test streaming
Browse files- .gitignore +2 -1
- format_text.py +10 -0
- main.sh +4 -1
- push_s2s_translation.py +33 -33
- push_s2t_translation.py +114 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
.idea
|
2 |
build
|
3 |
-
preprocess
|
|
|
|
1 |
.idea
|
2 |
build
|
3 |
+
preprocess
|
4 |
+
download
|
format_text.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
from glob import glob
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
df = pd.concat([pd.read_csv(i, quoting=csv.QUOTE_NONE, encoding='utf-8', sep='\t', header=None, on_bad_lines='skip') for i in glob('seamless.dataset.metadata.public.jpn.batch_*.tsv')])
|
7 |
+
line_no = [i.split(" ")[3] for i in df[0]]
|
8 |
+
text = df[1].values.tolist()
|
9 |
+
with open("text.enA-jpn.json", "w") as f:
|
10 |
+
json.dump({l: t for l, t in zip(line_no, text)}, f)
|
main.sh
CHANGED
@@ -130,7 +130,10 @@ cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_8.tsv
|
|
130 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_9.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_9.tsv
|
131 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_10.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_10.tsv
|
132 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_11.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_11.tsv
|
133 |
-
|
|
|
|
|
|
|
134 |
|
135 |
########
|
136 |
# NLLB #
|
|
|
130 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_9.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_9.tsv
|
131 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_10.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_10.tsv
|
132 |
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_11.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_11.tsv
|
133 |
+
cp ../format_text.py ./
|
134 |
+
python format_text.py
|
135 |
+
mv text.enA-jpn.json ../
|
136 |
+
cd ../
|
137 |
|
138 |
########
|
139 |
# NLLB #
|
push_s2s_translation.py
CHANGED
@@ -21,7 +21,7 @@ line_no_start = int(os.getenv("LINE_NO_START", 0))
|
|
21 |
line_no_end = int(os.getenv("LINE_NO_END", 10000))
|
22 |
dataset_id = int(os.getenv("DATASET_ID", 0))
|
23 |
hf_org = "kotoba-tech"
|
24 |
-
hf_dataset = f"seamless-align-{direction}
|
25 |
|
26 |
|
27 |
def loader(feature: str) -> Dict:
|
@@ -50,37 +50,37 @@ data_dict.update(
|
|
50 |
audio_dataset = Dataset.from_dict(data_dict)
|
51 |
audio_dataset = audio_dataset.cast_column(f"{sides_rev[1]}.audio", Audio())
|
52 |
audio_dataset = audio_dataset.cast_column(f"{sides_rev[2]}.audio", Audio())
|
53 |
-
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
|
86 |
# trim the audio according to the duration
|
@@ -108,7 +108,7 @@ dataset_to_push = DatasetDict({"train": audio_dataset_valid})
|
|
108 |
repo_name = f"{hf_org}/{hf_dataset}"
|
109 |
while True:
|
110 |
try:
|
111 |
-
dataset_to_push.push_to_hub(repo_name)
|
112 |
break
|
113 |
except Exception:
|
114 |
print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...")
|
|
|
21 |
line_no_end = int(os.getenv("LINE_NO_END", 10000))
|
22 |
dataset_id = int(os.getenv("DATASET_ID", 0))
|
23 |
hf_org = "kotoba-tech"
|
24 |
+
hf_dataset = f"seamless-align-{direction}"
|
25 |
|
26 |
|
27 |
def loader(feature: str) -> Dict:
|
|
|
50 |
audio_dataset = Dataset.from_dict(data_dict)
|
51 |
audio_dataset = audio_dataset.cast_column(f"{sides_rev[1]}.audio", Audio())
|
52 |
audio_dataset = audio_dataset.cast_column(f"{sides_rev[2]}.audio", Audio())
|
53 |
+
|
54 |
+
# remove instances with broken audio files
|
55 |
+
broken_files = []
|
56 |
+
for i in tqdm(range(len(audio_dataset))):
|
57 |
+
try:
|
58 |
+
a = audio_dataset[i]
|
59 |
+
flag = True
|
60 |
+
for side_id in sides_rev.keys():
|
61 |
+
start = a[f"{sides_rev[side_id]}.duration_start"]
|
62 |
+
end = a[f"{sides_rev[side_id]}.duration_end"]
|
63 |
+
array = a[f"{sides_rev[side_id]}.audio"]["array"]
|
64 |
+
flag = 0 < start < end < len(array)
|
65 |
+
if not flag:
|
66 |
+
broken_files.append(i)
|
67 |
+
except LibsndfileError:
|
68 |
+
broken_files.append(i)
|
69 |
+
continue
|
70 |
+
print(f"features (removed broken audio): {len(audio_dataset) - len(broken_files)}")
|
71 |
+
if len(broken_files) > 0:
|
72 |
+
print(f"found {len(broken_files)} broken files:")
|
73 |
+
flag = input("delete the broken files? (y/n): ")
|
74 |
+
if flag == "y":
|
75 |
+
# remove broken files
|
76 |
+
for i in broken_files:
|
77 |
+
if os.path.exists(files[file_ids[i]]):
|
78 |
+
os.remove(files[file_ids[i]])
|
79 |
+
for side_id in sides_rev.keys():
|
80 |
+
if os.path.exists(data_dict[f"{sides_rev[side_id]}.audio"][i]):
|
81 |
+
os.remove(data_dict[f"{sides_rev[side_id]}.audio"][i])
|
82 |
+
valid_data_id = [i for i in range(len(audio_dataset)) if i not in broken_files]
|
83 |
+
audio_dataset_valid = audio_dataset.select(valid_data_id)
|
84 |
|
85 |
|
86 |
# trim the audio according to the duration
|
|
|
108 |
repo_name = f"{hf_org}/{hf_dataset}"
|
109 |
while True:
|
110 |
try:
|
111 |
+
dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
|
112 |
break
|
113 |
except Exception:
|
114 |
print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...")
|
push_s2t_translation.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from os.path import join as p_join
|
5 |
+
from tqdm import tqdm
|
6 |
+
from typing import Dict
|
7 |
+
from glob import glob
|
8 |
+
|
9 |
+
from soundfile import LibsndfileError
|
10 |
+
from datasets import Dataset, Audio, DatasetDict
|
11 |
+
|
12 |
+
# dataset config
|
13 |
+
direction_speech = os.getenv("DIRECTION_SPEECH", "enA")
|
14 |
+
direction_text = os.getenv("DIRECTION_TEXT", "jpn")
|
15 |
+
direction = f"{direction_speech}-{direction_text}"
|
16 |
+
with open(f"text.{direction}.json") as f:
|
17 |
+
line2text = json.load(f)
|
18 |
+
cache_dir_audio = p_join("download", "audio", direction)
|
19 |
+
cache_dir_feature = p_join("download", "feature", direction)
|
20 |
+
os.makedirs(cache_dir_audio, exist_ok=True)
|
21 |
+
os.makedirs(cache_dir_feature, exist_ok=True)
|
22 |
+
line_no_start = int(os.getenv("LINE_NO_START", 0))
|
23 |
+
line_no_end = int(os.getenv("LINE_NO_END", 10000))
|
24 |
+
dataset_id = int(os.getenv("DATASET_ID", 0))
|
25 |
+
hf_org = "kotoba-tech"
|
26 |
+
hf_dataset = f"seamless-align-{direction}"
|
27 |
+
|
28 |
+
|
29 |
+
def loader(feature: str) -> Dict:
|
30 |
+
with open(feature) as f:
|
31 |
+
return json.load(f)
|
32 |
+
|
33 |
+
|
34 |
+
# create a dataset instance
|
35 |
+
|
36 |
+
files = {
|
37 |
+
int(os.path.basename(i).replace(".json", "")): i for i in glob(p_join(cache_dir_feature, "*.json"))
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
def delete_audio(target_audio_file):
|
42 |
+
if os.path.exists(target_audio_file):
|
43 |
+
os.remove(target_audio_file)
|
44 |
+
line_no = os.path.basename(target_audio_file).split(".")[0]
|
45 |
+
try:
|
46 |
+
feature_file = files[int(line_no)]
|
47 |
+
if os.path.exists(feature_file):
|
48 |
+
os.remove(feature_file)
|
49 |
+
except Exception as e:
|
50 |
+
print(e)
|
51 |
+
|
52 |
+
|
53 |
+
# remove broken audio files
|
54 |
+
features = []
|
55 |
+
audio_loader = Audio()
|
56 |
+
for i in tqdm(list(range(line_no_start, line_no_end))):
|
57 |
+
if i in files:
|
58 |
+
continue
|
59 |
+
i = loader(files[i])
|
60 |
+
i[f"{direction_text}.text"] = line2text[str(i)]
|
61 |
+
audio_file = i[f"{direction_speech}.path"]
|
62 |
+
start, end = i[f"{direction_speech}.duration_start"], i[f"{direction_speech}.duration_end"]
|
63 |
+
if os.path.exists(audio_file):
|
64 |
+
try:
|
65 |
+
wav = audio_loader.decode_example({"path": audio_file, "bytes": None})
|
66 |
+
if start < end < len(wav["array"]):
|
67 |
+
features.append(i)
|
68 |
+
else:
|
69 |
+
delete_audio(audio_file)
|
70 |
+
except Exception as e:
|
71 |
+
print(e)
|
72 |
+
delete_audio(audio_file)
|
73 |
+
|
74 |
+
|
75 |
+
print(f"features (filtered): {len(features)}")
|
76 |
+
data_dict = {f"{direction_speech}.audio": [i.pop(f"{direction_speech}.path") for i in features]}
|
77 |
+
keys = features[0].keys()
|
78 |
+
data_dict.update({k: [i[k] for i in features] for k in keys})
|
79 |
+
audio_dataset = Dataset.from_dict(data_dict)
|
80 |
+
audio_dataset = audio_dataset.cast_column(f"{direction_speech}.audio", Audio())
|
81 |
+
|
82 |
+
|
83 |
+
# trim the audio according to the duration
|
84 |
+
def clip_audio(batch):
|
85 |
+
start = batch[f"{direction_speech}.duration_start"]
|
86 |
+
end = batch[f"{direction_speech}.duration_end"]
|
87 |
+
audio = batch[f"{direction_speech}.audio"]
|
88 |
+
batch[f"{direction_speech}.audio"] = [
|
89 |
+
{"array": a["array"][s:e], "sampling_rate": a["sampling_rate"]}
|
90 |
+
for a, s, e in zip(audio, start, end)
|
91 |
+
]
|
92 |
+
return batch
|
93 |
+
|
94 |
+
|
95 |
+
audio_dataset_valid = audio_dataset_valid.map(
|
96 |
+
function=clip_audio,
|
97 |
+
batched=True,
|
98 |
+
batch_size=128,
|
99 |
+
num_proc=1,
|
100 |
+
desc="clipping audio based on the duration:"
|
101 |
+
)
|
102 |
+
|
103 |
+
dataset_to_push = DatasetDict({"train": audio_dataset_valid})
|
104 |
+
repo_name = f"{hf_org}/{hf_dataset}"
|
105 |
+
while True:
|
106 |
+
try:
|
107 |
+
dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
|
108 |
+
break
|
109 |
+
except Exception:
|
110 |
+
print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...")
|
111 |
+
time.sleep(60)
|
112 |
+
os.makedirs("log", exist_ok=True)
|
113 |
+
with open(f"log/pushed.line_no.{dataset_id}.json", "w") as f:
|
114 |
+
json.dump(data_dict["line_no"], f)
|