|
import torch |
|
import logging |
|
from pathlib import Path |
|
import os |
|
from transformers import BertModel, BertForTokenClassification |
|
import pandas as pd |
|
import evaluate |
|
from datasets import load_dataset |
|
from transformers import BertTokenizerFast |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
|
|
def tokenize(dataset): |
|
BERT_MAX_LEN = 512 |
|
|
|
tokenizer = BertTokenizerFast.from_pretrained( |
|
"neuralmind/bert-base-portuguese-cased", max_length=BERT_MAX_LEN) |
|
|
|
dataset = dataset.map(lambda example: tokenizer( |
|
example["text"], truncation=True, padding="max_length", max_length=BERT_MAX_LEN)) |
|
|
|
return dataset |
|
|
|
|
|
def create_dataloader(dataset, shuffle=True): |
|
return DataLoader(dataset, batch_size=8, shuffle=shuffle, num_workers=8, drop_last=True) |
|
|
|
|
|
CURRENT_PATH = Path(__file__).parent |
|
|
|
logging.basicConfig(level=logging.INFO, |
|
format='%(asctime)s %(levelname)s %(message)s', datefmt='%H:%M:%S', filename=os.path.join(CURRENT_PATH, 'out', 'debug_embeddings.txt'), filemode='w') |
|
|
|
|
|
class LanguageIdentifer(torch.nn.Module): |
|
def __init__(self, mode='horizontal_stacking', pos_layers_to_freeze=0, bertimbau_layers_to_freeze=0): |
|
super().__init__() |
|
|
|
self.labels = ['pt-PT', 'pt-BR'] |
|
|
|
self.portuguese_model = BertModel.from_pretrained( |
|
"neuralmind/bert-base-portuguese-cased") |
|
|
|
self.portuguese_pos_tagging_model = BertForTokenClassification.from_pretrained( |
|
"lisaterumi/postagger-portuguese") |
|
|
|
for layer in range(bertimbau_layers_to_freeze): |
|
for name, param in self.portuguese_model.named_parameters(): |
|
if f".{layer}" in name: |
|
print(f"Freezing Layer {name} of Bertimbau") |
|
param.requires_grad = False |
|
|
|
for layer in range(pos_layers_to_freeze): |
|
for name, param in self.portuguese_pos_tagging_model.named_parameters(): |
|
if f".{layer}" in name: |
|
print(f"Freezing Layer {name} of POS") |
|
param.requires_grad = False |
|
|
|
self.portuguese_pos_tagging_model.classifier = torch.nn.Identity() |
|
self.mode = mode |
|
|
|
if self.mode == 'horizontal_stacking': |
|
self.linear = self.common_network(torch.nn.Linear( |
|
self.portuguese_pos_tagging_model.config.hidden_size + self.portuguese_model.config.hidden_size, 512)) |
|
elif self.mode == 'bertimbau_only' or self.mode == 'pos_only' or self.mode == 'vertical_sum': |
|
self.linear = self.common_network(torch.nn.Linear( |
|
self.portuguese_model.config.hidden_size, 512)) |
|
else: |
|
raise NotImplementedError |
|
|
|
def common_network(self, custom_linear): |
|
return torch.nn.Sequential( |
|
custom_linear, |
|
torch.nn.ReLU(), |
|
torch.nn.Dropout(0.2), |
|
torch.nn.Linear(512, 1), |
|
) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
|
|
|
|
outputs_bert = self.portuguese_model( |
|
input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :] |
|
|
|
|
|
outputs_pos = self.portuguese_pos_tagging_model( |
|
input_ids=input_ids, attention_mask=attention_mask).logits[:, 0, :] |
|
|
|
if self.mode == 'horizontal_stacking': |
|
outputs = torch.cat((outputs_bert, outputs_pos), dim=1) |
|
elif self.mode == 'bertimbau_only': |
|
outputs = outputs_bert |
|
elif self.mode == 'pos_only': |
|
outputs = outputs_pos |
|
elif self.mode == 'vertical_sum': |
|
outputs = outputs_bert + outputs_pos |
|
outputs = torch.nn.functional.normalize(outputs, p=2, dim=1) |
|
|
|
return self.linear(outputs) |
|
|
|
|
|
def load_models(): |
|
models = [] |
|
|
|
for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']: |
|
logging.info(f"Loading {domain} model...") |
|
|
|
model = LanguageIdentifer(mode='pos_only') |
|
model.load_state_dict(torch.load(os.path.join( |
|
CURRENT_PATH, 'models', 'embeddings', f'{domain}.pt'))) |
|
|
|
models.append({ |
|
'model': model, |
|
'train_domain': domain, |
|
}) |
|
|
|
return models |
|
|
|
|
|
def benchmark(model, debug=False): |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
df_result = pd.DataFrame( |
|
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall']) |
|
|
|
train_domain = model['train_domain'] |
|
|
|
model = model['model'] |
|
|
|
model.to(device) |
|
|
|
model.eval() |
|
|
|
for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']: |
|
dataset = load_dataset( |
|
'arubenruben/Portuguese_Language_Identification', test_domain, split='test') |
|
|
|
if debug: |
|
logging.info("Debug mode: using only 100 samples") |
|
dataset = dataset.shuffle().select(range(100)) |
|
else: |
|
dataset = dataset.shuffle().select(range(min(50_000, len(dataset)))) |
|
|
|
dataset = tokenize(dataset) |
|
dataset = create_dataloader(dataset) |
|
|
|
y = [] |
|
|
|
with torch.no_grad(): |
|
for batch in tqdm(dataset): |
|
input_ids = batch['input_ids'].to(device) |
|
attention_mask = batch['attention_mask'].to(device) |
|
|
|
y.extend(model(input_ids, attention_mask).cpu().detach().numpy()) |
|
|
|
y = [1 if y_ > 0.5 else 0 for y_ in y] |
|
|
|
accuracy = evaluate.load('accuracy').compute( |
|
predictions=y, references=dataset['label'])['accuracy'] |
|
f1 = evaluate.load('f1').compute( |
|
predictions=y, references=dataset['label'])['f1'] |
|
precision = evaluate.load('precision').compute( |
|
predictions=y, references=dataset['label'])['precision'] |
|
recall = evaluate.load('recall').compute( |
|
predictions=y, references=dataset['label'])['recall'] |
|
|
|
df_result = pd.concat([df_result, pd.DataFrame({ |
|
'train_domain': [train_domain], |
|
'test_domain': [test_domain], |
|
'accuracy': [accuracy], |
|
'f1': [f1], |
|
'precision': [precision], |
|
'recall': [recall], |
|
})], ignore_index=True) |
|
|
|
return df_result |
|
|
|
|
|
def test(): |
|
DEBUG = False |
|
|
|
models = load_models() |
|
|
|
df_results = pd.DataFrame( |
|
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall']) |
|
|
|
for model in models: |
|
logging.info(f"Train Domain {model['train_domain']}...") |
|
|
|
df_results = pd.concat( |
|
[df_results, benchmark(model, debug=DEBUG)], ignore_index=True) |
|
|
|
logging.info("Saving Results...") |
|
|
|
df_results.to_json(os.path.join(CURRENT_PATH, 'out', 'embeddings.json'), |
|
orient='records', indent=4, force_ascii=False) |