|
import os |
|
from openai import OpenAI |
|
from dotenv import load_dotenv |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import numpy as np |
|
import json |
|
|
|
load_dotenv() |
|
client = OpenAI( |
|
base_url = "", |
|
api_key = os.environ["HF_TOKEN"] |
|
) |
|
|
|
prompt = """\ |
|
Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. |
|
1. Bbox format: [x1, y1, x2, y2] |
|
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. |
|
3. Text Extraction & Formatting Rules: |
|
- Picture: For the 'Picture' category, the text field should be omitted. |
|
- Formula: Format its text as LaTeX. |
|
- Table: Format its text as HTML. |
|
- All Others (Text, Title, etc.): Format their text as Markdown. |
|
4. Constraints: |
|
- The output text must be the original text from the image, with no translation. |
|
- All layout elements must be sorted according to human reading order. |
|
5. Final Output: The entire output must be a single JSON object.\ |
|
""" |
|
|
|
chat_completion = client.chat.completions.create( |
|
model = "rednote-hilab/dots.ocr", |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true" |
|
} |
|
}, |
|
{ |
|
"type": "text", |
|
"text": prompt, |
|
} |
|
] |
|
} |
|
], |
|
stream = True, |
|
) |
|
|
|
text = "" |
|
for message in chat_completion: |
|
text = text + message.choices[0].delta.content |
|
|
|
annotations = json.loads(text) |
|
|
|
|
|
url = "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true" |
|
response = requests.get(url) |
|
img = Image.open(BytesIO(response.content)) |
|
img_array = np.array(img) |
|
|
|
|
|
category_colors = { |
|
'Title': '#FF6B6B', |
|
'Section-header': '#4ECDC4', |
|
'Text': '#45B7D1', |
|
'Picture': '#96CEB4', |
|
'Table': '#FFEAA7', |
|
'Formula': '#DDA0DD', |
|
'Caption': '#98D8C8', |
|
'List-item': '#F7DC6F', |
|
'Footnote': '#BB8FCE', |
|
'Page-header': '#85C1E9', |
|
'Page-footer': '#F8C471' |
|
} |
|
|
|
|
|
fig = px.imshow(img_array, aspect='equal') |
|
|
|
|
|
fig.update_layout( |
|
title={ |
|
'text': "Interactive OCR Layout Analysis", |
|
'x': 0.5, |
|
'xanchor': 'center', |
|
'font': {'size': 18, 'family': 'Arial Black'} |
|
}, |
|
dragmode="pan", |
|
hovermode="closest", |
|
margin=dict(l=20, r=20, t=60, b=20), |
|
showlegend=True, |
|
legend=dict( |
|
orientation="v", |
|
yanchor="top", |
|
y=1, |
|
xanchor="left", |
|
x=1.02, |
|
bgcolor="rgba(255,255,255,0.8)", |
|
bordercolor="rgba(0,0,0,0.2)", |
|
borderwidth=1 |
|
), |
|
plot_bgcolor='white', |
|
paper_bgcolor='white' |
|
) |
|
|
|
|
|
added_categories = set() |
|
|
|
|
|
for i, ann in enumerate(annotations): |
|
x1, y1, x2, y2 = ann['bbox'] |
|
category = ann.get('category', 'Unknown') |
|
color = category_colors.get(category, '#FF4444') |
|
|
|
|
|
line_width = 3 if category in ['Title', 'Section-header'] else 2 |
|
opacity = 0.8 if category == 'Picture' else 1.0 |
|
|
|
fig.add_shape( |
|
type="rect", |
|
x0=x1, y0=y1, x1=x2, y1=y2, |
|
line=dict(color=color, width=line_width), |
|
opacity=opacity |
|
) |
|
|
|
|
|
text_content = ann.get('text', 'No text available') |
|
if len(text_content) > 200: |
|
text_content = text_content[:200] + "..." |
|
|
|
|
|
if category == 'Formula': |
|
hover_text = f"<b>π’ {category}</b><br><i>{text_content}</i>" |
|
elif category == 'Picture': |
|
hover_text = f"<b>πΌοΈ {category}</b><br>Image element" |
|
elif category == 'Table': |
|
hover_text = f"<b>π {category}</b><br>{text_content}" |
|
elif category == 'Title': |
|
hover_text = f"<b>π {category}</b><br><b>{text_content}</b>" |
|
else: |
|
hover_text = f"<b>π {category}</b><br>{text_content}" |
|
|
|
|
|
width = x2 - x1 |
|
height = y2 - y1 |
|
hover_text += f"<br><br><i>Box: {width:.0f}Γ{height:.0f}px</i>" |
|
|
|
|
|
show_legend = category not in added_categories |
|
if show_legend: |
|
added_categories.add(category) |
|
|
|
fig.add_trace(go.Scatter( |
|
x=[(x1 + x2) / 2], |
|
y=[(y1 + y2) / 2], |
|
mode="markers", |
|
marker=dict( |
|
size=20, |
|
opacity=0, |
|
color=color |
|
), |
|
text=[hover_text], |
|
hoverinfo="text", |
|
hovertemplate="%{text}<extra></extra>", |
|
name=category, |
|
showlegend=show_legend, |
|
legendgroup=category |
|
)) |
|
|
|
|
|
fig.update_xaxes( |
|
showticklabels=False, |
|
showgrid=False, |
|
zeroline=False |
|
) |
|
fig.update_yaxes( |
|
showticklabels=False, |
|
showgrid=False, |
|
zeroline=False, |
|
scaleanchor="x", |
|
scaleratio=1 |
|
) |
|
|
|
|
|
fig.add_annotation( |
|
text="π‘ Hover over colored boxes to see content β’ Pan: drag β’ Zoom: scroll", |
|
xref="paper", yref="paper", |
|
x=0.5, y=-0.05, |
|
showarrow=False, |
|
font=dict(size=12, color="gray"), |
|
xanchor="center" |
|
) |
|
|
|
|
|
total_elements = len(annotations) |
|
category_counts = {} |
|
for ann in annotations: |
|
cat = ann.get('category', 'Unknown') |
|
category_counts[cat] = category_counts.get(cat, 0) + 1 |
|
|
|
print(f"π Layout Analysis Complete!") |
|
print(f"Total elements detected: {total_elements}") |
|
print("Category breakdown:") |
|
for cat, count in sorted(category_counts.items()): |
|
print(f" β’ {cat}: {count}") |
|
|
|
fig.show() |