|
import torch |
|
from datasets import load_dataset, Dataset |
|
from transformers import BertTokenizerFast |
|
import pandas as pd |
|
from imblearn.under_sampling import RandomUnderSampler |
|
import logging |
|
import os |
|
|
|
|
|
def balance_data(dataset): |
|
df = dataset.to_pandas() |
|
|
|
logging.info(f"Balancing {df['label'].value_counts()}") |
|
|
|
rus = RandomUnderSampler(random_state=42, replacement=True) |
|
|
|
X_resampled, y_resampled = rus.fit_resample( |
|
df['text'].to_numpy().reshape(-1, 1), df['label'].to_numpy()) |
|
|
|
df = pd.DataFrame( |
|
{'text': X_resampled.flatten(), 'label': y_resampled}) |
|
|
|
logging.info(f"After balancing: {df['label'].value_counts()}") |
|
|
|
return Dataset.from_pandas(df) |
|
|
|
|
|
def tokenize(dataset): |
|
tokenizer = BertTokenizerFast.from_pretrained("neuralmind/bert-large-portuguese-cased") |
|
|
|
dataset = dataset.map(lambda example: tokenizer( |
|
example["text"], truncation=True, padding="max_length", max_length=512)) |
|
|
|
return dataset |
|
|
|
|
|
def tokenize_single_document(text): |
|
tokenizer = BertTokenizerFast.from_pretrained("neuralmind/bert-large-portuguese-cased") |
|
|
|
return tokenizer(text, truncation=True, padding="max_length", max_length=512) |
|
|
|
def load_dataloader(domain): |
|
|
|
logging.info(f"Loading {domain} dataset...") |
|
|
|
if domain == 'dslcc': |
|
dataset = load_dataset("arubenruben/portuguese_dslcc") |
|
else: |
|
dataset = load_dataset("Random-Mary-Smith/port_data_random", domain) |
|
|
|
DEBUG = (os.getenv('DEBUG', 'False') == 'True') |
|
|
|
dataset['train'] = balance_data(dataset['train']) |
|
|
|
dataset['test'] = dataset['test'].select(range(min(len(dataset['test']), 10_000))) |
|
|
|
for split in ['train', 'test']: |
|
if DEBUG: |
|
logging.info("DEBUG MODE: Loading only 100 samples") |
|
dataset[split] = dataset[split].select(range(min(len(dataset[split]), 50))) |
|
|
|
dataset = tokenize(dataset) |
|
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label']) |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(dataset['train'], batch_size=int(os.getenv('BATCH_SIZE')), shuffle=True) |
|
test_dataloader = torch.utils.data.DataLoader(dataset['test'], batch_size=int(os.getenv('BATCH_SIZE')), shuffle=False) |
|
|
|
return train_dataloader, test_dataloader |