dummy / embeddings.py
arubenruben's picture
Embeddings Not yet tested
ed540d3
raw
history blame
6.87 kB
import torch
import logging
from pathlib import Path
import os
from transformers import BertModel, BertForTokenClassification
import pandas as pd
import evaluate
from datasets import load_dataset
from transformers import BertTokenizerFast
from torch.utils.data import DataLoader
from tqdm import tqdm
def tokenize(dataset):
BERT_MAX_LEN = 512
tokenizer = BertTokenizerFast.from_pretrained(
"neuralmind/bert-base-portuguese-cased", max_length=BERT_MAX_LEN)
dataset = dataset.map(lambda example: tokenizer(
example["text"], truncation=True, padding="max_length", max_length=BERT_MAX_LEN))
return dataset
def create_dataloader(dataset, shuffle=True):
return DataLoader(dataset, batch_size=8, shuffle=shuffle, num_workers=8, drop_last=True)
CURRENT_PATH = Path(__file__).parent
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s', datefmt='%H:%M:%S', filename=os.path.join(CURRENT_PATH, 'out', 'debug_embeddings.txt'), filemode='w')
class LanguageIdentifer(torch.nn.Module):
def __init__(self, mode='horizontal_stacking', pos_layers_to_freeze=0, bertimbau_layers_to_freeze=0):
super().__init__()
self.labels = ['pt-PT', 'pt-BR']
self.portuguese_model = BertModel.from_pretrained(
"neuralmind/bert-base-portuguese-cased")
self.portuguese_pos_tagging_model = BertForTokenClassification.from_pretrained(
"lisaterumi/postagger-portuguese")
for layer in range(bertimbau_layers_to_freeze):
for name, param in self.portuguese_model.named_parameters():
if f".{layer}" in name:
print(f"Freezing Layer {name} of Bertimbau")
param.requires_grad = False
for layer in range(pos_layers_to_freeze):
for name, param in self.portuguese_pos_tagging_model.named_parameters():
if f".{layer}" in name:
print(f"Freezing Layer {name} of POS")
param.requires_grad = False
self.portuguese_pos_tagging_model.classifier = torch.nn.Identity()
self.mode = mode
if self.mode == 'horizontal_stacking':
self.linear = self.common_network(torch.nn.Linear(
self.portuguese_pos_tagging_model.config.hidden_size + self.portuguese_model.config.hidden_size, 512))
elif self.mode == 'bertimbau_only' or self.mode == 'pos_only' or self.mode == 'vertical_sum':
self.linear = self.common_network(torch.nn.Linear(
self.portuguese_model.config.hidden_size, 512))
else:
raise NotImplementedError
def common_network(self, custom_linear):
return torch.nn.Sequential(
custom_linear,
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(512, 1),
)
def forward(self, input_ids, attention_mask):
#(Batch_Size,Sequence Length, Hidden_Size)
outputs_bert = self.portuguese_model(
input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :]
#(Batch_Size,Sequence Length, Hidden_Size)
outputs_pos = self.portuguese_pos_tagging_model(
input_ids=input_ids, attention_mask=attention_mask).logits[:, 0, :]
if self.mode == 'horizontal_stacking':
outputs = torch.cat((outputs_bert, outputs_pos), dim=1)
elif self.mode == 'bertimbau_only':
outputs = outputs_bert
elif self.mode == 'pos_only':
outputs = outputs_pos
elif self.mode == 'vertical_sum':
outputs = outputs_bert + outputs_pos
outputs = torch.nn.functional.normalize(outputs, p=2, dim=1)
return self.linear(outputs)
def load_models():
models = []
for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
logging.info(f"Loading {domain} model...")
model = LanguageIdentifer(mode='pos_only')
model.load_state_dict(torch.load(os.path.join(
CURRENT_PATH, 'models', 'embeddings', f'{domain}.pt')))
models.append({
'model': model,
'train_domain': domain,
})
return models
def benchmark(model, debug=False):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
df_result = pd.DataFrame(
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
train_domain = model['train_domain']
model = model['model']
model.to(device)
model.eval()
for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
dataset = load_dataset(
'arubenruben/Portuguese_Language_Identification', test_domain, split='test')
if debug:
logging.info("Debug mode: using only 100 samples")
dataset = dataset.shuffle().select(range(100))
else:
dataset = dataset.shuffle().select(range(min(50_000, len(dataset))))
dataset = tokenize(dataset)
dataset = create_dataloader(dataset)
y = []
with torch.no_grad():
for batch in tqdm(dataset):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
y.extend(model(input_ids, attention_mask).cpu().detach().numpy())
y = [1 if y_ > 0.5 else 0 for y_ in y]
accuracy = evaluate.load('accuracy').compute(
predictions=y, references=dataset['label'])['accuracy']
f1 = evaluate.load('f1').compute(
predictions=y, references=dataset['label'])['f1']
precision = evaluate.load('precision').compute(
predictions=y, references=dataset['label'])['precision']
recall = evaluate.load('recall').compute(
predictions=y, references=dataset['label'])['recall']
df_result = pd.concat([df_result, pd.DataFrame({
'train_domain': [train_domain],
'test_domain': [test_domain],
'accuracy': [accuracy],
'f1': [f1],
'precision': [precision],
'recall': [recall],
})], ignore_index=True)
return df_result
def test():
DEBUG = False
models = load_models()
df_results = pd.DataFrame(
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
for model in models:
logging.info(f"Train Domain {model['train_domain']}...")
df_results = pd.concat(
[df_results, benchmark(model, debug=DEBUG)], ignore_index=True)
logging.info("Saving Results...")
df_results.to_json(os.path.join(CURRENT_PATH, 'out', 'embeddings.json'),
orient='records', indent=4, force_ascii=False)