peacock-data-public-datasets-idc-temp-code
/
cc-multilingual-main
/cc_net
/third_party
/kenlm
/python
/example.py
#!/usr/bin/env python | |
import os | |
import kenlm | |
LM = os.path.join(os.path.dirname(__file__), '..', 'lm', 'test.arpa') | |
model = kenlm.LanguageModel(LM) | |
print('{0}-gram model'.format(model.order)) | |
sentence = 'language modeling is fun .' | |
print(sentence) | |
print(model.score(sentence)) | |
# Check that total full score = direct score | |
def score(s): | |
return sum(prob for prob, _, _ in model.full_scores(s)) | |
assert (abs(score(sentence) - model.score(sentence)) < 1e-3) | |
# Show scores and n-gram matches | |
words = ['<s>'] + sentence.split() + ['</s>'] | |
for i, (prob, length, oov) in enumerate(model.full_scores(sentence)): | |
print('{0} {1}: {2}'.format(prob, length, ' '.join(words[i+2-length:i+2]))) | |
if oov: | |
print('\t"{0}" is an OOV'.format(words[i+1])) | |
# Find out-of-vocabulary words | |
for w in words: | |
if not w in model: | |
print('"{0}" is an OOV'.format(w)) | |
#Stateful query | |
state = kenlm.State() | |
state2 = kenlm.State() | |
#Use <s> as context. If you don't want <s>, use model.NullContextWrite(state). | |
model.BeginSentenceWrite(state) | |
accum = 0.0 | |
accum += model.BaseScore(state, "a", state2) | |
accum += model.BaseScore(state2, "sentence", state) | |
#score defaults to bos = True and eos = True. Here we'll check without the end | |
#of sentence marker. | |
assert (abs(accum - model.score("a sentence", eos = False)) < 1e-3) | |
accum += model.BaseScore(state, "</s>", state2) | |
assert (abs(accum - model.score("a sentence")) < 1e-3) | |