useful-scripts / dots-ocr-endpoint-infernece.py
ariG23498's picture
ariG23498 HF Staff
Create dots-ocr-endpoint-infernece.py
505db55 verified
import os
from openai import OpenAI
from dotenv import load_dotenv
import plotly.express as px
import plotly.graph_objects as go
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import json
load_dotenv()
client = OpenAI(
base_url = "",
api_key = os.environ["HF_TOKEN"]
)
prompt = """\
Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.\
"""
chat_completion = client.chat.completions.create(
model = "rednote-hilab/dots.ocr",
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true"
}
},
{
"type": "text",
"text": prompt,
}
]
}
],
stream = True,
)
text = ""
for message in chat_completion:
text = text + message.choices[0].delta.content
annotations = json.loads(text)
# Load image
url = "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true"
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img_array = np.array(img)
# Enhanced color mapping for different categories
category_colors = {
'Title': '#FF6B6B',
'Section-header': '#4ECDC4',
'Text': '#45B7D1',
'Picture': '#96CEB4',
'Table': '#FFEAA7',
'Formula': '#DDA0DD',
'Caption': '#98D8C8',
'List-item': '#F7DC6F',
'Footnote': '#BB8FCE',
'Page-header': '#85C1E9',
'Page-footer': '#F8C471'
}
# Create figure with enhanced settings
fig = px.imshow(img_array, aspect='equal')
# Enhanced layout configuration
fig.update_layout(
title={
'text': "Interactive OCR Layout Analysis",
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'family': 'Arial Black'}
},
dragmode="pan", # Enable panning
hovermode="closest",
margin=dict(l=20, r=20, t=60, b=20),
showlegend=True,
legend=dict(
orientation="v",
yanchor="top",
y=1,
xanchor="left",
x=1.02,
bgcolor="rgba(255,255,255,0.8)",
bordercolor="rgba(0,0,0,0.2)",
borderwidth=1
),
plot_bgcolor='white',
paper_bgcolor='white'
)
# Track categories for legend
added_categories = set()
# Add enhanced bounding boxes with category-based colors
for i, ann in enumerate(annotations):
x1, y1, x2, y2 = ann['bbox']
category = ann.get('category', 'Unknown')
color = category_colors.get(category, '#FF4444')
# Enhanced bounding box with category-specific styling
line_width = 3 if category in ['Title', 'Section-header'] else 2
opacity = 0.8 if category == 'Picture' else 1.0
fig.add_shape(
type="rect",
x0=x1, y0=y1, x1=x2, y1=y2,
line=dict(color=color, width=line_width),
opacity=opacity
)
# Enhanced hover information with better formatting
text_content = ann.get('text', 'No text available')
if len(text_content) > 200:
text_content = text_content[:200] + "..."
# Format hover text based on category
if category == 'Formula':
hover_text = f"<b>πŸ”’ {category}</b><br><i>{text_content}</i>"
elif category == 'Picture':
hover_text = f"<b>πŸ–ΌοΈ {category}</b><br>Image element"
elif category == 'Table':
hover_text = f"<b>πŸ“Š {category}</b><br>{text_content}"
elif category == 'Title':
hover_text = f"<b>πŸ“‹ {category}</b><br><b>{text_content}</b>"
else:
hover_text = f"<b>πŸ“„ {category}</b><br>{text_content}"
# Add bbox dimensions to hover
width = x2 - x1
height = y2 - y1
hover_text += f"<br><br><i>Box: {width:.0f}Γ—{height:.0f}px</i>"
# Create hover point with legend entry
show_legend = category not in added_categories
if show_legend:
added_categories.add(category)
fig.add_trace(go.Scatter(
x=[(x1 + x2) / 2],
y=[(y1 + y2) / 2],
mode="markers",
marker=dict(
size=20,
opacity=0, # Invisible marker
color=color
),
text=[hover_text],
hoverinfo="text",
hovertemplate="%{text}<extra></extra>",
name=category,
showlegend=show_legend,
legendgroup=category
))
# Enhanced axes configuration
fig.update_xaxes(
showticklabels=False,
showgrid=False,
zeroline=False
)
fig.update_yaxes(
showticklabels=False,
showgrid=False,
zeroline=False,
scaleanchor="x",
scaleratio=1
)
# Add custom controls info
fig.add_annotation(
text="πŸ’‘ Hover over colored boxes to see content β€’ Pan: drag β€’ Zoom: scroll",
xref="paper", yref="paper",
x=0.5, y=-0.05,
showarrow=False,
font=dict(size=12, color="gray"),
xanchor="center"
)
# Display statistics
total_elements = len(annotations)
category_counts = {}
for ann in annotations:
cat = ann.get('category', 'Unknown')
category_counts[cat] = category_counts.get(cat, 0) + 1
print(f"πŸ“Š Layout Analysis Complete!")
print(f"Total elements detected: {total_elements}")
print("Category breakdown:")
for cat, count in sorted(category_counts.items()):
print(f" β€’ {cat}: {count}")
fig.show()