init
Browse files- fetch_dataset_s2s.py +1 -4
- main_s2s.sh +1 -1
fetch_dataset_s2s.py
CHANGED
@@ -135,13 +135,10 @@ def get_audio(dataframe: pd.DataFrame):
|
|
135 |
wav = wav[:int(end/sampling_rate * sr) + sr]
|
136 |
if len(wav) < min_seq_length or len(wav) > max_seq_length:
|
137 |
print(f"invalid wave length: {len(wav)}")
|
|
|
138 |
return None
|
139 |
print(f"SAVING: {features[f'{side}.path']}")
|
140 |
sf.write(features[f"{side}.path"], wav, sr)
|
141 |
-
# if sr != sampling_rate:
|
142 |
-
# print(f"RESAMPLING: {wav.shape} length audio")
|
143 |
-
# wav = librosa.resample(wav, orig_sr=sr, target_sr=sampling_rate)
|
144 |
-
# sf.write(features[f"{side}.path"], wav[start:end], sampling_rate)
|
145 |
|
146 |
except Exception as e:
|
147 |
print(f"\n#### ERROR ####\n {e}")
|
|
|
135 |
wav = wav[:int(end/sampling_rate * sr) + sr]
|
136 |
if len(wav) < min_seq_length or len(wav) > max_seq_length:
|
137 |
print(f"invalid wave length: {len(wav)}")
|
138 |
+
cleanup(features, feature_file)
|
139 |
return None
|
140 |
print(f"SAVING: {features[f'{side}.path']}")
|
141 |
sf.write(features[f"{side}.path"], wav, sr)
|
|
|
|
|
|
|
|
|
142 |
|
143 |
except Exception as e:
|
144 |
print(f"\n#### ERROR ####\n {e}")
|
main_s2s.sh
CHANGED
@@ -312,8 +312,8 @@ done
|
|
312 |
# speaker embedding
|
313 |
export SE_MODEL="metavoice"
|
314 |
export SE_MODEL="w2vbert-600m"
|
315 |
-
export SE_MODEL="xlsr-2b"
|
316 |
export SE_MODEL="hubert-xl"
|
|
|
317 |
for i in $(seq 1 100);
|
318 |
do
|
319 |
export DATASET_ID=${i}
|
|
|
312 |
# speaker embedding
|
313 |
export SE_MODEL="metavoice"
|
314 |
export SE_MODEL="w2vbert-600m"
|
|
|
315 |
export SE_MODEL="hubert-xl"
|
316 |
+
export SE_MODEL="xlsr-2b"
|
317 |
for i in $(seq 1 100);
|
318 |
do
|
319 |
export DATASET_ID=${i}
|