(function) def decorate(*args, **kwargs): try: return function(*args, **kwargs) except self.exception_types as e: self.client.notify(e, source_func=function, **self.options) raise return decorate def __enter__(self): pass def __exit__(self, *exc_info): if any(exc_info): if any(isinstance(exc_info[1], e) for e in self.exception_types): self.client.notify_exc_info(*exc_info, **self.options) return False
#coding=gbk import zipfile import os def zip_files( files, zip_name ): zip = zipfile.ZipFile( zip_name, 'w', zipfile.ZIP_DEFLATED ) for file in files: print ('compressing', file) zip.write( file ) zip.close() print ('compressing finished') if __name__=='__main__': files = ['a.txt','b.txt','file1.txt'] zip_file = 'all.zip' zip_files(files, zip_file)
# Setup in PyCharm print("Hello World")
# -*- coding:utf-8 -*- """ 一些工具函数 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf input_key = 'input_img' output_key = 'pred' def save_model(sess, inp_tensor, out_tensor, output_path): ''' 将模型保存成文件 :param sess: Tensorflow session :param inp_tensor: 网络的输入 tensor :param out_tensor: 网络的输出 tensor :param output_path: 输出模型文件的路径 ''' inputs = {input_key: inp_tensor} outputs = {output_key: out_tensor} signature_def_map = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.saved_model.signature_def_utils.predict_signature_def(inputs, outputs) } b = tf.saved_model.builder.SavedModelBuilder(output_path) b.add_meta_graph_and_variables( sess, tags=[tf.saved_model.tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS)) b.save() return def write_pb(sess, graph, output_path, pb_fname): ''' 将模型保存成文件 :param sess: Tensorflow session :param graph: Tensorflow graph :param output_path: 输出模型文件的路径 :param pb_fname: 输出模型文件的文件名 ''' origin_def = graph.as_graph_def() graph_def = tf.graph_util.convert_variables_to_constants(sess, origin_def, ['output']) graph_def = tf.graph_util.remove_training_nodes(graph_def) tf.train.write_graph(graph_def, output_path, pb_fname, as_text=False) return def mkdir_p(path): """ make a folder in file system """ try: os.makedirs(path) except OSError as exc: # Python >2.5 if os.path.isdir(path): pass else: raise if __name__ == '__main__': pass
import bottle import os import hashlib from model import Uporabnik, Dnevnik, seznam_zvrsti, seznam_ocen from datetime import date imenik_s_podatki = 'uporabniki' uporabniki = {} skrivnost = 'TO JE ENA HUDA SKRIVNOST' if not os.path.isdir(imenik_s_podatki): os.mkdir(imenik_s_podatki) for ime_datoteke in os.listdir(imenik_s_podatki): uporabnik = Uporabnik.nalozi_stanje(os.path.join(imenik_s_podatki, ime_datoteke)) uporabniki[uporabnik.uporabnisko_ime] = uporabnik def trenutni_uporabnik(): uporabnisko_ime = bottle.request.get_cookie('uporabnisko_ime', secret=skrivnost) if uporabnisko_ime is None: bottle.redirect('/prijava/') return uporabniki[uporabnisko_ime] def dnevnik_uporabnika(): return trenutni_uporabnik().dnevnik def shrani_trenutnega_uporabnika(): uporabnik = trenutni_uporabnik() uporabnik.shrani_stanje(os.path.join('uporabniki', f'{uporabnik.uporabnisko_ime}.json')) # POMOŽNE FUNKCIJE def _preveri_leto_izdaje(niz): try: int(niz) except: raise ValueError(f'Pri letu izdaje morate vnesti število!') def _preveri_select(izbira): if izbira == None: raise ValueError('Morate izbrati eno izmed možnosti') pomozni_slovar = {} # v ta slovar bom pod ključem 'spremenljivka' shranjevala izvajalca ali zvrst # GET DEKORATORJI @bottle.get('/prijava/') def prijava_get(): return bottle.template('prijava.html') @bottle.get('/') def osnovna_stran(): bottle.redirect('/dnevnik/') @bottle.get('/dnevnik/') def zacetna_stran(): dnevnik = dnevnik_uporabnika() return bottle.template( 'glasbeni_dnevnik.html', dnevnik=dnevnik, zvrsti=seznam_zvrsti, ocene=seznam_ocen, albumi=dnevnik.seznam_albumov[::-1] ) @bottle.get('/dnevnik-po-abecedi/') def dnevnik_po_abecedi(): dnevnik = dnevnik_uporabnika() return bottle.template( 'glasbeni_dnevnik.html', dnevnik=dnevnik, zvrsti=seznam_zvrsti, ocene=seznam_ocen, albumi=dnevnik.sortiraj_po_abecedi() ) @bottle.get('/dnevnik-po-letu/') def dnevnik_po_letu(): dnevnik = dnevnik_uporabnika() return bottle.template( 'glasbeni_dnevnik.html', dnevnik=dnevnik, zvrsti=seznam_zvrsti, ocene=seznam_ocen, albumi=dnevnik.sortiraj_po_letu() ) @bottle.get('/dnevnik-po-izvajalcu/') def dnevnik_po_izvajalcu(): dnevnik = dnevnik_uporabnika() if len(pomozni_slovar) == 0: bottle.redirect('/') return bottle.template( 'glasbeni_dnevnik.html', dnevnik=dnevnik, zvrsti=seznam_zvrsti, ocene=seznam_ocen, albumi=dnevnik.sortiraj_po_izvajalcu(pomozni_slovar['spremenljivka']) ) @bottle.get('/dnevnik-po-zvrsti/') def dnevnik_po_zvrsti(): dnevnik = dnevnik_uporabnika() if len(pomozni_slovar) == 0: bottle.redirect('/') return bottle.template( 'glasbeni_dnevnik.html', dnevnik=dnevnik, zvrsti=seznam_zvrsti, ocene=seznam_ocen, albumi=dnevnik.sortiraj_po_zvrsti(pomozni_slovar['spremenljivka']) ) @bottle.get('/info/') def info(): return bottle.template('info.html') # POST DEKORATORJI @bottle.post('/prijava/') def prijava_post(): uporabnisko_ime = bottle.request.forms.getunicode('uporabnisko_ime') geslo = bottle.request.forms.getunicode('geslo') h = hashlib.blake2b() h.update(geslo.encode(encoding='utf-8')) zasifrirano_geslo = h.hexdigest() if 'nov_racun' in bottle.request.forms and uporabnisko_ime not in uporabniki: uporabnik = Uporabnik( uporabnisko_ime, zasifrirano_geslo, Dnevnik() ) uporabniki[uporabnisko_ime] = uporabnik else: uporabnik = uporabniki[uporabnisko_ime] uporabnik.preveri_geslo(zasifrirano_geslo) bottle.response.set_cookie('uporabnisko_ime', uporabnik.uporabnisko_ime, path='/', secret=skrivnost) bottle.redirect('/') @bottle.post('/odjava/') def odjava(): bottle.response.delete_cookie('uporabnisko_ime', path='/') bottle.redirect('/') @bottle.post('/dodaj-album/') def nov_album(): dnevnik = dnevnik_uporabnika() leto_izdaje =_preveri_leto_izdaje(bottle.request.forms['leto izdaje']) _preveri_select(bottle.request.forms['zvrst']) _preveri_select(bottle.request.forms['ocena']) naslov = bottle.request.forms.getunicode('naslov') izvajalec = bottle.request.forms.getunicode('izvajalec') datum = date.today() leto_izdaje = int(bottle.request.forms['leto izdaje']) zvrst = bottle.request.forms['zvrst'] ocena = int(bottle.request.forms['ocena']) opis = bottle.request.forms.getunicode('opis') dnevnik.nov_album(naslov, izvajalec, datum, leto_izdaje, zvrst, ocena, opis) shrani_trenutnega_uporabnika() bottle.redirect('/') @bottle.post('/sortiraj-po-datumu/') def po_datumu(): bottle.redirect('/') @bottle.post('/sortiraj-po-abecedi/') def po_abecedi(): bottle.redirect('/dnevnik-po-abecedi/') @bottle.post('/sortiraj-po-letu/') def po_letu(): bottle.redirect('/dnevnik-po-letu/') @bottle.post('/sortiraj-po-izvajalcu/') def po_izvajalcu(): izvajalec = bottle.request.forms.getunicode('izvajalec') _preveri_select(izvajalec) pomozni_slovar['spremenljivka'] = izvajalec bottle.redirect('/dnevnik-po-izvajalcu/') @bottle.post('/sortiraj-po-zvrsti/') def po_zvrsti(): zvrst = bottle.request.forms.getunicode('zvrst') _preveri_select(zvrst) pomozni_slovar['spremenljivka'] = zvrst bottle.redirect('/dnevnik-po-zvrsti/') bottle.run(debug=True, reloader=True)
import networkx as nx if __name__ == "__main__": G = nx.Graph() G.add_node(1) G.add_nodes_from([2, 3]) G.add_nodes_from([ (4, {"color": "red"}) ]) G.add_edge(1, 2) G.add_edges_from([(2, 3), (1, 3)]) print(G.nodes)
# Author: Zequn Yu # PID: A14712777 from __future__ import division #import pandas as pd import numpy import math # function to help add data to array def add_data(line, data, file): while (line): data.append(line.split()) line = file.readline() # read data from files # to save data from files train_data = [] test_data = [] # to open files train_file = open("pa5train.txt", "r") test_file = open("pa5test.txt", "r") # to read each line from files train_line = train_file.readline() test_line = test_file.readline() # set label label_idx = len(train_data[0]) - 1; # call function to read add_data(train_line, train_data, train_file) add_data(test_line, test_data, test_file) # test read # print("train: ", train_data) # print("test:", test_data # implement given weak learners: # hi,+(x) = 1, if word i occurs in email x # = −1, otherwise def classifier_h(data, idx, sign): # h+ case # print(" Now the sign is: ", sign) if(sign == "+"): if (data[idx] == 1): return 1 else: return -1 # h- case else: if (data[idx] == 0): return 1 else: return -1 # function to get error def cal_error(list): tol_err = 0 # check each e-mail feature read in for email in list: # check each feature # for feature in range(0, label_idx): train_l = email[label_idx] should_l = classifier_h(email, label_idx, "+") if(train_l == should_l): tol_err = tol_err + 1 return tol_err # function to change alpha def update_alpha(b_err): c_list = () alpha = .5 * numpy.log((1 - b_err.e) / b_err.e) c_list.append((alpha, b_err.h, b_err.word)) return c_list # the main part of bossting def boost(data): class_tuple = () # for rounds test boost = [3, 7, 10, 15, 20] # check different boost for b in boost: # print("Now boost is: ", b ) cur_err = 100.0 cur_feature = -1 cur_label = 2 weight = [1/len(data)] * len(data) # run for rounds of range # update feature, label and error rounds = len(data[0]) - 1 for r in range(rounds): # calculate the number of error tmp_err = cal_error(r) # check if need to update error if(tmp_err < cur_err): cur_err = tmp_err cur_feature = r cur_label = 1 # check if flip label elif(1 - tmp_err < cur_err): cur_err = 1 - tmp_err cur_feature = 1 cur_label = -1 # update alpha class_tuple = update_alpha(cur_err) # update for i in range(len(data)): d = [weight[i] * numpy.e ** (-class_tuple[0] * y[i] * cur_err.h(x.iloc[i, :], cur_err.word))] # set normalize d = 0 sum_d = sum(d) update_d = [(i / sum_d) for i in d] #return class_tuple print_stat(train_data, test_data, tuple) # function to get label def cal_label(feature, list): cur_l = 0 for l in list: if l[1] == 1: if feature[l[0]] == 1: cur_l += l[2] else: cur_l -= l[2] else: if feature[l[0]] == 0: cur_l += l[2] else: cur_l -= l[2] return (cur_l / math.fabs(cur_l)) # predict def predict (data, classif): pred = data.apply(lambda x: classify(x, classif), axis=1) return pred # set final classify def classify(x, classifiers): #print("classify turn") total = 0 for c in classifiers: # update alpha = c[0] h = c[1] word = c[2] total += (alpha * h(x, word)) # print(total) return numpy.sign(total) # cal train error def t_err(t_data, tuple): err = 0 for t in t_data: currLabel = cal_label(t, tuple) if currLabel != t[-1]: err += 1 err = (err / float(len(train_data))) return err # cal test error def e_err(e_data, tuple): err = 0 for t in e_data: currLabel = cal_label(t, tuple) if currLabel != t[-1]: err += 1 err = err / float(len(e_data)) return err def print_stat(t_data, e_data, tuple): # print("start training data:") t = boost(t_data) # print("run predict: ") p = predict(t_data, t) tr_err = t_err(t_data, tuple) #print("Now the data err is: ", tr_err) e = boost(e_data) # peinr("run predict: ") p2 = predict(e_data, e) te_err = e_err(e_data, tuple) ''' rounds = [3,4,7,10,15,20] for r in rounds: for t in dataList: curr_l = calLabel(t, tuple) if curLabel != t[-1]: errorCount += 1 readFile("..\data\pa5test.txt") errorCount = 0 for t in dataList: curr_l = calLabel(t, tuple) if curr_l != t[-1]: errorCount += 1 '''