parquet-converter commited on
Commit
3ec725f
1 Parent(s): 1735d9b

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,37 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.2.2/dynahate-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9648575982144daaf2161ea003127407a9e2c484976e3fc1c9799f19eb505e7
3
+ size 3892824
0.2.2/dynahate-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9648575982144daaf2161ea003127407a9e2c484976e3fc1c9799f19eb505e7
3
+ size 3892824
0.2.2/dynahate-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9648575982144daaf2161ea003127407a9e2c484976e3fc1c9799f19eb505e7
3
+ size 3892824
0.2.3/dynahate-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32ae20d63ee996ea7e5808b71f491964edcb6eb5d2742eabe7e3b9b1856da976
3
+ size 3889196
0.2.3/dynahate-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32ae20d63ee996ea7e5808b71f491964edcb6eb5d2742eabe7e3b9b1856da976
3
+ size 3889196
0.2.3/dynahate-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32ae20d63ee996ea7e5808b71f491964edcb6eb5d2742eabe7e3b9b1856da976
3
+ size 3889196
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"0.2.3": {"description": "We present a human-and-model-in-the-loop process for dynamically generating datasets and training better performing and more robust hate detection models. We provide a new dataset of ~40,000 entries, generated and labelled by trained annotators over four rounds of dynamic data creation. It includes ~15,000 challenging perturbations and each hateful entry has fine-grained labels for the type and target of hate. Hateful entries make up 54% of the dataset, which is substantially higher than comparable datasets. We show that model performance is substantially improved using this approach. Models trained on later rounds of data collection perform better on test sets and are harder for annotators to trick. They also perform better on HATECHECK, a suite of functional tests for online hate detection. See https://arxiv.org/abs/2012.15761 for more details.\n", "citation": "@inproceedings{vidgen2021learning,\n title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection},\n author={Vidgen, Bertie and Thrush, Tristan and Waseem, Zeerak and Kiela, Douwe},\n booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},\n pages={1667--1682},\n year={2021}\n}\n", "homepage": "https://arxiv.org/abs/2012.15761", "license": "", "features": {"acl.id": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["nothate", "hate"], "id": null, "_type": "ClassLabel"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "X1": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "level": {"dtype": "string", "id": null, "_type": "Value"}, "split": {"dtype": "string", "id": null, "_type": "Value"}, "round.base": {"dtype": "int32", "id": null, "_type": "Value"}, "annotator": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "string", "id": null, "_type": "Value"}, "acl.id.matched": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label"}], "builder_name": "dynahate", "config_name": "0.2.3", "version": {"version_str": "0.2.3", "description": null, "major": 0, "minor": 2, "patch": 3}, "splits": {"train": {"name": "train", "num_bytes": 9828044, "num_examples": 41144, "dataset_name": "dynahate"}, "validation": {"name": "validation", "num_bytes": 9828044, "num_examples": 41144, "dataset_name": "dynahate"}, "test": {"name": "test", "num_bytes": 9828044, "num_examples": 41144, "dataset_name": "dynahate"}}, "download_checksums": {"https://raw.githubusercontent.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset/main/Dynamically%20Generated%20Hate%20Dataset%20v0.2.3.csv": {"num_bytes": 9755776, "checksum": "6e0aa7e598ab5b648cb1f0b48626a3e5f2e39a5abbd9fee998efa5a0b6cab4ca"}}, "download_size": 9755776, "post_processing_size": null, "dataset_size": 29484132, "size_in_bytes": 39239908}, "0.2.2": {"description": "We present a human-and-model-in-the-loop process for dynamically generating datasets and training better performing and more robust hate detection models. We provide a new dataset of ~40,000 entries, generated and labelled by trained annotators over four rounds of dynamic data creation. It includes ~15,000 challenging perturbations and each hateful entry has fine-grained labels for the type and target of hate. Hateful entries make up 54% of the dataset, which is substantially higher than comparable datasets. We show that model performance is substantially improved using this approach. Models trained on later rounds of data collection perform better on test sets and are harder for annotators to trick. They also perform better on HATECHECK, a suite of functional tests for online hate detection. See https://arxiv.org/abs/2012.15761 for more details.\n", "citation": "@inproceedings{vidgen2021learning,\n title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection},\n author={Vidgen, Bertie and Thrush, Tristan and Waseem, Zeerak and Kiela, Douwe},\n booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},\n pages={1667--1682},\n year={2021}\n}\n", "homepage": "https://arxiv.org/abs/2012.15761", "license": "", "features": {"acl.id": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["nothate", "hate"], "id": null, "_type": "ClassLabel"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "X1": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "level": {"dtype": "string", "id": null, "_type": "Value"}, "split": {"dtype": "string", "id": null, "_type": "Value"}, "round.base": {"dtype": "int32", "id": null, "_type": "Value"}, "annotator": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "string", "id": null, "_type": "Value"}, "acl.id.matched": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label"}], "builder_name": "dynahate", "config_name": "0.2.2", "version": "0.2.2", "splits": {"train": {"name": "train", "num_bytes": 9843093, "num_examples": 41255, "dataset_name": "dynahate"}, "validation": {"name": "validation", "num_bytes": 9843093, "num_examples": 41255, "dataset_name": "dynahate"}, "test": {"name": "test", "num_bytes": 9843093, "num_examples": 41255, "dataset_name": "dynahate"}}, "download_checksums": {"https://raw.githubusercontent.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset/main/Dynamically%20Generated%20Hate%20Dataset%20v0.2.2.csv": {"num_bytes": 9770336, "checksum": "1be97ea2b0000cdada09a89d24f4d008ea1eeb6edfb237664c749775d9e408cc"}}, "download_size": 9770336, "post_processing_size": null, "dataset_size": 29529279, "size_in_bytes": 39299615}}
 
 
dynahate.py DELETED
@@ -1,92 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Learning from the worst Hate Speech dataset."""
18
-
19
-
20
- import csv
21
-
22
- import datasets
23
- from datasets.tasks import TextClassification
24
-
25
-
26
- _DESCRIPTION = """\
27
- We present a human-and-model-in-the-loop process for dynamically generating datasets and training better performing and more robust hate detection models. We provide a new dataset of ~40,000 entries, generated and labelled by trained annotators over four rounds of dynamic data creation. It includes ~15,000 challenging perturbations and each hateful entry has fine-grained labels for the type and target of hate. Hateful entries make up 54% of the dataset, which is substantially higher than comparable datasets. We show that model performance is substantially improved using this approach. Models trained on later rounds of data collection perform better on test sets and are harder for annotators to trick. They also perform better on HATECHECK, a suite of functional tests for online hate detection. See https://arxiv.org/abs/2012.15761 for more details.
28
- """
29
-
30
- _CITATION = """\
31
- @inproceedings{vidgen2021learning,
32
- title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection},
33
- author={Vidgen, Bertie and Thrush, Tristan and Waseem, Zeerak and Kiela, Douwe},
34
- booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
35
- pages={1667--1682},
36
- year={2021}
37
- }
38
- """
39
-
40
- _DOWNLOAD_URL = "https://raw.githubusercontent.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset/main/Dynamically%20Generated%20Hate%20Dataset%20v{version}.csv"
41
- _VERSIONS = ("0.2.3", "0.2.2")
42
-
43
-
44
- class Dynahate(datasets.GeneratorBasedBuilder):
45
- """Learning from the worst hate speech classification dataset."""
46
- BUILDER_CONFIGS = [datasets.BuilderConfig(name=version, version=version) for version in _VERSIONS]
47
- DEFAULT_CONFIG_NAME = "0.2.3"
48
- def _info(self):
49
- return datasets.DatasetInfo(
50
- description=_DESCRIPTION,
51
- features=datasets.Features(
52
- {
53
- "acl.id": datasets.Value("string"),
54
- "label": datasets.features.ClassLabel(names=["nothate", "hate"]),
55
- "text": datasets.Value("string"),
56
- "X1": datasets.Value("int32"),
57
- "type": datasets.Value("string"),
58
- "target": datasets.Value("string"),
59
- "level": datasets.Value("string"),
60
- "split": datasets.Value("string"),
61
- "round.base": datasets.Value("int32"),
62
- "annotator": datasets.Value("string"),
63
- "round": datasets.Value("string"),
64
- "acl.id.matched": datasets.Value("string")
65
- }
66
- ),
67
- homepage="https://arxiv.org/abs/2012.15761",
68
- citation=_CITATION,
69
- task_templates=[TextClassification(text_column="text", label_column="label")],
70
- )
71
-
72
- def _split_generators(self, dl_manager):
73
- csv_path = dl_manager.download_and_extract(_DOWNLOAD_URL.format(version=self.config.name))
74
- return [
75
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_path, "split": "train"}),
76
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_path, "split": "dev"}),
77
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_path, "split": "test"}),
78
- ]
79
-
80
- def _generate_examples(self, csv_path, split):
81
- """Generate AG News examples."""
82
- with open(csv_path, encoding="utf-8") as csv_file:
83
- csv_reader = csv.reader(csv_file, delimiter=",")
84
- for id_, row in enumerate(csv_reader):
85
- if id_ == 0:
86
- keys = row[:]
87
- else:
88
- res = dict([(k, v) for k, v in zip(keys, row) if k != ""])
89
-
90
- for k in ["X1", "round.base"]:
91
- res[k] = int(res[k])
92
- yield id_ - 1, res