applied-ai-018 commited on
Commit
fa1cbaa
·
verified ·
1 Parent(s): c6a13b8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/nltk/classify/api.py +195 -0
  2. llmeval-env/lib/python3.10/site-packages/nltk/classify/decisiontree.py +349 -0
  3. llmeval-env/lib/python3.10/site-packages/nltk/classify/megam.py +184 -0
  4. llmeval-env/lib/python3.10/site-packages/nltk/classify/naivebayes.py +260 -0
  5. llmeval-env/lib/python3.10/site-packages/nltk/classify/positivenaivebayes.py +180 -0
  6. llmeval-env/lib/python3.10/site-packages/nltk/classify/rte_classify.py +183 -0
  7. llmeval-env/lib/python3.10/site-packages/nltk/classify/scikitlearn.py +143 -0
  8. llmeval-env/lib/python3.10/site-packages/nltk/classify/senna.py +176 -0
  9. llmeval-env/lib/python3.10/site-packages/nltk/classify/textcat.py +197 -0
  10. llmeval-env/lib/python3.10/site-packages/nltk/classify/util.py +346 -0
  11. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/all.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/childes_fixt.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/classify_fixt.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/conftest.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/gensim_fixt.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/gluesemantics_malt_fixt.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/portuguese_en_fixt.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/probability_fixt.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/setup_fixt.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/nltk/test/collocations.doctest +307 -0
  22. llmeval-env/lib/python3.10/site-packages/nltk/test/conftest.py +33 -0
  23. llmeval-env/lib/python3.10/site-packages/nltk/test/dependency.doctest +241 -0
  24. llmeval-env/lib/python3.10/site-packages/nltk/test/discourse.doctest +552 -0
  25. llmeval-env/lib/python3.10/site-packages/nltk/test/featgram.doctest +610 -0
  26. llmeval-env/lib/python3.10/site-packages/nltk/test/gensim_fixt.py +4 -0
  27. llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics.doctest +383 -0
  28. llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics_malt_fixt.py +9 -0
  29. llmeval-env/lib/python3.10/site-packages/nltk/test/grammar.doctest +69 -0
  30. llmeval-env/lib/python3.10/site-packages/nltk/test/index.doctest +100 -0
  31. llmeval-env/lib/python3.10/site-packages/nltk/test/inference.doctest +536 -0
  32. llmeval-env/lib/python3.10/site-packages/nltk/test/japanese.doctest +48 -0
  33. llmeval-env/lib/python3.10/site-packages/nltk/test/meteor.doctest +54 -0
  34. llmeval-env/lib/python3.10/site-packages/nltk/test/nonmonotonic.doctest +293 -0
  35. llmeval-env/lib/python3.10/site-packages/nltk/test/paice.doctest +35 -0
  36. llmeval-env/lib/python3.10/site-packages/nltk/test/parse.doctest +933 -0
  37. llmeval-env/lib/python3.10/site-packages/nltk/test/portuguese_en.doctest +568 -0
  38. llmeval-env/lib/python3.10/site-packages/nltk/test/semantics.doctest +667 -0
  39. llmeval-env/lib/python3.10/site-packages/nltk/test/treetransforms.doctest +154 -0
  40. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_bllip.py +42 -0
  41. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_collocations.py +120 -0
  42. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corpus_views.py +48 -0
  43. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_freqdist.py +7 -0
  44. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_json2csv_corpus.py +210 -0
  45. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_json_serialization.py +95 -0
  46. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_rte_classify.py +94 -0
  47. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_seekable_unicode_stream_reader.py +86 -0
  48. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_tokenize.py +867 -0
  49. llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_wordnet.py +240 -0
  50. llmeval-env/lib/python3.10/site-packages/nltk/twitter/__pycache__/__init__.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/nltk/classify/api.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Classifier Interface
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <edloper@gmail.com>
5
+ # Steven Bird <stevenbird1@gmail.com> (minor additions)
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ Interfaces for labeling tokens with category labels (or "class labels").
11
+
12
+ ``ClassifierI`` is a standard interface for "single-category
13
+ classification", in which the set of categories is known, the number
14
+ of categories is finite, and each text belongs to exactly one
15
+ category.
16
+
17
+ ``MultiClassifierI`` is a standard interface for "multi-category
18
+ classification", which is like single-category classification except
19
+ that each text belongs to zero or more categories.
20
+ """
21
+ from nltk.internals import overridden
22
+
23
+ ##//////////////////////////////////////////////////////
24
+ # { Classification Interfaces
25
+ ##//////////////////////////////////////////////////////
26
+
27
+
28
+ class ClassifierI:
29
+ """
30
+ A processing interface for labeling tokens with a single category
31
+ label (or "class"). Labels are typically strs or
32
+ ints, but can be any immutable type. The set of labels
33
+ that the classifier chooses from must be fixed and finite.
34
+
35
+ Subclasses must define:
36
+ - ``labels()``
37
+ - either ``classify()`` or ``classify_many()`` (or both)
38
+
39
+ Subclasses may define:
40
+ - either ``prob_classify()`` or ``prob_classify_many()`` (or both)
41
+ """
42
+
43
+ def labels(self):
44
+ """
45
+ :return: the list of category labels used by this classifier.
46
+ :rtype: list of (immutable)
47
+ """
48
+ raise NotImplementedError()
49
+
50
+ def classify(self, featureset):
51
+ """
52
+ :return: the most appropriate label for the given featureset.
53
+ :rtype: label
54
+ """
55
+ if overridden(self.classify_many):
56
+ return self.classify_many([featureset])[0]
57
+ else:
58
+ raise NotImplementedError()
59
+
60
+ def prob_classify(self, featureset):
61
+ """
62
+ :return: a probability distribution over labels for the given
63
+ featureset.
64
+ :rtype: ProbDistI
65
+ """
66
+ if overridden(self.prob_classify_many):
67
+ return self.prob_classify_many([featureset])[0]
68
+ else:
69
+ raise NotImplementedError()
70
+
71
+ def classify_many(self, featuresets):
72
+ """
73
+ Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
74
+
75
+ return [self.classify(fs) for fs in featuresets]
76
+
77
+ :rtype: list(label)
78
+ """
79
+ return [self.classify(fs) for fs in featuresets]
80
+
81
+ def prob_classify_many(self, featuresets):
82
+ """
83
+ Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
84
+
85
+ return [self.prob_classify(fs) for fs in featuresets]
86
+
87
+ :rtype: list(ProbDistI)
88
+ """
89
+ return [self.prob_classify(fs) for fs in featuresets]
90
+
91
+
92
+ class MultiClassifierI:
93
+ """
94
+ A processing interface for labeling tokens with zero or more
95
+ category labels (or "labels"). Labels are typically strs
96
+ or ints, but can be any immutable type. The set of labels
97
+ that the multi-classifier chooses from must be fixed and finite.
98
+
99
+ Subclasses must define:
100
+ - ``labels()``
101
+ - either ``classify()`` or ``classify_many()`` (or both)
102
+
103
+ Subclasses may define:
104
+ - either ``prob_classify()`` or ``prob_classify_many()`` (or both)
105
+ """
106
+
107
+ def labels(self):
108
+ """
109
+ :return: the list of category labels used by this classifier.
110
+ :rtype: list of (immutable)
111
+ """
112
+ raise NotImplementedError()
113
+
114
+ def classify(self, featureset):
115
+ """
116
+ :return: the most appropriate set of labels for the given featureset.
117
+ :rtype: set(label)
118
+ """
119
+ if overridden(self.classify_many):
120
+ return self.classify_many([featureset])[0]
121
+ else:
122
+ raise NotImplementedError()
123
+
124
+ def prob_classify(self, featureset):
125
+ """
126
+ :return: a probability distribution over sets of labels for the
127
+ given featureset.
128
+ :rtype: ProbDistI
129
+ """
130
+ if overridden(self.prob_classify_many):
131
+ return self.prob_classify_many([featureset])[0]
132
+ else:
133
+ raise NotImplementedError()
134
+
135
+ def classify_many(self, featuresets):
136
+ """
137
+ Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
138
+
139
+ return [self.classify(fs) for fs in featuresets]
140
+
141
+ :rtype: list(set(label))
142
+ """
143
+ return [self.classify(fs) for fs in featuresets]
144
+
145
+ def prob_classify_many(self, featuresets):
146
+ """
147
+ Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
148
+
149
+ return [self.prob_classify(fs) for fs in featuresets]
150
+
151
+ :rtype: list(ProbDistI)
152
+ """
153
+ return [self.prob_classify(fs) for fs in featuresets]
154
+
155
+
156
+ # # [XX] IN PROGRESS:
157
+ # class SequenceClassifierI:
158
+ # """
159
+ # A processing interface for labeling sequences of tokens with a
160
+ # single category label (or "class"). Labels are typically
161
+ # strs or ints, but can be any immutable type. The set
162
+ # of labels that the classifier chooses from must be fixed and
163
+ # finite.
164
+ # """
165
+ # def labels(self):
166
+ # """
167
+ # :return: the list of category labels used by this classifier.
168
+ # :rtype: list of (immutable)
169
+ # """
170
+ # raise NotImplementedError()
171
+
172
+ # def prob_classify(self, featureset):
173
+ # """
174
+ # Return a probability distribution over labels for the given
175
+ # featureset.
176
+
177
+ # If ``featureset`` is a list of featuresets, then return a
178
+ # corresponding list containing the probability distribution
179
+ # over labels for each of the given featuresets, where the
180
+ # *i*\ th element of this list is the most appropriate label for
181
+ # the *i*\ th element of ``featuresets``.
182
+ # """
183
+ # raise NotImplementedError()
184
+
185
+ # def classify(self, featureset):
186
+ # """
187
+ # Return the most appropriate label for the given featureset.
188
+
189
+ # If ``featureset`` is a list of featuresets, then return a
190
+ # corresponding list containing the most appropriate label for
191
+ # each of the given featuresets, where the *i*\ th element of
192
+ # this list is the most appropriate label for the *i*\ th element
193
+ # of ``featuresets``.
194
+ # """
195
+ # raise NotImplementedError()
llmeval-env/lib/python3.10/site-packages/nltk/classify/decisiontree.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Decision Tree Classifiers
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <edloper@gmail.com>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ A classifier model that decides which label to assign to a token on
10
+ the basis of a tree structure, where branches correspond to conditions
11
+ on feature values, and leaves correspond to label assignments.
12
+ """
13
+
14
+ from collections import defaultdict
15
+
16
+ from nltk.classify.api import ClassifierI
17
+ from nltk.probability import FreqDist, MLEProbDist, entropy
18
+
19
+
20
+ class DecisionTreeClassifier(ClassifierI):
21
+ def __init__(self, label, feature_name=None, decisions=None, default=None):
22
+ """
23
+ :param label: The most likely label for tokens that reach
24
+ this node in the decision tree. If this decision tree
25
+ has no children, then this label will be assigned to
26
+ any token that reaches this decision tree.
27
+ :param feature_name: The name of the feature that this
28
+ decision tree selects for.
29
+ :param decisions: A dictionary mapping from feature values
30
+ for the feature identified by ``feature_name`` to
31
+ child decision trees.
32
+ :param default: The child that will be used if the value of
33
+ feature ``feature_name`` does not match any of the keys in
34
+ ``decisions``. This is used when constructing binary
35
+ decision trees.
36
+ """
37
+ self._label = label
38
+ self._fname = feature_name
39
+ self._decisions = decisions
40
+ self._default = default
41
+
42
+ def labels(self):
43
+ labels = [self._label]
44
+ if self._decisions is not None:
45
+ for dt in self._decisions.values():
46
+ labels.extend(dt.labels())
47
+ if self._default is not None:
48
+ labels.extend(self._default.labels())
49
+ return list(set(labels))
50
+
51
+ def classify(self, featureset):
52
+ # Decision leaf:
53
+ if self._fname is None:
54
+ return self._label
55
+
56
+ # Decision tree:
57
+ fval = featureset.get(self._fname)
58
+ if fval in self._decisions:
59
+ return self._decisions[fval].classify(featureset)
60
+ elif self._default is not None:
61
+ return self._default.classify(featureset)
62
+ else:
63
+ return self._label
64
+
65
+ def error(self, labeled_featuresets):
66
+ errors = 0
67
+ for featureset, label in labeled_featuresets:
68
+ if self.classify(featureset) != label:
69
+ errors += 1
70
+ return errors / len(labeled_featuresets)
71
+
72
+ def pretty_format(self, width=70, prefix="", depth=4):
73
+ """
74
+ Return a string containing a pretty-printed version of this
75
+ decision tree. Each line in this string corresponds to a
76
+ single decision tree node or leaf, and indentation is used to
77
+ display the structure of the decision tree.
78
+ """
79
+ # [xx] display default!!
80
+ if self._fname is None:
81
+ n = width - len(prefix) - 15
82
+ return "{}{} {}\n".format(prefix, "." * n, self._label)
83
+ s = ""
84
+ for i, (fval, result) in enumerate(
85
+ sorted(
86
+ self._decisions.items(),
87
+ key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()),
88
+ )
89
+ ):
90
+ hdr = f"{prefix}{self._fname}={fval}? "
91
+ n = width - 15 - len(hdr)
92
+ s += "{}{} {}\n".format(hdr, "." * (n), result._label)
93
+ if result._fname is not None and depth > 1:
94
+ s += result.pretty_format(width, prefix + " ", depth - 1)
95
+ if self._default is not None:
96
+ n = width - len(prefix) - 21
97
+ s += "{}else: {} {}\n".format(prefix, "." * n, self._default._label)
98
+ if self._default._fname is not None and depth > 1:
99
+ s += self._default.pretty_format(width, prefix + " ", depth - 1)
100
+ return s
101
+
102
+ def pseudocode(self, prefix="", depth=4):
103
+ """
104
+ Return a string representation of this decision tree that
105
+ expresses the decisions it makes as a nested set of pseudocode
106
+ if statements.
107
+ """
108
+ if self._fname is None:
109
+ return f"{prefix}return {self._label!r}\n"
110
+ s = ""
111
+ for (fval, result) in sorted(
112
+ self._decisions.items(),
113
+ key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()),
114
+ ):
115
+ s += f"{prefix}if {self._fname} == {fval!r}: "
116
+ if result._fname is not None and depth > 1:
117
+ s += "\n" + result.pseudocode(prefix + " ", depth - 1)
118
+ else:
119
+ s += f"return {result._label!r}\n"
120
+ if self._default is not None:
121
+ if len(self._decisions) == 1:
122
+ s += "{}if {} != {!r}: ".format(
123
+ prefix, self._fname, list(self._decisions.keys())[0]
124
+ )
125
+ else:
126
+ s += f"{prefix}else: "
127
+ if self._default._fname is not None and depth > 1:
128
+ s += "\n" + self._default.pseudocode(prefix + " ", depth - 1)
129
+ else:
130
+ s += f"return {self._default._label!r}\n"
131
+ return s
132
+
133
+ def __str__(self):
134
+ return self.pretty_format()
135
+
136
+ @staticmethod
137
+ def train(
138
+ labeled_featuresets,
139
+ entropy_cutoff=0.05,
140
+ depth_cutoff=100,
141
+ support_cutoff=10,
142
+ binary=False,
143
+ feature_values=None,
144
+ verbose=False,
145
+ ):
146
+ """
147
+ :param binary: If true, then treat all feature/value pairs as
148
+ individual binary features, rather than using a single n-way
149
+ branch for each feature.
150
+ """
151
+ # Collect a list of all feature names.
152
+ feature_names = set()
153
+ for featureset, label in labeled_featuresets:
154
+ for fname in featureset:
155
+ feature_names.add(fname)
156
+
157
+ # Collect a list of the values each feature can take.
158
+ if feature_values is None and binary:
159
+ feature_values = defaultdict(set)
160
+ for featureset, label in labeled_featuresets:
161
+ for fname, fval in featureset.items():
162
+ feature_values[fname].add(fval)
163
+
164
+ # Start with a stump.
165
+ if not binary:
166
+ tree = DecisionTreeClassifier.best_stump(
167
+ feature_names, labeled_featuresets, verbose
168
+ )
169
+ else:
170
+ tree = DecisionTreeClassifier.best_binary_stump(
171
+ feature_names, labeled_featuresets, feature_values, verbose
172
+ )
173
+
174
+ # Refine the stump.
175
+ tree.refine(
176
+ labeled_featuresets,
177
+ entropy_cutoff,
178
+ depth_cutoff - 1,
179
+ support_cutoff,
180
+ binary,
181
+ feature_values,
182
+ verbose,
183
+ )
184
+
185
+ # Return it
186
+ return tree
187
+
188
+ @staticmethod
189
+ def leaf(labeled_featuresets):
190
+ label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
191
+ return DecisionTreeClassifier(label)
192
+
193
+ @staticmethod
194
+ def stump(feature_name, labeled_featuresets):
195
+ label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
196
+
197
+ # Find the best label for each value.
198
+ freqs = defaultdict(FreqDist) # freq(label|value)
199
+ for featureset, label in labeled_featuresets:
200
+ feature_value = featureset.get(feature_name)
201
+ freqs[feature_value][label] += 1
202
+
203
+ decisions = {val: DecisionTreeClassifier(freqs[val].max()) for val in freqs}
204
+ return DecisionTreeClassifier(label, feature_name, decisions)
205
+
206
+ def refine(
207
+ self,
208
+ labeled_featuresets,
209
+ entropy_cutoff,
210
+ depth_cutoff,
211
+ support_cutoff,
212
+ binary=False,
213
+ feature_values=None,
214
+ verbose=False,
215
+ ):
216
+ if len(labeled_featuresets) <= support_cutoff:
217
+ return
218
+ if self._fname is None:
219
+ return
220
+ if depth_cutoff <= 0:
221
+ return
222
+ for fval in self._decisions:
223
+ fval_featuresets = [
224
+ (featureset, label)
225
+ for (featureset, label) in labeled_featuresets
226
+ if featureset.get(self._fname) == fval
227
+ ]
228
+
229
+ label_freqs = FreqDist(label for (featureset, label) in fval_featuresets)
230
+ if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
231
+ self._decisions[fval] = DecisionTreeClassifier.train(
232
+ fval_featuresets,
233
+ entropy_cutoff,
234
+ depth_cutoff,
235
+ support_cutoff,
236
+ binary,
237
+ feature_values,
238
+ verbose,
239
+ )
240
+ if self._default is not None:
241
+ default_featuresets = [
242
+ (featureset, label)
243
+ for (featureset, label) in labeled_featuresets
244
+ if featureset.get(self._fname) not in self._decisions
245
+ ]
246
+ label_freqs = FreqDist(label for (featureset, label) in default_featuresets)
247
+ if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
248
+ self._default = DecisionTreeClassifier.train(
249
+ default_featuresets,
250
+ entropy_cutoff,
251
+ depth_cutoff,
252
+ support_cutoff,
253
+ binary,
254
+ feature_values,
255
+ verbose,
256
+ )
257
+
258
+ @staticmethod
259
+ def best_stump(feature_names, labeled_featuresets, verbose=False):
260
+ best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
261
+ best_error = best_stump.error(labeled_featuresets)
262
+ for fname in feature_names:
263
+ stump = DecisionTreeClassifier.stump(fname, labeled_featuresets)
264
+ stump_error = stump.error(labeled_featuresets)
265
+ if stump_error < best_error:
266
+ best_error = stump_error
267
+ best_stump = stump
268
+ if verbose:
269
+ print(
270
+ "best stump for {:6d} toks uses {:20} err={:6.4f}".format(
271
+ len(labeled_featuresets), best_stump._fname, best_error
272
+ )
273
+ )
274
+ return best_stump
275
+
276
+ @staticmethod
277
+ def binary_stump(feature_name, feature_value, labeled_featuresets):
278
+ label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
279
+
280
+ # Find the best label for each value.
281
+ pos_fdist = FreqDist()
282
+ neg_fdist = FreqDist()
283
+ for featureset, label in labeled_featuresets:
284
+ if featureset.get(feature_name) == feature_value:
285
+ pos_fdist[label] += 1
286
+ else:
287
+ neg_fdist[label] += 1
288
+
289
+ decisions = {}
290
+ default = label
291
+ # But hopefully we have observations!
292
+ if pos_fdist.N() > 0:
293
+ decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}
294
+ if neg_fdist.N() > 0:
295
+ default = DecisionTreeClassifier(neg_fdist.max())
296
+
297
+ return DecisionTreeClassifier(label, feature_name, decisions, default)
298
+
299
+ @staticmethod
300
+ def best_binary_stump(
301
+ feature_names, labeled_featuresets, feature_values, verbose=False
302
+ ):
303
+ best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
304
+ best_error = best_stump.error(labeled_featuresets)
305
+ for fname in feature_names:
306
+ for fval in feature_values[fname]:
307
+ stump = DecisionTreeClassifier.binary_stump(
308
+ fname, fval, labeled_featuresets
309
+ )
310
+ stump_error = stump.error(labeled_featuresets)
311
+ if stump_error < best_error:
312
+ best_error = stump_error
313
+ best_stump = stump
314
+ if verbose:
315
+ if best_stump._decisions:
316
+ descr = "{}={}".format(
317
+ best_stump._fname, list(best_stump._decisions.keys())[0]
318
+ )
319
+ else:
320
+ descr = "(default)"
321
+ print(
322
+ "best stump for {:6d} toks uses {:20} err={:6.4f}".format(
323
+ len(labeled_featuresets), descr, best_error
324
+ )
325
+ )
326
+ return best_stump
327
+
328
+
329
+ ##//////////////////////////////////////////////////////
330
+ ## Demo
331
+ ##//////////////////////////////////////////////////////
332
+
333
+
334
+ def f(x):
335
+ return DecisionTreeClassifier.train(x, binary=True, verbose=True)
336
+
337
+
338
+ def demo():
339
+ from nltk.classify.util import binary_names_demo_features, names_demo
340
+
341
+ classifier = names_demo(
342
+ f, binary_names_demo_features # DecisionTreeClassifier.train,
343
+ )
344
+ print(classifier.pretty_format(depth=7))
345
+ print(classifier.pseudocode(depth=7))
346
+
347
+
348
+ if __name__ == "__main__":
349
+ demo()
llmeval-env/lib/python3.10/site-packages/nltk/classify/megam.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Interface to Megam Classifier
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <edloper@gmail.com>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ A set of functions used to interface with the external megam_ maxent
10
+ optimization package. Before megam can be used, you should tell NLTK where it
11
+ can find the megam binary, using the ``config_megam()`` function. Typical
12
+ usage:
13
+
14
+ >>> from nltk.classify import megam
15
+ >>> megam.config_megam() # pass path to megam if not found in PATH # doctest: +SKIP
16
+ [Found megam: ...]
17
+
18
+ Use with MaxentClassifier. Example below, see MaxentClassifier documentation
19
+ for details.
20
+
21
+ nltk.classify.MaxentClassifier.train(corpus, 'megam')
22
+
23
+ .. _megam: https://www.umiacs.umd.edu/~hal/megam/index.html
24
+ """
25
+ import subprocess
26
+
27
+ from nltk.internals import find_binary
28
+
29
+ try:
30
+ import numpy
31
+ except ImportError:
32
+ numpy = None
33
+
34
+ ######################################################################
35
+ # { Configuration
36
+ ######################################################################
37
+
38
+ _megam_bin = None
39
+
40
+
41
+ def config_megam(bin=None):
42
+ """
43
+ Configure NLTK's interface to the ``megam`` maxent optimization
44
+ package.
45
+
46
+ :param bin: The full path to the ``megam`` binary. If not specified,
47
+ then nltk will search the system for a ``megam`` binary; and if
48
+ one is not found, it will raise a ``LookupError`` exception.
49
+ :type bin: str
50
+ """
51
+ global _megam_bin
52
+ _megam_bin = find_binary(
53
+ "megam",
54
+ bin,
55
+ env_vars=["MEGAM"],
56
+ binary_names=["megam.opt", "megam", "megam_686", "megam_i686.opt"],
57
+ url="https://www.umiacs.umd.edu/~hal/megam/index.html",
58
+ )
59
+
60
+
61
+ ######################################################################
62
+ # { Megam Interface Functions
63
+ ######################################################################
64
+
65
+
66
+ def write_megam_file(train_toks, encoding, stream, bernoulli=True, explicit=True):
67
+ """
68
+ Generate an input file for ``megam`` based on the given corpus of
69
+ classified tokens.
70
+
71
+ :type train_toks: list(tuple(dict, str))
72
+ :param train_toks: Training data, represented as a list of
73
+ pairs, the first member of which is a feature dictionary,
74
+ and the second of which is a classification label.
75
+
76
+ :type encoding: MaxentFeatureEncodingI
77
+ :param encoding: A feature encoding, used to convert featuresets
78
+ into feature vectors. May optionally implement a cost() method
79
+ in order to assign different costs to different class predictions.
80
+
81
+ :type stream: stream
82
+ :param stream: The stream to which the megam input file should be
83
+ written.
84
+
85
+ :param bernoulli: If true, then use the 'bernoulli' format. I.e.,
86
+ all joint features have binary values, and are listed iff they
87
+ are true. Otherwise, list feature values explicitly. If
88
+ ``bernoulli=False``, then you must call ``megam`` with the
89
+ ``-fvals`` option.
90
+
91
+ :param explicit: If true, then use the 'explicit' format. I.e.,
92
+ list the features that would fire for any of the possible
93
+ labels, for each token. If ``explicit=True``, then you must
94
+ call ``megam`` with the ``-explicit`` option.
95
+ """
96
+ # Look up the set of labels.
97
+ labels = encoding.labels()
98
+ labelnum = {label: i for (i, label) in enumerate(labels)}
99
+
100
+ # Write the file, which contains one line per instance.
101
+ for featureset, label in train_toks:
102
+ # First, the instance number (or, in the weighted multiclass case, the cost of each label).
103
+ if hasattr(encoding, "cost"):
104
+ stream.write(
105
+ ":".join(str(encoding.cost(featureset, label, l)) for l in labels)
106
+ )
107
+ else:
108
+ stream.write("%d" % labelnum[label])
109
+
110
+ # For implicit file formats, just list the features that fire
111
+ # for this instance's actual label.
112
+ if not explicit:
113
+ _write_megam_features(encoding.encode(featureset, label), stream, bernoulli)
114
+
115
+ # For explicit formats, list the features that would fire for
116
+ # any of the possible labels.
117
+ else:
118
+ for l in labels:
119
+ stream.write(" #")
120
+ _write_megam_features(encoding.encode(featureset, l), stream, bernoulli)
121
+
122
+ # End of the instance.
123
+ stream.write("\n")
124
+
125
+
126
+ def parse_megam_weights(s, features_count, explicit=True):
127
+ """
128
+ Given the stdout output generated by ``megam`` when training a
129
+ model, return a ``numpy`` array containing the corresponding weight
130
+ vector. This function does not currently handle bias features.
131
+ """
132
+ if numpy is None:
133
+ raise ValueError("This function requires that numpy be installed")
134
+ assert explicit, "non-explicit not supported yet"
135
+ lines = s.strip().split("\n")
136
+ weights = numpy.zeros(features_count, "d")
137
+ for line in lines:
138
+ if line.strip():
139
+ fid, weight = line.split()
140
+ weights[int(fid)] = float(weight)
141
+ return weights
142
+
143
+
144
+ def _write_megam_features(vector, stream, bernoulli):
145
+ if not vector:
146
+ raise ValueError(
147
+ "MEGAM classifier requires the use of an " "always-on feature."
148
+ )
149
+ for (fid, fval) in vector:
150
+ if bernoulli:
151
+ if fval == 1:
152
+ stream.write(" %s" % fid)
153
+ elif fval != 0:
154
+ raise ValueError(
155
+ "If bernoulli=True, then all" "features must be binary."
156
+ )
157
+ else:
158
+ stream.write(f" {fid} {fval}")
159
+
160
+
161
+ def call_megam(args):
162
+ """
163
+ Call the ``megam`` binary with the given arguments.
164
+ """
165
+ if isinstance(args, str):
166
+ raise TypeError("args should be a list of strings")
167
+ if _megam_bin is None:
168
+ config_megam()
169
+
170
+ # Call megam via a subprocess
171
+ cmd = [_megam_bin] + args
172
+ p = subprocess.Popen(cmd, stdout=subprocess.PIPE)
173
+ (stdout, stderr) = p.communicate()
174
+
175
+ # Check the return code.
176
+ if p.returncode != 0:
177
+ print()
178
+ print(stderr)
179
+ raise OSError("megam command failed!")
180
+
181
+ if isinstance(stdout, str):
182
+ return stdout
183
+ else:
184
+ return stdout.decode("utf-8")
llmeval-env/lib/python3.10/site-packages/nltk/classify/naivebayes.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Naive Bayes Classifiers
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <edloper@gmail.com>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ A classifier based on the Naive Bayes algorithm. In order to find the
10
+ probability for a label, this algorithm first uses the Bayes rule to
11
+ express P(label|features) in terms of P(label) and P(features|label):
12
+
13
+ | P(label) * P(features|label)
14
+ | P(label|features) = ------------------------------
15
+ | P(features)
16
+
17
+ The algorithm then makes the 'naive' assumption that all features are
18
+ independent, given the label:
19
+
20
+ | P(label) * P(f1|label) * ... * P(fn|label)
21
+ | P(label|features) = --------------------------------------------
22
+ | P(features)
23
+
24
+ Rather than computing P(features) explicitly, the algorithm just
25
+ calculates the numerator for each label, and normalizes them so they
26
+ sum to one:
27
+
28
+ | P(label) * P(f1|label) * ... * P(fn|label)
29
+ | P(label|features) = --------------------------------------------
30
+ | SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) )
31
+ """
32
+
33
+ from collections import defaultdict
34
+
35
+ from nltk.classify.api import ClassifierI
36
+ from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist, sum_logs
37
+
38
+ ##//////////////////////////////////////////////////////
39
+ ## Naive Bayes Classifier
40
+ ##//////////////////////////////////////////////////////
41
+
42
+
43
+ class NaiveBayesClassifier(ClassifierI):
44
+ """
45
+ A Naive Bayes classifier. Naive Bayes classifiers are
46
+ paramaterized by two probability distributions:
47
+
48
+ - P(label) gives the probability that an input will receive each
49
+ label, given no information about the input's features.
50
+
51
+ - P(fname=fval|label) gives the probability that a given feature
52
+ (fname) will receive a given value (fval), given that the
53
+ label (label).
54
+
55
+ If the classifier encounters an input with a feature that has
56
+ never been seen with any label, then rather than assigning a
57
+ probability of 0 to all labels, it will ignore that feature.
58
+
59
+ The feature value 'None' is reserved for unseen feature values;
60
+ you generally should not use 'None' as a feature value for one of
61
+ your own features.
62
+ """
63
+
64
+ def __init__(self, label_probdist, feature_probdist):
65
+ """
66
+ :param label_probdist: P(label), the probability distribution
67
+ over labels. It is expressed as a ``ProbDistI`` whose
68
+ samples are labels. I.e., P(label) =
69
+ ``label_probdist.prob(label)``.
70
+
71
+ :param feature_probdist: P(fname=fval|label), the probability
72
+ distribution for feature values, given labels. It is
73
+ expressed as a dictionary whose keys are ``(label, fname)``
74
+ pairs and whose values are ``ProbDistI`` objects over feature
75
+ values. I.e., P(fname=fval|label) =
76
+ ``feature_probdist[label,fname].prob(fval)``. If a given
77
+ ``(label,fname)`` is not a key in ``feature_probdist``, then
78
+ it is assumed that the corresponding P(fname=fval|label)
79
+ is 0 for all values of ``fval``.
80
+ """
81
+ self._label_probdist = label_probdist
82
+ self._feature_probdist = feature_probdist
83
+ self._labels = list(label_probdist.samples())
84
+
85
+ def labels(self):
86
+ return self._labels
87
+
88
+ def classify(self, featureset):
89
+ return self.prob_classify(featureset).max()
90
+
91
+ def prob_classify(self, featureset):
92
+ # Discard any feature names that we've never seen before.
93
+ # Otherwise, we'll just assign a probability of 0 to
94
+ # everything.
95
+ featureset = featureset.copy()
96
+ for fname in list(featureset.keys()):
97
+ for label in self._labels:
98
+ if (label, fname) in self._feature_probdist:
99
+ break
100
+ else:
101
+ # print('Ignoring unseen feature %s' % fname)
102
+ del featureset[fname]
103
+
104
+ # Find the log probability of each label, given the features.
105
+ # Start with the log probability of the label itself.
106
+ logprob = {}
107
+ for label in self._labels:
108
+ logprob[label] = self._label_probdist.logprob(label)
109
+
110
+ # Then add in the log probability of features given labels.
111
+ for label in self._labels:
112
+ for (fname, fval) in featureset.items():
113
+ if (label, fname) in self._feature_probdist:
114
+ feature_probs = self._feature_probdist[label, fname]
115
+ logprob[label] += feature_probs.logprob(fval)
116
+ else:
117
+ # nb: This case will never come up if the
118
+ # classifier was created by
119
+ # NaiveBayesClassifier.train().
120
+ logprob[label] += sum_logs([]) # = -INF.
121
+
122
+ return DictionaryProbDist(logprob, normalize=True, log=True)
123
+
124
+ def show_most_informative_features(self, n=10):
125
+ # Determine the most relevant features, and display them.
126
+ cpdist = self._feature_probdist
127
+ print("Most Informative Features")
128
+
129
+ for (fname, fval) in self.most_informative_features(n):
130
+
131
+ def labelprob(l):
132
+ return cpdist[l, fname].prob(fval)
133
+
134
+ labels = sorted(
135
+ (l for l in self._labels if fval in cpdist[l, fname].samples()),
136
+ key=lambda element: (-labelprob(element), element),
137
+ reverse=True,
138
+ )
139
+ if len(labels) == 1:
140
+ continue
141
+ l0 = labels[0]
142
+ l1 = labels[-1]
143
+ if cpdist[l0, fname].prob(fval) == 0:
144
+ ratio = "INF"
145
+ else:
146
+ ratio = "%8.1f" % (
147
+ cpdist[l1, fname].prob(fval) / cpdist[l0, fname].prob(fval)
148
+ )
149
+ print(
150
+ "%24s = %-14r %6s : %-6s = %s : 1.0"
151
+ % (fname, fval, ("%s" % l1)[:6], ("%s" % l0)[:6], ratio)
152
+ )
153
+
154
+ def most_informative_features(self, n=100):
155
+ """
156
+ Return a list of the 'most informative' features used by this
157
+ classifier. For the purpose of this function, the
158
+ informativeness of a feature ``(fname,fval)`` is equal to the
159
+ highest value of P(fname=fval|label), for any label, divided by
160
+ the lowest value of P(fname=fval|label), for any label:
161
+
162
+ | max[ P(fname=fval|label1) / P(fname=fval|label2) ]
163
+ """
164
+ if hasattr(self, "_most_informative_features"):
165
+ return self._most_informative_features[:n]
166
+ else:
167
+ # The set of (fname, fval) pairs used by this classifier.
168
+ features = set()
169
+ # The max & min probability associated w/ each (fname, fval)
170
+ # pair. Maps (fname,fval) -> float.
171
+ maxprob = defaultdict(lambda: 0.0)
172
+ minprob = defaultdict(lambda: 1.0)
173
+
174
+ for (label, fname), probdist in self._feature_probdist.items():
175
+ for fval in probdist.samples():
176
+ feature = (fname, fval)
177
+ features.add(feature)
178
+ p = probdist.prob(fval)
179
+ maxprob[feature] = max(p, maxprob[feature])
180
+ minprob[feature] = min(p, minprob[feature])
181
+ if minprob[feature] == 0:
182
+ features.discard(feature)
183
+
184
+ # Convert features to a list, & sort it by how informative
185
+ # features are.
186
+ self._most_informative_features = sorted(
187
+ features,
188
+ key=lambda feature_: (
189
+ minprob[feature_] / maxprob[feature_],
190
+ feature_[0],
191
+ feature_[1] in [None, False, True],
192
+ str(feature_[1]).lower(),
193
+ ),
194
+ )
195
+ return self._most_informative_features[:n]
196
+
197
+ @classmethod
198
+ def train(cls, labeled_featuresets, estimator=ELEProbDist):
199
+ """
200
+ :param labeled_featuresets: A list of classified featuresets,
201
+ i.e., a list of tuples ``(featureset, label)``.
202
+ """
203
+ label_freqdist = FreqDist()
204
+ feature_freqdist = defaultdict(FreqDist)
205
+ feature_values = defaultdict(set)
206
+ fnames = set()
207
+
208
+ # Count up how many times each feature value occurred, given
209
+ # the label and featurename.
210
+ for featureset, label in labeled_featuresets:
211
+ label_freqdist[label] += 1
212
+ for fname, fval in featureset.items():
213
+ # Increment freq(fval|label, fname)
214
+ feature_freqdist[label, fname][fval] += 1
215
+ # Record that fname can take the value fval.
216
+ feature_values[fname].add(fval)
217
+ # Keep a list of all feature names.
218
+ fnames.add(fname)
219
+
220
+ # If a feature didn't have a value given for an instance, then
221
+ # we assume that it gets the implicit value 'None.' This loop
222
+ # counts up the number of 'missing' feature values for each
223
+ # (label,fname) pair, and increments the count of the fval
224
+ # 'None' by that amount.
225
+ for label in label_freqdist:
226
+ num_samples = label_freqdist[label]
227
+ for fname in fnames:
228
+ count = feature_freqdist[label, fname].N()
229
+ # Only add a None key when necessary, i.e. if there are
230
+ # any samples with feature 'fname' missing.
231
+ if num_samples - count > 0:
232
+ feature_freqdist[label, fname][None] += num_samples - count
233
+ feature_values[fname].add(None)
234
+
235
+ # Create the P(label) distribution
236
+ label_probdist = estimator(label_freqdist)
237
+
238
+ # Create the P(fval|label, fname) distribution
239
+ feature_probdist = {}
240
+ for ((label, fname), freqdist) in feature_freqdist.items():
241
+ probdist = estimator(freqdist, bins=len(feature_values[fname]))
242
+ feature_probdist[label, fname] = probdist
243
+
244
+ return cls(label_probdist, feature_probdist)
245
+
246
+
247
+ ##//////////////////////////////////////////////////////
248
+ ## Demo
249
+ ##//////////////////////////////////////////////////////
250
+
251
+
252
+ def demo():
253
+ from nltk.classify.util import names_demo
254
+
255
+ classifier = names_demo(NaiveBayesClassifier.train)
256
+ classifier.show_most_informative_features()
257
+
258
+
259
+ if __name__ == "__main__":
260
+ demo()
llmeval-env/lib/python3.10/site-packages/nltk/classify/positivenaivebayes.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Positive Naive Bayes Classifier
2
+ #
3
+ # Copyright (C) 2012 NLTK Project
4
+ # Author: Alessandro Presta <alessandro.presta@gmail.com>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ A variant of the Naive Bayes Classifier that performs binary classification with
10
+ partially-labeled training sets. In other words, assume we want to build a classifier
11
+ that assigns each example to one of two complementary classes (e.g., male names and
12
+ female names).
13
+ If we have a training set with labeled examples for both classes, we can use a
14
+ standard Naive Bayes Classifier. However, consider the case when we only have labeled
15
+ examples for one of the classes, and other, unlabeled, examples.
16
+ Then, assuming a prior distribution on the two labels, we can use the unlabeled set
17
+ to estimate the frequencies of the various features.
18
+
19
+ Let the two possible labels be 1 and 0, and let's say we only have examples labeled 1
20
+ and unlabeled examples. We are also given an estimate of P(1).
21
+
22
+ We compute P(feature|1) exactly as in the standard case.
23
+
24
+ To compute P(feature|0), we first estimate P(feature) from the unlabeled set (we are
25
+ assuming that the unlabeled examples are drawn according to the given prior distribution)
26
+ and then express the conditional probability as:
27
+
28
+ | P(feature) - P(feature|1) * P(1)
29
+ | P(feature|0) = ----------------------------------
30
+ | P(0)
31
+
32
+ Example:
33
+
34
+ >>> from nltk.classify import PositiveNaiveBayesClassifier
35
+
36
+ Some sentences about sports:
37
+
38
+ >>> sports_sentences = [ 'The team dominated the game',
39
+ ... 'They lost the ball',
40
+ ... 'The game was intense',
41
+ ... 'The goalkeeper catched the ball',
42
+ ... 'The other team controlled the ball' ]
43
+
44
+ Mixed topics, including sports:
45
+
46
+ >>> various_sentences = [ 'The President did not comment',
47
+ ... 'I lost the keys',
48
+ ... 'The team won the game',
49
+ ... 'Sara has two kids',
50
+ ... 'The ball went off the court',
51
+ ... 'They had the ball for the whole game',
52
+ ... 'The show is over' ]
53
+
54
+ The features of a sentence are simply the words it contains:
55
+
56
+ >>> def features(sentence):
57
+ ... words = sentence.lower().split()
58
+ ... return dict(('contains(%s)' % w, True) for w in words)
59
+
60
+ We use the sports sentences as positive examples, the mixed ones ad unlabeled examples:
61
+
62
+ >>> positive_featuresets = map(features, sports_sentences)
63
+ >>> unlabeled_featuresets = map(features, various_sentences)
64
+ >>> classifier = PositiveNaiveBayesClassifier.train(positive_featuresets,
65
+ ... unlabeled_featuresets)
66
+
67
+ Is the following sentence about sports?
68
+
69
+ >>> classifier.classify(features('The cat is on the table'))
70
+ False
71
+
72
+ What about this one?
73
+
74
+ >>> classifier.classify(features('My team lost the game'))
75
+ True
76
+ """
77
+
78
+ from collections import defaultdict
79
+
80
+ from nltk.classify.naivebayes import NaiveBayesClassifier
81
+ from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist
82
+
83
+ ##//////////////////////////////////////////////////////
84
+ ## Positive Naive Bayes Classifier
85
+ ##//////////////////////////////////////////////////////
86
+
87
+
88
+ class PositiveNaiveBayesClassifier(NaiveBayesClassifier):
89
+ @staticmethod
90
+ def train(
91
+ positive_featuresets,
92
+ unlabeled_featuresets,
93
+ positive_prob_prior=0.5,
94
+ estimator=ELEProbDist,
95
+ ):
96
+ """
97
+ :param positive_featuresets: An iterable of featuresets that are known as positive
98
+ examples (i.e., their label is ``True``).
99
+
100
+ :param unlabeled_featuresets: An iterable of featuresets whose label is unknown.
101
+
102
+ :param positive_prob_prior: A prior estimate of the probability of the label
103
+ ``True`` (default 0.5).
104
+ """
105
+ positive_feature_freqdist = defaultdict(FreqDist)
106
+ unlabeled_feature_freqdist = defaultdict(FreqDist)
107
+ feature_values = defaultdict(set)
108
+ fnames = set()
109
+
110
+ # Count up how many times each feature value occurred in positive examples.
111
+ num_positive_examples = 0
112
+ for featureset in positive_featuresets:
113
+ for fname, fval in featureset.items():
114
+ positive_feature_freqdist[fname][fval] += 1
115
+ feature_values[fname].add(fval)
116
+ fnames.add(fname)
117
+ num_positive_examples += 1
118
+
119
+ # Count up how many times each feature value occurred in unlabeled examples.
120
+ num_unlabeled_examples = 0
121
+ for featureset in unlabeled_featuresets:
122
+ for fname, fval in featureset.items():
123
+ unlabeled_feature_freqdist[fname][fval] += 1
124
+ feature_values[fname].add(fval)
125
+ fnames.add(fname)
126
+ num_unlabeled_examples += 1
127
+
128
+ # If a feature didn't have a value given for an instance, then we assume that
129
+ # it gets the implicit value 'None'.
130
+ for fname in fnames:
131
+ count = positive_feature_freqdist[fname].N()
132
+ positive_feature_freqdist[fname][None] += num_positive_examples - count
133
+ feature_values[fname].add(None)
134
+
135
+ for fname in fnames:
136
+ count = unlabeled_feature_freqdist[fname].N()
137
+ unlabeled_feature_freqdist[fname][None] += num_unlabeled_examples - count
138
+ feature_values[fname].add(None)
139
+
140
+ negative_prob_prior = 1.0 - positive_prob_prior
141
+
142
+ # Create the P(label) distribution.
143
+ label_probdist = DictionaryProbDist(
144
+ {True: positive_prob_prior, False: negative_prob_prior}
145
+ )
146
+
147
+ # Create the P(fval|label, fname) distribution.
148
+ feature_probdist = {}
149
+ for fname, freqdist in positive_feature_freqdist.items():
150
+ probdist = estimator(freqdist, bins=len(feature_values[fname]))
151
+ feature_probdist[True, fname] = probdist
152
+
153
+ for fname, freqdist in unlabeled_feature_freqdist.items():
154
+ global_probdist = estimator(freqdist, bins=len(feature_values[fname]))
155
+ negative_feature_probs = {}
156
+ for fval in feature_values[fname]:
157
+ prob = (
158
+ global_probdist.prob(fval)
159
+ - positive_prob_prior * feature_probdist[True, fname].prob(fval)
160
+ ) / negative_prob_prior
161
+ # TODO: We need to add some kind of smoothing here, instead of
162
+ # setting negative probabilities to zero and normalizing.
163
+ negative_feature_probs[fval] = max(prob, 0.0)
164
+ feature_probdist[False, fname] = DictionaryProbDist(
165
+ negative_feature_probs, normalize=True
166
+ )
167
+
168
+ return PositiveNaiveBayesClassifier(label_probdist, feature_probdist)
169
+
170
+
171
+ ##//////////////////////////////////////////////////////
172
+ ## Demo
173
+ ##//////////////////////////////////////////////////////
174
+
175
+
176
+ def demo():
177
+ from nltk.classify.util import partial_names_demo
178
+
179
+ classifier = partial_names_demo(PositiveNaiveBayesClassifier.train)
180
+ classifier.show_most_informative_features()
llmeval-env/lib/python3.10/site-packages/nltk/classify/rte_classify.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: RTE Classifier
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Ewan Klein <ewan@inf.ed.ac.uk>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ Simple classifier for RTE corpus.
10
+
11
+ It calculates the overlap in words and named entities between text and
12
+ hypothesis, and also whether there are words / named entities in the
13
+ hypothesis which fail to occur in the text, since this is an indicator that
14
+ the hypothesis is more informative than (i.e not entailed by) the text.
15
+
16
+ TO DO: better Named Entity classification
17
+ TO DO: add lemmatization
18
+ """
19
+
20
+ from nltk.classify.maxent import MaxentClassifier
21
+ from nltk.classify.util import accuracy
22
+ from nltk.tokenize import RegexpTokenizer
23
+
24
+
25
+ class RTEFeatureExtractor:
26
+ """
27
+ This builds a bag of words for both the text and the hypothesis after
28
+ throwing away some stopwords, then calculates overlap and difference.
29
+ """
30
+
31
+ def __init__(self, rtepair, stop=True, use_lemmatize=False):
32
+ """
33
+ :param rtepair: a ``RTEPair`` from which features should be extracted
34
+ :param stop: if ``True``, stopwords are thrown away.
35
+ :type stop: bool
36
+ """
37
+ self.stop = stop
38
+ self.stopwords = {
39
+ "a",
40
+ "the",
41
+ "it",
42
+ "they",
43
+ "of",
44
+ "in",
45
+ "to",
46
+ "is",
47
+ "have",
48
+ "are",
49
+ "were",
50
+ "and",
51
+ "very",
52
+ ".",
53
+ ",",
54
+ }
55
+
56
+ self.negwords = {"no", "not", "never", "failed", "rejected", "denied"}
57
+ # Try to tokenize so that abbreviations, monetary amounts, email
58
+ # addresses, URLs are single tokens.
59
+ tokenizer = RegexpTokenizer(r"[\w.@:/]+|\w+|\$[\d.]+")
60
+
61
+ # Get the set of word types for text and hypothesis
62
+ self.text_tokens = tokenizer.tokenize(rtepair.text)
63
+ self.hyp_tokens = tokenizer.tokenize(rtepair.hyp)
64
+ self.text_words = set(self.text_tokens)
65
+ self.hyp_words = set(self.hyp_tokens)
66
+
67
+ if use_lemmatize:
68
+ self.text_words = {self._lemmatize(token) for token in self.text_tokens}
69
+ self.hyp_words = {self._lemmatize(token) for token in self.hyp_tokens}
70
+
71
+ if self.stop:
72
+ self.text_words = self.text_words - self.stopwords
73
+ self.hyp_words = self.hyp_words - self.stopwords
74
+
75
+ self._overlap = self.hyp_words & self.text_words
76
+ self._hyp_extra = self.hyp_words - self.text_words
77
+ self._txt_extra = self.text_words - self.hyp_words
78
+
79
+ def overlap(self, toktype, debug=False):
80
+ """
81
+ Compute the overlap between text and hypothesis.
82
+
83
+ :param toktype: distinguish Named Entities from ordinary words
84
+ :type toktype: 'ne' or 'word'
85
+ """
86
+ ne_overlap = {token for token in self._overlap if self._ne(token)}
87
+ if toktype == "ne":
88
+ if debug:
89
+ print("ne overlap", ne_overlap)
90
+ return ne_overlap
91
+ elif toktype == "word":
92
+ if debug:
93
+ print("word overlap", self._overlap - ne_overlap)
94
+ return self._overlap - ne_overlap
95
+ else:
96
+ raise ValueError("Type not recognized:'%s'" % toktype)
97
+
98
+ def hyp_extra(self, toktype, debug=True):
99
+ """
100
+ Compute the extraneous material in the hypothesis.
101
+
102
+ :param toktype: distinguish Named Entities from ordinary words
103
+ :type toktype: 'ne' or 'word'
104
+ """
105
+ ne_extra = {token for token in self._hyp_extra if self._ne(token)}
106
+ if toktype == "ne":
107
+ return ne_extra
108
+ elif toktype == "word":
109
+ return self._hyp_extra - ne_extra
110
+ else:
111
+ raise ValueError("Type not recognized: '%s'" % toktype)
112
+
113
+ @staticmethod
114
+ def _ne(token):
115
+ """
116
+ This just assumes that words in all caps or titles are
117
+ named entities.
118
+
119
+ :type token: str
120
+ """
121
+ if token.istitle() or token.isupper():
122
+ return True
123
+ return False
124
+
125
+ @staticmethod
126
+ def _lemmatize(word):
127
+ """
128
+ Use morphy from WordNet to find the base form of verbs.
129
+ """
130
+ from nltk.corpus import wordnet as wn
131
+
132
+ lemma = wn.morphy(word, pos=wn.VERB)
133
+ if lemma is not None:
134
+ return lemma
135
+ return word
136
+
137
+
138
+ def rte_features(rtepair):
139
+ extractor = RTEFeatureExtractor(rtepair)
140
+ features = {}
141
+ features["alwayson"] = True
142
+ features["word_overlap"] = len(extractor.overlap("word"))
143
+ features["word_hyp_extra"] = len(extractor.hyp_extra("word"))
144
+ features["ne_overlap"] = len(extractor.overlap("ne"))
145
+ features["ne_hyp_extra"] = len(extractor.hyp_extra("ne"))
146
+ features["neg_txt"] = len(extractor.negwords & extractor.text_words)
147
+ features["neg_hyp"] = len(extractor.negwords & extractor.hyp_words)
148
+ return features
149
+
150
+
151
+ def rte_featurize(rte_pairs):
152
+ return [(rte_features(pair), pair.value) for pair in rte_pairs]
153
+
154
+
155
+ def rte_classifier(algorithm, sample_N=None):
156
+ from nltk.corpus import rte as rte_corpus
157
+
158
+ train_set = rte_corpus.pairs(["rte1_dev.xml", "rte2_dev.xml", "rte3_dev.xml"])
159
+ test_set = rte_corpus.pairs(["rte1_test.xml", "rte2_test.xml", "rte3_test.xml"])
160
+
161
+ if sample_N is not None:
162
+ train_set = train_set[:sample_N]
163
+ test_set = test_set[:sample_N]
164
+
165
+ featurized_train_set = rte_featurize(train_set)
166
+ featurized_test_set = rte_featurize(test_set)
167
+
168
+ # Train the classifier
169
+ print("Training classifier...")
170
+ if algorithm in ["megam"]: # MEGAM based algorithms.
171
+ clf = MaxentClassifier.train(featurized_train_set, algorithm)
172
+ elif algorithm in ["GIS", "IIS"]: # Use default GIS/IIS MaxEnt algorithm
173
+ clf = MaxentClassifier.train(featurized_train_set, algorithm)
174
+ else:
175
+ err_msg = str(
176
+ "RTEClassifier only supports these algorithms:\n "
177
+ "'megam', 'GIS', 'IIS'.\n"
178
+ )
179
+ raise Exception(err_msg)
180
+ print("Testing classifier...")
181
+ acc = accuracy(clf, featurized_test_set)
182
+ print("Accuracy: %6.4f" % acc)
183
+ return clf
llmeval-env/lib/python3.10/site-packages/nltk/classify/scikitlearn.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Interface to scikit-learn classifiers
2
+ #
3
+ # Author: Lars Buitinck <L.J.Buitinck@uva.nl>
4
+ # URL: <https://www.nltk.org/>
5
+ # For license information, see LICENSE.TXT
6
+ """
7
+ scikit-learn (https://scikit-learn.org) is a machine learning library for
8
+ Python. It supports many classification algorithms, including SVMs,
9
+ Naive Bayes, logistic regression (MaxEnt) and decision trees.
10
+
11
+ This package implements a wrapper around scikit-learn classifiers. To use this
12
+ wrapper, construct a scikit-learn estimator object, then use that to construct
13
+ a SklearnClassifier. E.g., to wrap a linear SVM with default settings:
14
+
15
+ >>> from sklearn.svm import LinearSVC
16
+ >>> from nltk.classify.scikitlearn import SklearnClassifier
17
+ >>> classif = SklearnClassifier(LinearSVC())
18
+
19
+ A scikit-learn classifier may include preprocessing steps when it's wrapped
20
+ in a Pipeline object. The following constructs and wraps a Naive Bayes text
21
+ classifier with tf-idf weighting and chi-square feature selection to get the
22
+ best 1000 features:
23
+
24
+ >>> from sklearn.feature_extraction.text import TfidfTransformer
25
+ >>> from sklearn.feature_selection import SelectKBest, chi2
26
+ >>> from sklearn.naive_bayes import MultinomialNB
27
+ >>> from sklearn.pipeline import Pipeline
28
+ >>> pipeline = Pipeline([('tfidf', TfidfTransformer()),
29
+ ... ('chi2', SelectKBest(chi2, k=1000)),
30
+ ... ('nb', MultinomialNB())])
31
+ >>> classif = SklearnClassifier(pipeline)
32
+ """
33
+
34
+ from nltk.classify.api import ClassifierI
35
+ from nltk.probability import DictionaryProbDist
36
+
37
+ try:
38
+ from sklearn.feature_extraction import DictVectorizer
39
+ from sklearn.preprocessing import LabelEncoder
40
+ except ImportError:
41
+ pass
42
+
43
+ __all__ = ["SklearnClassifier"]
44
+
45
+
46
+ class SklearnClassifier(ClassifierI):
47
+ """Wrapper for scikit-learn classifiers."""
48
+
49
+ def __init__(self, estimator, dtype=float, sparse=True):
50
+ """
51
+ :param estimator: scikit-learn classifier object.
52
+
53
+ :param dtype: data type used when building feature array.
54
+ scikit-learn estimators work exclusively on numeric data. The
55
+ default value should be fine for almost all situations.
56
+
57
+ :param sparse: Whether to use sparse matrices internally.
58
+ The estimator must support these; not all scikit-learn classifiers
59
+ do (see their respective documentation and look for "sparse
60
+ matrix"). The default value is True, since most NLP problems
61
+ involve sparse feature sets. Setting this to False may take a
62
+ great amount of memory.
63
+ :type sparse: boolean.
64
+ """
65
+ self._clf = estimator
66
+ self._encoder = LabelEncoder()
67
+ self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse)
68
+
69
+ def __repr__(self):
70
+ return "<SklearnClassifier(%r)>" % self._clf
71
+
72
+ def classify_many(self, featuresets):
73
+ """Classify a batch of samples.
74
+
75
+ :param featuresets: An iterable over featuresets, each a dict mapping
76
+ strings to either numbers, booleans or strings.
77
+ :return: The predicted class label for each input sample.
78
+ :rtype: list
79
+ """
80
+ X = self._vectorizer.transform(featuresets)
81
+ classes = self._encoder.classes_
82
+ return [classes[i] for i in self._clf.predict(X)]
83
+
84
+ def prob_classify_many(self, featuresets):
85
+ """Compute per-class probabilities for a batch of samples.
86
+
87
+ :param featuresets: An iterable over featuresets, each a dict mapping
88
+ strings to either numbers, booleans or strings.
89
+ :rtype: list of ``ProbDistI``
90
+ """
91
+ X = self._vectorizer.transform(featuresets)
92
+ y_proba_list = self._clf.predict_proba(X)
93
+ return [self._make_probdist(y_proba) for y_proba in y_proba_list]
94
+
95
+ def labels(self):
96
+ """The class labels used by this classifier.
97
+
98
+ :rtype: list
99
+ """
100
+ return list(self._encoder.classes_)
101
+
102
+ def train(self, labeled_featuresets):
103
+ """
104
+ Train (fit) the scikit-learn estimator.
105
+
106
+ :param labeled_featuresets: A list of ``(featureset, label)``
107
+ where each ``featureset`` is a dict mapping strings to either
108
+ numbers, booleans or strings.
109
+ """
110
+
111
+ X, y = list(zip(*labeled_featuresets))
112
+ X = self._vectorizer.fit_transform(X)
113
+ y = self._encoder.fit_transform(y)
114
+ self._clf.fit(X, y)
115
+
116
+ return self
117
+
118
+ def _make_probdist(self, y_proba):
119
+ classes = self._encoder.classes_
120
+ return DictionaryProbDist({classes[i]: p for i, p in enumerate(y_proba)})
121
+
122
+
123
+ if __name__ == "__main__":
124
+ from sklearn.linear_model import LogisticRegression
125
+ from sklearn.naive_bayes import BernoulliNB
126
+
127
+ from nltk.classify.util import names_demo, names_demo_features
128
+
129
+ # Bernoulli Naive Bayes is designed for binary classification. We set the
130
+ # binarize option to False since we know we're passing boolean features.
131
+ print("scikit-learn Naive Bayes:")
132
+ names_demo(
133
+ SklearnClassifier(BernoulliNB(binarize=False)).train,
134
+ features=names_demo_features,
135
+ )
136
+
137
+ # The C parameter on logistic regression (MaxEnt) controls regularization.
138
+ # The higher it's set, the less regularized the classifier is.
139
+ print("\n\nscikit-learn logistic regression:")
140
+ names_demo(
141
+ SklearnClassifier(LogisticRegression(C=1000)).train,
142
+ features=names_demo_features,
143
+ )
llmeval-env/lib/python3.10/site-packages/nltk/classify/senna.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Senna Interface
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Rami Al-Rfou' <ralrfou@cs.stonybrook.edu>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ A general interface to the SENNA pipeline that supports any of the
10
+ operations specified in SUPPORTED_OPERATIONS.
11
+
12
+ Applying multiple operations at once has the speed advantage. For example,
13
+ Senna will automatically determine POS tags if you are extracting named
14
+ entities. Applying both of the operations will cost only the time of
15
+ extracting the named entities.
16
+
17
+ The SENNA pipeline has a fixed maximum size of the sentences that it can read.
18
+ By default it is 1024 token/sentence. If you have larger sentences, changing
19
+ the MAX_SENTENCE_SIZE value in SENNA_main.c should be considered and your
20
+ system specific binary should be rebuilt. Otherwise this could introduce
21
+ misalignment errors.
22
+
23
+ The input is:
24
+
25
+ - path to the directory that contains SENNA executables. If the path is incorrect,
26
+ Senna will automatically search for executable file specified in SENNA environment variable
27
+ - List of the operations needed to be performed.
28
+ - (optionally) the encoding of the input data (default:utf-8)
29
+
30
+ Note: Unit tests for this module can be found in test/unit/test_senna.py
31
+
32
+ >>> from nltk.classify import Senna
33
+ >>> pipeline = Senna('/usr/share/senna-v3.0', ['pos', 'chk', 'ner']) # doctest: +SKIP
34
+ >>> sent = 'Dusseldorf is an international business center'.split()
35
+ >>> [(token['word'], token['chk'], token['ner'], token['pos']) for token in pipeline.tag(sent)] # doctest: +SKIP
36
+ [('Dusseldorf', 'B-NP', 'B-LOC', 'NNP'), ('is', 'B-VP', 'O', 'VBZ'), ('an', 'B-NP', 'O', 'DT'),
37
+ ('international', 'I-NP', 'O', 'JJ'), ('business', 'I-NP', 'O', 'NN'), ('center', 'I-NP', 'O', 'NN')]
38
+ """
39
+
40
+ from os import environ, path, sep
41
+ from platform import architecture, system
42
+ from subprocess import PIPE, Popen
43
+
44
+ from nltk.tag.api import TaggerI
45
+
46
+
47
+ class Senna(TaggerI):
48
+
49
+ SUPPORTED_OPERATIONS = ["pos", "chk", "ner"]
50
+
51
+ def __init__(self, senna_path, operations, encoding="utf-8"):
52
+ self._encoding = encoding
53
+ self._path = path.normpath(senna_path) + sep
54
+
55
+ # Verifies the existence of the executable on the self._path first
56
+ # senna_binary_file_1 = self.executable(self._path)
57
+ exe_file_1 = self.executable(self._path)
58
+ if not path.isfile(exe_file_1):
59
+ # Check for the system environment
60
+ if "SENNA" in environ:
61
+ # self._path = path.join(environ['SENNA'],'')
62
+ self._path = path.normpath(environ["SENNA"]) + sep
63
+ exe_file_2 = self.executable(self._path)
64
+ if not path.isfile(exe_file_2):
65
+ raise LookupError(
66
+ "Senna executable expected at %s or %s but not found"
67
+ % (exe_file_1, exe_file_2)
68
+ )
69
+
70
+ self.operations = operations
71
+
72
+ def executable(self, base_path):
73
+ """
74
+ The function that determines the system specific binary that should be
75
+ used in the pipeline. In case, the system is not known the default senna binary will
76
+ be used.
77
+ """
78
+ os_name = system()
79
+ if os_name == "Linux":
80
+ bits = architecture()[0]
81
+ if bits == "64bit":
82
+ return path.join(base_path, "senna-linux64")
83
+ return path.join(base_path, "senna-linux32")
84
+ if os_name == "Windows":
85
+ return path.join(base_path, "senna-win32.exe")
86
+ if os_name == "Darwin":
87
+ return path.join(base_path, "senna-osx")
88
+ return path.join(base_path, "senna")
89
+
90
+ def _map(self):
91
+ """
92
+ A method that calculates the order of the columns that SENNA pipeline
93
+ will output the tags into. This depends on the operations being ordered.
94
+ """
95
+ _map = {}
96
+ i = 1
97
+ for operation in Senna.SUPPORTED_OPERATIONS:
98
+ if operation in self.operations:
99
+ _map[operation] = i
100
+ i += 1
101
+ return _map
102
+
103
+ def tag(self, tokens):
104
+ """
105
+ Applies the specified operation(s) on a list of tokens.
106
+ """
107
+ return self.tag_sents([tokens])[0]
108
+
109
+ def tag_sents(self, sentences):
110
+ """
111
+ Applies the tag method over a list of sentences. This method will return a
112
+ list of dictionaries. Every dictionary will contain a word with its
113
+ calculated annotations/tags.
114
+ """
115
+ encoding = self._encoding
116
+
117
+ if not path.isfile(self.executable(self._path)):
118
+ raise LookupError(
119
+ "Senna executable expected at %s but not found"
120
+ % self.executable(self._path)
121
+ )
122
+
123
+ # Build the senna command to run the tagger
124
+ _senna_cmd = [
125
+ self.executable(self._path),
126
+ "-path",
127
+ self._path,
128
+ "-usrtokens",
129
+ "-iobtags",
130
+ ]
131
+ _senna_cmd.extend(["-" + op for op in self.operations])
132
+
133
+ # Serialize the actual sentences to a temporary string
134
+ _input = "\n".join(" ".join(x) for x in sentences) + "\n"
135
+ if isinstance(_input, str) and encoding:
136
+ _input = _input.encode(encoding)
137
+
138
+ # Run the tagger and get the output
139
+ p = Popen(_senna_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE)
140
+ (stdout, stderr) = p.communicate(input=_input)
141
+ senna_output = stdout
142
+
143
+ # Check the return code.
144
+ if p.returncode != 0:
145
+ raise RuntimeError("Senna command failed! Details: %s" % stderr)
146
+
147
+ if encoding:
148
+ senna_output = stdout.decode(encoding)
149
+
150
+ # Output the tagged sentences
151
+ map_ = self._map()
152
+ tagged_sentences = [[]]
153
+ sentence_index = 0
154
+ token_index = 0
155
+ for tagged_word in senna_output.strip().split("\n"):
156
+ if not tagged_word:
157
+ tagged_sentences.append([])
158
+ sentence_index += 1
159
+ token_index = 0
160
+ continue
161
+ tags = tagged_word.split("\t")
162
+ result = {}
163
+ for tag in map_:
164
+ result[tag] = tags[map_[tag]].strip()
165
+ try:
166
+ result["word"] = sentences[sentence_index][token_index]
167
+ except IndexError as e:
168
+ raise IndexError(
169
+ "Misalignment error occurred at sentence number %d. Possible reason"
170
+ " is that the sentence size exceeded the maximum size. Check the "
171
+ "documentation of Senna class for more information."
172
+ % sentence_index
173
+ ) from e
174
+ tagged_sentences[-1].append(result)
175
+ token_index += 1
176
+ return tagged_sentences
llmeval-env/lib/python3.10/site-packages/nltk/classify/textcat.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Language ID module using TextCat algorithm
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Avital Pekker <avital.pekker@utoronto.ca>
5
+ #
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ A module for language identification using the TextCat algorithm.
11
+ An implementation of the text categorization algorithm
12
+ presented in Cavnar, W. B. and J. M. Trenkle,
13
+ "N-Gram-Based Text Categorization".
14
+
15
+ The algorithm takes advantage of Zipf's law and uses
16
+ n-gram frequencies to profile languages and text-yet to
17
+ be identified-then compares using a distance measure.
18
+
19
+ Language n-grams are provided by the "An Crubadan"
20
+ project. A corpus reader was created separately to read
21
+ those files.
22
+
23
+ For details regarding the algorithm, see:
24
+ https://www.let.rug.nl/~vannoord/TextCat/textcat.pdf
25
+
26
+ For details about An Crubadan, see:
27
+ https://borel.slu.edu/crubadan/index.html
28
+ """
29
+
30
+ from sys import maxsize
31
+
32
+ from nltk.util import trigrams
33
+
34
+ # Note: this is NOT "re" you're likely used to. The regex module
35
+ # is an alternative to the standard re module that supports
36
+ # Unicode codepoint properties with the \p{} syntax.
37
+ # You may have to "pip install regx"
38
+ try:
39
+ import regex as re
40
+ except ImportError:
41
+ re = None
42
+ ######################################################################
43
+ ## Language identification using TextCat
44
+ ######################################################################
45
+
46
+
47
+ class TextCat:
48
+
49
+ _corpus = None
50
+ fingerprints = {}
51
+ _START_CHAR = "<"
52
+ _END_CHAR = ">"
53
+
54
+ last_distances = {}
55
+
56
+ def __init__(self):
57
+ if not re:
58
+ raise OSError(
59
+ "classify.textcat requires the regex module that "
60
+ "supports unicode. Try '$ pip install regex' and "
61
+ "see https://pypi.python.org/pypi/regex for "
62
+ "further details."
63
+ )
64
+
65
+ from nltk.corpus import crubadan
66
+
67
+ self._corpus = crubadan
68
+ # Load all language ngrams into cache
69
+ for lang in self._corpus.langs():
70
+ self._corpus.lang_freq(lang)
71
+
72
+ def remove_punctuation(self, text):
73
+ """Get rid of punctuation except apostrophes"""
74
+ return re.sub(r"[^\P{P}\']+", "", text)
75
+
76
+ def profile(self, text):
77
+ """Create FreqDist of trigrams within text"""
78
+ from nltk import FreqDist, word_tokenize
79
+
80
+ clean_text = self.remove_punctuation(text)
81
+ tokens = word_tokenize(clean_text)
82
+
83
+ fingerprint = FreqDist()
84
+ for t in tokens:
85
+ token_trigram_tuples = trigrams(self._START_CHAR + t + self._END_CHAR)
86
+ token_trigrams = ["".join(tri) for tri in token_trigram_tuples]
87
+
88
+ for cur_trigram in token_trigrams:
89
+ if cur_trigram in fingerprint:
90
+ fingerprint[cur_trigram] += 1
91
+ else:
92
+ fingerprint[cur_trigram] = 1
93
+
94
+ return fingerprint
95
+
96
+ def calc_dist(self, lang, trigram, text_profile):
97
+ """Calculate the "out-of-place" measure between the
98
+ text and language profile for a single trigram"""
99
+
100
+ lang_fd = self._corpus.lang_freq(lang)
101
+ dist = 0
102
+
103
+ if trigram in lang_fd:
104
+ idx_lang_profile = list(lang_fd.keys()).index(trigram)
105
+ idx_text = list(text_profile.keys()).index(trigram)
106
+
107
+ # print(idx_lang_profile, ", ", idx_text)
108
+ dist = abs(idx_lang_profile - idx_text)
109
+ else:
110
+ # Arbitrary but should be larger than
111
+ # any possible trigram file length
112
+ # in terms of total lines
113
+ dist = maxsize
114
+
115
+ return dist
116
+
117
+ def lang_dists(self, text):
118
+ """Calculate the "out-of-place" measure between
119
+ the text and all languages"""
120
+
121
+ distances = {}
122
+ profile = self.profile(text)
123
+ # For all the languages
124
+ for lang in self._corpus._all_lang_freq.keys():
125
+ # Calculate distance metric for every trigram in
126
+ # input text to be identified
127
+ lang_dist = 0
128
+ for trigram in profile:
129
+ lang_dist += self.calc_dist(lang, trigram, profile)
130
+
131
+ distances[lang] = lang_dist
132
+
133
+ return distances
134
+
135
+ def guess_language(self, text):
136
+ """Find the language with the min distance
137
+ to the text and return its ISO 639-3 code"""
138
+ self.last_distances = self.lang_dists(text)
139
+
140
+ return min(self.last_distances, key=self.last_distances.get)
141
+ #################################################')
142
+
143
+
144
+ def demo():
145
+ from nltk.corpus import udhr
146
+
147
+ langs = [
148
+ "Kurdish-UTF8",
149
+ "Abkhaz-UTF8",
150
+ "Farsi_Persian-UTF8",
151
+ "Hindi-UTF8",
152
+ "Hawaiian-UTF8",
153
+ "Russian-UTF8",
154
+ "Vietnamese-UTF8",
155
+ "Serbian_Srpski-UTF8",
156
+ "Esperanto-UTF8",
157
+ ]
158
+
159
+ friendly = {
160
+ "kmr": "Northern Kurdish",
161
+ "abk": "Abkhazian",
162
+ "pes": "Iranian Persian",
163
+ "hin": "Hindi",
164
+ "haw": "Hawaiian",
165
+ "rus": "Russian",
166
+ "vie": "Vietnamese",
167
+ "srp": "Serbian",
168
+ "epo": "Esperanto",
169
+ }
170
+
171
+ tc = TextCat()
172
+
173
+ for cur_lang in langs:
174
+ # Get raw data from UDHR corpus
175
+ raw_sentences = udhr.sents(cur_lang)
176
+ rows = len(raw_sentences) - 1
177
+ cols = list(map(len, raw_sentences))
178
+
179
+ sample = ""
180
+
181
+ # Generate a sample text of the language
182
+ for i in range(0, rows):
183
+ cur_sent = ""
184
+ for j in range(0, cols[i]):
185
+ cur_sent += " " + raw_sentences[i][j]
186
+
187
+ sample += cur_sent
188
+
189
+ # Try to detect what it is
190
+ print("Language snippet: " + sample[0:140] + "...")
191
+ guess = tc.guess_language(sample)
192
+ print(f"Language detection: {guess} ({friendly[guess]})")
193
+ print("#" * 140)
194
+
195
+
196
+ if __name__ == "__main__":
197
+ demo()
llmeval-env/lib/python3.10/site-packages/nltk/classify/util.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Classifier Utility Functions
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <edloper@gmail.com>
5
+ # Steven Bird <stevenbird1@gmail.com> (minor additions)
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ Utility functions and classes for classifiers.
11
+ """
12
+
13
+ import math
14
+
15
+ # from nltk.util import Deprecated
16
+ import nltk.classify.util # for accuracy & log_likelihood
17
+ from nltk.util import LazyMap
18
+
19
+ ######################################################################
20
+ # { Helper Functions
21
+ ######################################################################
22
+
23
+ # alternative name possibility: 'map_featurefunc()'?
24
+ # alternative name possibility: 'detect_features()'?
25
+ # alternative name possibility: 'map_featuredetect()'?
26
+ # or.. just have users use LazyMap directly?
27
+ def apply_features(feature_func, toks, labeled=None):
28
+ """
29
+ Use the ``LazyMap`` class to construct a lazy list-like
30
+ object that is analogous to ``map(feature_func, toks)``. In
31
+ particular, if ``labeled=False``, then the returned list-like
32
+ object's values are equal to::
33
+
34
+ [feature_func(tok) for tok in toks]
35
+
36
+ If ``labeled=True``, then the returned list-like object's values
37
+ are equal to::
38
+
39
+ [(feature_func(tok), label) for (tok, label) in toks]
40
+
41
+ The primary purpose of this function is to avoid the memory
42
+ overhead involved in storing all the featuresets for every token
43
+ in a corpus. Instead, these featuresets are constructed lazily,
44
+ as-needed. The reduction in memory overhead can be especially
45
+ significant when the underlying list of tokens is itself lazy (as
46
+ is the case with many corpus readers).
47
+
48
+ :param feature_func: The function that will be applied to each
49
+ token. It should return a featureset -- i.e., a dict
50
+ mapping feature names to feature values.
51
+ :param toks: The list of tokens to which ``feature_func`` should be
52
+ applied. If ``labeled=True``, then the list elements will be
53
+ passed directly to ``feature_func()``. If ``labeled=False``,
54
+ then the list elements should be tuples ``(tok,label)``, and
55
+ ``tok`` will be passed to ``feature_func()``.
56
+ :param labeled: If true, then ``toks`` contains labeled tokens --
57
+ i.e., tuples of the form ``(tok, label)``. (Default:
58
+ auto-detect based on types.)
59
+ """
60
+ if labeled is None:
61
+ labeled = toks and isinstance(toks[0], (tuple, list))
62
+ if labeled:
63
+
64
+ def lazy_func(labeled_token):
65
+ return (feature_func(labeled_token[0]), labeled_token[1])
66
+
67
+ return LazyMap(lazy_func, toks)
68
+ else:
69
+ return LazyMap(feature_func, toks)
70
+
71
+
72
+ def attested_labels(tokens):
73
+ """
74
+ :return: A list of all labels that are attested in the given list
75
+ of tokens.
76
+ :rtype: list of (immutable)
77
+ :param tokens: The list of classified tokens from which to extract
78
+ labels. A classified token has the form ``(token, label)``.
79
+ :type tokens: list
80
+ """
81
+ return tuple({label for (tok, label) in tokens})
82
+
83
+
84
+ def log_likelihood(classifier, gold):
85
+ results = classifier.prob_classify_many([fs for (fs, l) in gold])
86
+ ll = [pdist.prob(l) for ((fs, l), pdist) in zip(gold, results)]
87
+ return math.log(sum(ll) / len(ll))
88
+
89
+
90
+ def accuracy(classifier, gold):
91
+ results = classifier.classify_many([fs for (fs, l) in gold])
92
+ correct = [l == r for ((fs, l), r) in zip(gold, results)]
93
+ if correct:
94
+ return sum(correct) / len(correct)
95
+ else:
96
+ return 0
97
+
98
+
99
+ class CutoffChecker:
100
+ """
101
+ A helper class that implements cutoff checks based on number of
102
+ iterations and log likelihood.
103
+
104
+ Accuracy cutoffs are also implemented, but they're almost never
105
+ a good idea to use.
106
+ """
107
+
108
+ def __init__(self, cutoffs):
109
+ self.cutoffs = cutoffs.copy()
110
+ if "min_ll" in cutoffs:
111
+ cutoffs["min_ll"] = -abs(cutoffs["min_ll"])
112
+ if "min_lldelta" in cutoffs:
113
+ cutoffs["min_lldelta"] = abs(cutoffs["min_lldelta"])
114
+ self.ll = None
115
+ self.acc = None
116
+ self.iter = 1
117
+
118
+ def check(self, classifier, train_toks):
119
+ cutoffs = self.cutoffs
120
+ self.iter += 1
121
+ if "max_iter" in cutoffs and self.iter >= cutoffs["max_iter"]:
122
+ return True # iteration cutoff.
123
+
124
+ new_ll = nltk.classify.util.log_likelihood(classifier, train_toks)
125
+ if math.isnan(new_ll):
126
+ return True
127
+
128
+ if "min_ll" in cutoffs or "min_lldelta" in cutoffs:
129
+ if "min_ll" in cutoffs and new_ll >= cutoffs["min_ll"]:
130
+ return True # log likelihood cutoff
131
+ if (
132
+ "min_lldelta" in cutoffs
133
+ and self.ll
134
+ and ((new_ll - self.ll) <= abs(cutoffs["min_lldelta"]))
135
+ ):
136
+ return True # log likelihood delta cutoff
137
+ self.ll = new_ll
138
+
139
+ if "max_acc" in cutoffs or "min_accdelta" in cutoffs:
140
+ new_acc = nltk.classify.util.log_likelihood(classifier, train_toks)
141
+ if "max_acc" in cutoffs and new_acc >= cutoffs["max_acc"]:
142
+ return True # log likelihood cutoff
143
+ if (
144
+ "min_accdelta" in cutoffs
145
+ and self.acc
146
+ and ((new_acc - self.acc) <= abs(cutoffs["min_accdelta"]))
147
+ ):
148
+ return True # log likelihood delta cutoff
149
+ self.acc = new_acc
150
+
151
+ return False # no cutoff reached.
152
+
153
+
154
+ ######################################################################
155
+ # { Demos
156
+ ######################################################################
157
+
158
+
159
+ def names_demo_features(name):
160
+ features = {}
161
+ features["alwayson"] = True
162
+ features["startswith"] = name[0].lower()
163
+ features["endswith"] = name[-1].lower()
164
+ for letter in "abcdefghijklmnopqrstuvwxyz":
165
+ features["count(%s)" % letter] = name.lower().count(letter)
166
+ features["has(%s)" % letter] = letter in name.lower()
167
+ return features
168
+
169
+
170
+ def binary_names_demo_features(name):
171
+ features = {}
172
+ features["alwayson"] = True
173
+ features["startswith(vowel)"] = name[0].lower() in "aeiouy"
174
+ features["endswith(vowel)"] = name[-1].lower() in "aeiouy"
175
+ for letter in "abcdefghijklmnopqrstuvwxyz":
176
+ features["count(%s)" % letter] = name.lower().count(letter)
177
+ features["has(%s)" % letter] = letter in name.lower()
178
+ features["startswith(%s)" % letter] = letter == name[0].lower()
179
+ features["endswith(%s)" % letter] = letter == name[-1].lower()
180
+ return features
181
+
182
+
183
+ def names_demo(trainer, features=names_demo_features):
184
+ import random
185
+
186
+ from nltk.corpus import names
187
+
188
+ # Construct a list of classified names, using the names corpus.
189
+ namelist = [(name, "male") for name in names.words("male.txt")] + [
190
+ (name, "female") for name in names.words("female.txt")
191
+ ]
192
+
193
+ # Randomly split the names into a test & train set.
194
+ random.seed(123456)
195
+ random.shuffle(namelist)
196
+ train = namelist[:5000]
197
+ test = namelist[5000:5500]
198
+
199
+ # Train up a classifier.
200
+ print("Training classifier...")
201
+ classifier = trainer([(features(n), g) for (n, g) in train])
202
+
203
+ # Run the classifier on the test data.
204
+ print("Testing classifier...")
205
+ acc = accuracy(classifier, [(features(n), g) for (n, g) in test])
206
+ print("Accuracy: %6.4f" % acc)
207
+
208
+ # For classifiers that can find probabilities, show the log
209
+ # likelihood and some sample probability distributions.
210
+ try:
211
+ test_featuresets = [features(n) for (n, g) in test]
212
+ pdists = classifier.prob_classify_many(test_featuresets)
213
+ ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
214
+ print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
215
+ print()
216
+ print("Unseen Names P(Male) P(Female)\n" + "-" * 40)
217
+ for ((name, gender), pdist) in list(zip(test, pdists))[:5]:
218
+ if gender == "male":
219
+ fmt = " %-15s *%6.4f %6.4f"
220
+ else:
221
+ fmt = " %-15s %6.4f *%6.4f"
222
+ print(fmt % (name, pdist.prob("male"), pdist.prob("female")))
223
+ except NotImplementedError:
224
+ pass
225
+
226
+ # Return the classifier
227
+ return classifier
228
+
229
+
230
+ def partial_names_demo(trainer, features=names_demo_features):
231
+ import random
232
+
233
+ from nltk.corpus import names
234
+
235
+ male_names = names.words("male.txt")
236
+ female_names = names.words("female.txt")
237
+
238
+ random.seed(654321)
239
+ random.shuffle(male_names)
240
+ random.shuffle(female_names)
241
+
242
+ # Create a list of male names to be used as positive-labeled examples for training
243
+ positive = map(features, male_names[:2000])
244
+
245
+ # Create a list of male and female names to be used as unlabeled examples
246
+ unlabeled = map(features, male_names[2000:2500] + female_names[:500])
247
+
248
+ # Create a test set with correctly-labeled male and female names
249
+ test = [(name, True) for name in male_names[2500:2750]] + [
250
+ (name, False) for name in female_names[500:750]
251
+ ]
252
+
253
+ random.shuffle(test)
254
+
255
+ # Train up a classifier.
256
+ print("Training classifier...")
257
+ classifier = trainer(positive, unlabeled)
258
+
259
+ # Run the classifier on the test data.
260
+ print("Testing classifier...")
261
+ acc = accuracy(classifier, [(features(n), m) for (n, m) in test])
262
+ print("Accuracy: %6.4f" % acc)
263
+
264
+ # For classifiers that can find probabilities, show the log
265
+ # likelihood and some sample probability distributions.
266
+ try:
267
+ test_featuresets = [features(n) for (n, m) in test]
268
+ pdists = classifier.prob_classify_many(test_featuresets)
269
+ ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
270
+ print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
271
+ print()
272
+ print("Unseen Names P(Male) P(Female)\n" + "-" * 40)
273
+ for ((name, is_male), pdist) in zip(test, pdists)[:5]:
274
+ if is_male == True:
275
+ fmt = " %-15s *%6.4f %6.4f"
276
+ else:
277
+ fmt = " %-15s %6.4f *%6.4f"
278
+ print(fmt % (name, pdist.prob(True), pdist.prob(False)))
279
+ except NotImplementedError:
280
+ pass
281
+
282
+ # Return the classifier
283
+ return classifier
284
+
285
+
286
+ _inst_cache = {}
287
+
288
+
289
+ def wsd_demo(trainer, word, features, n=1000):
290
+ import random
291
+
292
+ from nltk.corpus import senseval
293
+
294
+ # Get the instances.
295
+ print("Reading data...")
296
+ global _inst_cache
297
+ if word not in _inst_cache:
298
+ _inst_cache[word] = [(i, i.senses[0]) for i in senseval.instances(word)]
299
+ instances = _inst_cache[word][:]
300
+ if n > len(instances):
301
+ n = len(instances)
302
+ senses = list({l for (i, l) in instances})
303
+ print(" Senses: " + " ".join(senses))
304
+
305
+ # Randomly split the names into a test & train set.
306
+ print("Splitting into test & train...")
307
+ random.seed(123456)
308
+ random.shuffle(instances)
309
+ train = instances[: int(0.8 * n)]
310
+ test = instances[int(0.8 * n) : n]
311
+
312
+ # Train up a classifier.
313
+ print("Training classifier...")
314
+ classifier = trainer([(features(i), l) for (i, l) in train])
315
+
316
+ # Run the classifier on the test data.
317
+ print("Testing classifier...")
318
+ acc = accuracy(classifier, [(features(i), l) for (i, l) in test])
319
+ print("Accuracy: %6.4f" % acc)
320
+
321
+ # For classifiers that can find probabilities, show the log
322
+ # likelihood and some sample probability distributions.
323
+ try:
324
+ test_featuresets = [features(i) for (i, n) in test]
325
+ pdists = classifier.prob_classify_many(test_featuresets)
326
+ ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
327
+ print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
328
+ except NotImplementedError:
329
+ pass
330
+
331
+ # Return the classifier
332
+ return classifier
333
+
334
+
335
+ def check_megam_config():
336
+ """
337
+ Checks whether the MEGAM binary is configured.
338
+ """
339
+ try:
340
+ _megam_bin
341
+ except NameError as e:
342
+ err_msg = str(
343
+ "Please configure your megam binary first, e.g.\n"
344
+ ">>> nltk.config_megam('/usr/bin/local/megam')"
345
+ )
346
+ raise NameError(err_msg) from e
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (461 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/all.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/childes_fixt.cpython-310.pyc ADDED
Binary file (610 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/classify_fixt.cpython-310.pyc ADDED
Binary file (342 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.03 kB). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/gensim_fixt.cpython-310.pyc ADDED
Binary file (341 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/gluesemantics_malt_fixt.cpython-310.pyc ADDED
Binary file (526 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/portuguese_en_fixt.cpython-310.pyc ADDED
Binary file (401 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/probability_fixt.cpython-310.pyc ADDED
Binary file (345 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/__pycache__/setup_fixt.cpython-310.pyc ADDED
Binary file (1.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/nltk/test/collocations.doctest ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============
5
+ Collocations
6
+ ==============
7
+
8
+ Overview
9
+ ~~~~~~~~
10
+
11
+ Collocations are expressions of multiple words which commonly co-occur. For
12
+ example, the top ten bigram collocations in Genesis are listed below, as
13
+ measured using Pointwise Mutual Information.
14
+
15
+ >>> import nltk
16
+ >>> from nltk.collocations import *
17
+ >>> bigram_measures = nltk.collocations.BigramAssocMeasures()
18
+ >>> trigram_measures = nltk.collocations.TrigramAssocMeasures()
19
+ >>> fourgram_measures = nltk.collocations.QuadgramAssocMeasures()
20
+ >>> finder = BigramCollocationFinder.from_words(
21
+ ... nltk.corpus.genesis.words('english-web.txt'))
22
+ >>> finder.nbest(bigram_measures.pmi, 10)
23
+ [('Allon', 'Bacuth'), ('Ashteroth', 'Karnaim'), ('Ben', 'Ammi'),
24
+ ('En', 'Mishpat'), ('Jegar', 'Sahadutha'), ('Salt', 'Sea'),
25
+ ('Whoever', 'sheds'), ('appoint', 'overseers'), ('aromatic', 'resin'),
26
+ ('cutting', 'instrument')]
27
+
28
+ While these words are highly collocated, the expressions are also very
29
+ infrequent. Therefore it is useful to apply filters, such as ignoring all
30
+ bigrams which occur less than three times in the corpus:
31
+
32
+ >>> finder.apply_freq_filter(3)
33
+ >>> finder.nbest(bigram_measures.pmi, 10)
34
+ [('Beer', 'Lahai'), ('Lahai', 'Roi'), ('gray', 'hairs'),
35
+ ('ewe', 'lambs'), ('Most', 'High'), ('many', 'colors'),
36
+ ('burnt', 'offering'), ('Paddan', 'Aram'), ('east', 'wind'),
37
+ ('living', 'creature')]
38
+
39
+ We may similarly find collocations among tagged words:
40
+
41
+ >>> finder = BigramCollocationFinder.from_words(
42
+ ... nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
43
+ >>> finder.nbest(bigram_measures.pmi, 5)
44
+ [(('1,119', 'NUM'), ('votes', 'NOUN')),
45
+ (('1962', 'NUM'), ("governor's", 'NOUN')),
46
+ (('637', 'NUM'), ('E.', 'NOUN')),
47
+ (('Alpharetta', 'NOUN'), ('prison', 'NOUN')),
48
+ (('Bar', 'NOUN'), ('Association', 'NOUN'))]
49
+
50
+ Or tags alone:
51
+
52
+ >>> finder = BigramCollocationFinder.from_words(t for w, t in
53
+ ... nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
54
+ >>> finder.nbest(bigram_measures.pmi, 10)
55
+ [('PRT', 'VERB'), ('PRON', 'VERB'), ('ADP', 'DET'), ('.', 'PRON'), ('DET', 'ADJ'),
56
+ ('CONJ', 'PRON'), ('ADP', 'NUM'), ('NUM', '.'), ('ADV', 'ADV'), ('VERB', 'ADV')]
57
+
58
+ Or spanning intervening words:
59
+
60
+ >>> finder = BigramCollocationFinder.from_words(
61
+ ... nltk.corpus.genesis.words('english-web.txt'),
62
+ ... window_size = 20)
63
+ >>> finder.apply_freq_filter(2)
64
+ >>> ignored_words = nltk.corpus.stopwords.words('english')
65
+ >>> finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
66
+ >>> finder.nbest(bigram_measures.likelihood_ratio, 10)
67
+ [('chief', 'chief'), ('became', 'father'), ('years', 'became'),
68
+ ('hundred', 'years'), ('lived', 'became'), ('king', 'king'),
69
+ ('lived', 'years'), ('became', 'became'), ('chief', 'chiefs'),
70
+ ('hundred', 'became')]
71
+
72
+ Finders
73
+ ~~~~~~~
74
+
75
+ The collocations package provides collocation finders which by default
76
+ consider all ngrams in a text as candidate collocations:
77
+
78
+ >>> text = "I do not like green eggs and ham, I do not like them Sam I am!"
79
+ >>> tokens = nltk.wordpunct_tokenize(text)
80
+ >>> finder = BigramCollocationFinder.from_words(tokens)
81
+ >>> scored = finder.score_ngrams(bigram_measures.raw_freq)
82
+ >>> sorted(bigram for bigram, score in scored)
83
+ [(',', 'I'), ('I', 'am'), ('I', 'do'), ('Sam', 'I'), ('am', '!'),
84
+ ('and', 'ham'), ('do', 'not'), ('eggs', 'and'), ('green', 'eggs'),
85
+ ('ham', ','), ('like', 'green'), ('like', 'them'), ('not', 'like'),
86
+ ('them', 'Sam')]
87
+
88
+ We could otherwise construct the collocation finder from manually-derived
89
+ FreqDists:
90
+
91
+ >>> word_fd = nltk.FreqDist(tokens)
92
+ >>> bigram_fd = nltk.FreqDist(nltk.bigrams(tokens))
93
+ >>> finder = BigramCollocationFinder(word_fd, bigram_fd)
94
+ >>> scored == finder.score_ngrams(bigram_measures.raw_freq)
95
+ True
96
+
97
+ A similar interface is provided for trigrams:
98
+
99
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
100
+ >>> scored = finder.score_ngrams(trigram_measures.raw_freq)
101
+ >>> set(trigram for trigram, score in scored) == set(nltk.trigrams(tokens))
102
+ True
103
+
104
+ We may want to select only the top n results:
105
+
106
+ >>> sorted(finder.nbest(trigram_measures.raw_freq, 2))
107
+ [('I', 'do', 'not'), ('do', 'not', 'like')]
108
+
109
+ Alternatively, we can select those above a minimum score value:
110
+
111
+ >>> sorted(finder.above_score(trigram_measures.raw_freq,
112
+ ... 1.0 / len(tuple(nltk.trigrams(tokens)))))
113
+ [('I', 'do', 'not'), ('do', 'not', 'like')]
114
+
115
+ Now spanning intervening words:
116
+
117
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
118
+ >>> finder = TrigramCollocationFinder.from_words(tokens, window_size=4)
119
+ >>> sorted(finder.nbest(trigram_measures.raw_freq, 4))
120
+ [('I', 'do', 'like'), ('I', 'do', 'not'), ('I', 'not', 'like'), ('do', 'not', 'like')]
121
+
122
+ A closer look at the finder's ngram frequencies:
123
+
124
+ >>> sorted(finder.ngram_fd.items(), key=lambda t: (-t[1], t[0]))[:10]
125
+ [(('I', 'do', 'like'), 2), (('I', 'do', 'not'), 2), (('I', 'not', 'like'), 2),
126
+ (('do', 'not', 'like'), 2), ((',', 'I', 'do'), 1), ((',', 'I', 'not'), 1),
127
+ ((',', 'do', 'not'), 1), (('I', 'am', '!'), 1), (('Sam', 'I', '!'), 1),
128
+ (('Sam', 'I', 'am'), 1)]
129
+
130
+ A similar interface is provided for fourgrams:
131
+
132
+ >>> finder_4grams = QuadgramCollocationFinder.from_words(tokens)
133
+ >>> scored_4grams = finder_4grams.score_ngrams(fourgram_measures.raw_freq)
134
+ >>> set(fourgram for fourgram, score in scored_4grams) == set(nltk.ngrams(tokens, n=4))
135
+ True
136
+
137
+ Filtering candidates
138
+ ~~~~~~~~~~~~~~~~~~~~
139
+
140
+ All the ngrams in a text are often too many to be useful when finding
141
+ collocations. It is generally useful to remove some words or punctuation,
142
+ and to require a minimum frequency for candidate collocations.
143
+
144
+ Given our sample text above, if we remove all trigrams containing personal
145
+ pronouns from candidature, score_ngrams should return 6 less results, and
146
+ 'do not like' will be the only candidate which occurs more than once:
147
+
148
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
149
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
150
+ 14
151
+ >>> finder.apply_word_filter(lambda w: w in ('I', 'me'))
152
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
153
+ 8
154
+ >>> sorted(finder.above_score(trigram_measures.raw_freq,
155
+ ... 1.0 / len(tuple(nltk.trigrams(tokens)))))
156
+ [('do', 'not', 'like')]
157
+
158
+ Sometimes a filter is a function on the whole ngram, rather than each word,
159
+ such as if we may permit 'and' to appear in the middle of a trigram, but
160
+ not on either edge:
161
+
162
+ >>> finder.apply_ngram_filter(lambda w1, w2, w3: 'and' in (w1, w3))
163
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
164
+ 6
165
+
166
+ Finally, it is often important to remove low frequency candidates, as we
167
+ lack sufficient evidence about their significance as collocations:
168
+
169
+ >>> finder.apply_freq_filter(2)
170
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
171
+ 1
172
+
173
+ Association measures
174
+ ~~~~~~~~~~~~~~~~~~~~
175
+
176
+ A number of measures are available to score collocations or other associations.
177
+ The arguments to measure functions are marginals of a contingency table, in the
178
+ bigram case (n_ii, (n_ix, n_xi), n_xx)::
179
+
180
+ w1 ~w1
181
+ ------ ------
182
+ w2 | n_ii | n_oi | = n_xi
183
+ ------ ------
184
+ ~w2 | n_io | n_oo |
185
+ ------ ------
186
+ = n_ix TOTAL = n_xx
187
+
188
+ We test their calculation using some known values presented in Manning and
189
+ Schutze's text and other papers.
190
+
191
+ Student's t: examples from Manning and Schutze 5.3.2
192
+
193
+ >>> print('%0.4f' % bigram_measures.student_t(8, (15828, 4675), 14307668))
194
+ 0.9999
195
+ >>> print('%0.4f' % bigram_measures.student_t(20, (42, 20), 14307668))
196
+ 4.4721
197
+
198
+ Chi-square: examples from Manning and Schutze 5.3.3
199
+
200
+ >>> print('%0.2f' % bigram_measures.chi_sq(8, (15828, 4675), 14307668))
201
+ 1.55
202
+ >>> print('%0.0f' % bigram_measures.chi_sq(59, (67, 65), 571007))
203
+ 456400
204
+
205
+ Likelihood ratios: examples from Dunning, CL, 1993
206
+
207
+ >>> print('%0.2f' % bigram_measures.likelihood_ratio(110, (2552, 221), 31777))
208
+ 270.72
209
+ >>> print('%0.2f' % bigram_measures.likelihood_ratio(8, (13, 32), 31777))
210
+ 95.29
211
+
212
+ Pointwise Mutual Information: examples from Manning and Schutze 5.4
213
+
214
+ >>> print('%0.2f' % bigram_measures.pmi(20, (42, 20), 14307668))
215
+ 18.38
216
+ >>> print('%0.2f' % bigram_measures.pmi(20, (15019, 15629), 14307668))
217
+ 0.29
218
+
219
+ TODO: Find authoritative results for trigrams.
220
+
221
+ Using contingency table values
222
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
223
+
224
+ While frequency counts make marginals readily available for collocation
225
+ finding, it is common to find published contingency table values. The
226
+ collocations package therefore provides a wrapper, ContingencyMeasures, which
227
+ wraps an association measures class, providing association measures which
228
+ take contingency values as arguments, (n_ii, n_io, n_oi, n_oo) in the
229
+ bigram case.
230
+
231
+ >>> from nltk.metrics import ContingencyMeasures
232
+ >>> cont_bigram_measures = ContingencyMeasures(bigram_measures)
233
+ >>> print('%0.2f' % cont_bigram_measures.likelihood_ratio(8, 5, 24, 31740))
234
+ 95.29
235
+ >>> print('%0.2f' % cont_bigram_measures.chi_sq(8, 15820, 4667, 14287173))
236
+ 1.55
237
+
238
+ Ranking and correlation
239
+ ~~~~~~~~~~~~~~~~~~~~~~~
240
+
241
+ It is useful to consider the results of finding collocations as a ranking, and
242
+ the rankings output using different association measures can be compared using
243
+ the Spearman correlation coefficient.
244
+
245
+ Ranks can be assigned to a sorted list of results trivially by assigning
246
+ strictly increasing ranks to each result:
247
+
248
+ >>> from nltk.metrics.spearman import *
249
+ >>> results_list = ['item1', 'item2', 'item3', 'item4', 'item5']
250
+ >>> print(list(ranks_from_sequence(results_list)))
251
+ [('item1', 0), ('item2', 1), ('item3', 2), ('item4', 3), ('item5', 4)]
252
+
253
+ If scores are available for each result, we may allow sufficiently similar
254
+ results (differing by no more than rank_gap) to be assigned the same rank:
255
+
256
+ >>> results_scored = [('item1', 50.0), ('item2', 40.0), ('item3', 38.0),
257
+ ... ('item4', 35.0), ('item5', 14.0)]
258
+ >>> print(list(ranks_from_scores(results_scored, rank_gap=5)))
259
+ [('item1', 0), ('item2', 1), ('item3', 1), ('item4', 1), ('item5', 4)]
260
+
261
+ The Spearman correlation coefficient gives a number from -1.0 to 1.0 comparing
262
+ two rankings. A coefficient of 1.0 indicates identical rankings; -1.0 indicates
263
+ exact opposite rankings.
264
+
265
+ >>> print('%0.1f' % spearman_correlation(
266
+ ... ranks_from_sequence(results_list),
267
+ ... ranks_from_sequence(results_list)))
268
+ 1.0
269
+ >>> print('%0.1f' % spearman_correlation(
270
+ ... ranks_from_sequence(reversed(results_list)),
271
+ ... ranks_from_sequence(results_list)))
272
+ -1.0
273
+ >>> results_list2 = ['item2', 'item3', 'item1', 'item5', 'item4']
274
+ >>> print('%0.1f' % spearman_correlation(
275
+ ... ranks_from_sequence(results_list),
276
+ ... ranks_from_sequence(results_list2)))
277
+ 0.6
278
+ >>> print('%0.1f' % spearman_correlation(
279
+ ... ranks_from_sequence(reversed(results_list)),
280
+ ... ranks_from_sequence(results_list2)))
281
+ -0.6
282
+
283
+ Keywords
284
+ ~~~~~~~~
285
+
286
+ Bigram association metrics can also be used to perform keyword analysis. . For example, this finds the keywords
287
+ associated with the "romance" section of the Brown corpus as measured by likelihood ratio:
288
+
289
+ >>> romance = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words(categories='romance') if w.isalpha())
290
+ >>> freq = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words() if w.isalpha())
291
+
292
+ >>> key = nltk.FreqDist()
293
+ >>> for w in romance:
294
+ ... key[w] = bigram_measures.likelihood_ratio(romance[w], (freq[w], romance.N()), freq.N())
295
+
296
+ >>> for k,v in key.most_common(10):
297
+ ... print(f'{k:10s} {v:9.3f}')
298
+ she 1163.325
299
+ i 995.961
300
+ her 930.528
301
+ you 513.149
302
+ of 501.891
303
+ is 463.386
304
+ had 421.615
305
+ he 411.000
306
+ the 347.632
307
+ said 300.811
llmeval-env/lib/python3.10/site-packages/nltk/test/conftest.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from nltk.corpus.reader import CorpusReader
4
+
5
+
6
+ @pytest.fixture(autouse=True)
7
+ def mock_plot(mocker):
8
+ """Disable matplotlib plotting in test code"""
9
+
10
+ try:
11
+ import matplotlib.pyplot as plt
12
+
13
+ mocker.patch.object(plt, "gca")
14
+ mocker.patch.object(plt, "show")
15
+ except ImportError:
16
+ pass
17
+
18
+
19
+ @pytest.fixture(scope="module", autouse=True)
20
+ def teardown_loaded_corpora():
21
+ """
22
+ After each test session ends (either doctest or unit test),
23
+ unload any loaded corpora
24
+ """
25
+
26
+ yield # first, wait for the test to end
27
+
28
+ import nltk.corpus
29
+
30
+ for name in dir(nltk.corpus):
31
+ obj = getattr(nltk.corpus, name, None)
32
+ if isinstance(obj, CorpusReader) and hasattr(obj, "_unload"):
33
+ obj._unload()
llmeval-env/lib/python3.10/site-packages/nltk/test/dependency.doctest ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===================
5
+ Dependency Grammars
6
+ ===================
7
+
8
+ >>> from nltk.grammar import DependencyGrammar
9
+ >>> from nltk.parse import (
10
+ ... DependencyGraph,
11
+ ... ProjectiveDependencyParser,
12
+ ... NonprojectiveDependencyParser,
13
+ ... )
14
+
15
+ CoNLL Data
16
+ ----------
17
+
18
+ >>> treebank_data = """Pierre NNP 2 NMOD
19
+ ... Vinken NNP 8 SUB
20
+ ... , , 2 P
21
+ ... 61 CD 5 NMOD
22
+ ... years NNS 6 AMOD
23
+ ... old JJ 2 NMOD
24
+ ... , , 2 P
25
+ ... will MD 0 ROOT
26
+ ... join VB 8 VC
27
+ ... the DT 11 NMOD
28
+ ... board NN 9 OBJ
29
+ ... as IN 9 VMOD
30
+ ... a DT 15 NMOD
31
+ ... nonexecutive JJ 15 NMOD
32
+ ... director NN 12 PMOD
33
+ ... Nov. NNP 9 VMOD
34
+ ... 29 CD 16 NMOD
35
+ ... . . 9 VMOD
36
+ ... """
37
+
38
+ >>> dg = DependencyGraph(treebank_data)
39
+ >>> dg.tree().pprint()
40
+ (will
41
+ (Vinken Pierre , (old (years 61)) ,)
42
+ (join (board the) (as (director a nonexecutive)) (Nov. 29) .))
43
+ >>> for head, rel, dep in dg.triples():
44
+ ... print(
45
+ ... '({h[0]}, {h[1]}), {r}, ({d[0]}, {d[1]})'
46
+ ... .format(h=head, r=rel, d=dep)
47
+ ... )
48
+ (will, MD), SUB, (Vinken, NNP)
49
+ (Vinken, NNP), NMOD, (Pierre, NNP)
50
+ (Vinken, NNP), P, (,, ,)
51
+ (Vinken, NNP), NMOD, (old, JJ)
52
+ (old, JJ), AMOD, (years, NNS)
53
+ (years, NNS), NMOD, (61, CD)
54
+ (Vinken, NNP), P, (,, ,)
55
+ (will, MD), VC, (join, VB)
56
+ (join, VB), OBJ, (board, NN)
57
+ (board, NN), NMOD, (the, DT)
58
+ (join, VB), VMOD, (as, IN)
59
+ (as, IN), PMOD, (director, NN)
60
+ (director, NN), NMOD, (a, DT)
61
+ (director, NN), NMOD, (nonexecutive, JJ)
62
+ (join, VB), VMOD, (Nov., NNP)
63
+ (Nov., NNP), NMOD, (29, CD)
64
+ (join, VB), VMOD, (., .)
65
+
66
+ Using a custom cell extractor.
67
+
68
+ >>> def custom_extractor(cells):
69
+ ... _, tag, head, rel = cells
70
+ ... return 'spam', 'spam', tag, tag, '', head, rel
71
+ >>> dg = DependencyGraph(treebank_data, cell_extractor=custom_extractor)
72
+ >>> dg.tree().pprint()
73
+ (spam
74
+ (spam spam spam (spam (spam spam)) spam)
75
+ (spam (spam spam) (spam (spam spam spam)) (spam spam) spam))
76
+
77
+ Custom cell extractors can take in and return an index.
78
+
79
+ >>> def custom_extractor(cells, index):
80
+ ... word, tag, head, rel = cells
81
+ ... return (index, '{}-{}'.format(word, index), word,
82
+ ... tag, tag, '', head, rel)
83
+ >>> dg = DependencyGraph(treebank_data, cell_extractor=custom_extractor)
84
+ >>> dg.tree().pprint()
85
+ (will-8
86
+ (Vinken-2 Pierre-1 ,-3 (old-6 (years-5 61-4)) ,-7)
87
+ (join-9
88
+ (board-11 the-10)
89
+ (as-12 (director-15 a-13 nonexecutive-14))
90
+ (Nov.-16 29-17)
91
+ .-18))
92
+
93
+ Using the dependency-parsed version of the Penn Treebank corpus sample.
94
+
95
+ >>> from nltk.corpus import dependency_treebank
96
+ >>> t = dependency_treebank.parsed_sents()[0]
97
+ >>> print(t.to_conll(3))
98
+ Pierre NNP 2
99
+ Vinken NNP 8
100
+ , , 2
101
+ 61 CD 5
102
+ years NNS 6
103
+ old JJ 2
104
+ , , 2
105
+ will MD 0
106
+ join VB 8
107
+ the DT 11
108
+ board NN 9
109
+ as IN 9
110
+ a DT 15
111
+ nonexecutive JJ 15
112
+ director NN 12
113
+ Nov. NNP 9
114
+ 29 CD 16
115
+ . . 8
116
+
117
+ Using the output of zpar (like Malt-TAB but with zero-based indexing)
118
+
119
+ >>> zpar_data = """
120
+ ... Pierre NNP 1 NMOD
121
+ ... Vinken NNP 7 SUB
122
+ ... , , 1 P
123
+ ... 61 CD 4 NMOD
124
+ ... years NNS 5 AMOD
125
+ ... old JJ 1 NMOD
126
+ ... , , 1 P
127
+ ... will MD -1 ROOT
128
+ ... join VB 7 VC
129
+ ... the DT 10 NMOD
130
+ ... board NN 8 OBJ
131
+ ... as IN 8 VMOD
132
+ ... a DT 14 NMOD
133
+ ... nonexecutive JJ 14 NMOD
134
+ ... director NN 11 PMOD
135
+ ... Nov. NNP 8 VMOD
136
+ ... 29 CD 15 NMOD
137
+ ... . . 7 P
138
+ ... """
139
+
140
+ >>> zdg = DependencyGraph(zpar_data, zero_based=True)
141
+ >>> print(zdg.tree())
142
+ (will
143
+ (Vinken Pierre , (old (years 61)) ,)
144
+ (join (board the) (as (director a nonexecutive)) (Nov. 29))
145
+ .)
146
+
147
+
148
+ Projective Dependency Parsing
149
+ -----------------------------
150
+
151
+ >>> grammar = DependencyGrammar.fromstring("""
152
+ ... 'fell' -> 'price' | 'stock'
153
+ ... 'price' -> 'of' 'the'
154
+ ... 'of' -> 'stock'
155
+ ... 'stock' -> 'the'
156
+ ... """)
157
+ >>> print(grammar)
158
+ Dependency grammar with 5 productions
159
+ 'fell' -> 'price'
160
+ 'fell' -> 'stock'
161
+ 'price' -> 'of' 'the'
162
+ 'of' -> 'stock'
163
+ 'stock' -> 'the'
164
+
165
+ >>> dp = ProjectiveDependencyParser(grammar)
166
+ >>> for t in sorted(dp.parse(['the', 'price', 'of', 'the', 'stock', 'fell'])):
167
+ ... print(t)
168
+ (fell (price the (of (stock the))))
169
+ (fell (price the of) (stock the))
170
+ (fell (price the of the) stock)
171
+
172
+ Non-Projective Dependency Parsing
173
+ ---------------------------------
174
+
175
+ >>> grammar = DependencyGrammar.fromstring("""
176
+ ... 'taught' -> 'play' | 'man'
177
+ ... 'man' -> 'the'
178
+ ... 'play' -> 'golf' | 'dog' | 'to'
179
+ ... 'dog' -> 'his'
180
+ ... """)
181
+ >>> print(grammar)
182
+ Dependency grammar with 7 productions
183
+ 'taught' -> 'play'
184
+ 'taught' -> 'man'
185
+ 'man' -> 'the'
186
+ 'play' -> 'golf'
187
+ 'play' -> 'dog'
188
+ 'play' -> 'to'
189
+ 'dog' -> 'his'
190
+
191
+ >>> dp = NonprojectiveDependencyParser(grammar)
192
+ >>> g, = dp.parse(['the', 'man', 'taught', 'his', 'dog', 'to', 'play', 'golf'])
193
+
194
+ >>> print(g.root['word'])
195
+ taught
196
+
197
+ >>> for _, node in sorted(g.nodes.items()):
198
+ ... if node['word'] is not None:
199
+ ... print('{address} {word}: {d}'.format(d=node['deps'][''], **node))
200
+ 1 the: []
201
+ 2 man: [1]
202
+ 3 taught: [2, 7]
203
+ 4 his: []
204
+ 5 dog: [4]
205
+ 6 to: []
206
+ 7 play: [5, 6, 8]
207
+ 8 golf: []
208
+
209
+ >>> print(g.tree())
210
+ (taught (man the) (play (dog his) to golf))
211
+
212
+ Integration with MALT parser
213
+ ============================
214
+
215
+ In case the top relation is different from the default, we can set it. In case
216
+ of MALT parser, it's set to `'null'`.
217
+
218
+ >>> dg_str = """1 I _ NN NN _ 2 nn _ _
219
+ ... 2 shot _ NN NN _ 0 null _ _
220
+ ... 3 an _ AT AT _ 2 dep _ _
221
+ ... 4 elephant _ NN NN _ 7 nn _ _
222
+ ... 5 in _ NN NN _ 7 nn _ _
223
+ ... 6 my _ NN NN _ 7 nn _ _
224
+ ... 7 pajamas _ NNS NNS _ 3 dobj _ _
225
+ ... """
226
+ >>> dg = DependencyGraph(dg_str, top_relation_label='null')
227
+
228
+ >>> len(dg.nodes)
229
+ 8
230
+
231
+ >>> dg.root['word'], dg.root['address']
232
+ ('shot', 2)
233
+
234
+ >>> print(dg.to_conll(10))
235
+ 1 I _ NN NN _ 2 nn _ _
236
+ 2 shot _ NN NN _ 0 null _ _
237
+ 3 an _ AT AT _ 2 dep _ _
238
+ 4 elephant _ NN NN _ 7 nn _ _
239
+ 5 in _ NN NN _ 7 nn _ _
240
+ 6 my _ NN NN _ 7 nn _ _
241
+ 7 pajamas _ NNS NNS _ 3 dobj _ _
llmeval-env/lib/python3.10/site-packages/nltk/test/discourse.doctest ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==================
5
+ Discourse Checking
6
+ ==================
7
+
8
+ >>> from nltk import *
9
+ >>> from nltk.sem import logic
10
+ >>> logic._counter._value = 0
11
+
12
+ Setup
13
+ =====
14
+
15
+ >>> from nltk.test.childes_fixt import setup_module
16
+ >>> setup_module()
17
+
18
+ Introduction
19
+ ============
20
+
21
+ The NLTK discourse module makes it possible to test consistency and
22
+ redundancy of simple discourses, using theorem-proving and
23
+ model-building from `nltk.inference`.
24
+
25
+ The ``DiscourseTester`` constructor takes a list of sentences as a
26
+ parameter.
27
+
28
+ >>> dt = DiscourseTester(['a boxer walks', 'every boxer chases a girl'])
29
+
30
+ The ``DiscourseTester`` parses each sentence into a list of logical
31
+ forms. Once we have created ``DiscourseTester`` object, we can
32
+ inspect various properties of the discourse. First off, we might want
33
+ to double-check what sentences are currently stored as the discourse.
34
+
35
+ >>> dt.sentences()
36
+ s0: a boxer walks
37
+ s1: every boxer chases a girl
38
+
39
+ As you will see, each sentence receives an identifier `s`\ :subscript:`i`.
40
+ We might also want to check what grammar the ``DiscourseTester`` is
41
+ using (by default, ``book_grammars/discourse.fcfg``):
42
+
43
+ >>> dt.grammar()
44
+ % start S
45
+ # Grammar Rules
46
+ S[SEM = <app(?subj,?vp)>] -> NP[NUM=?n,SEM=?subj] VP[NUM=?n,SEM=?vp]
47
+ NP[NUM=?n,SEM=<app(?det,?nom)> ] -> Det[NUM=?n,SEM=?det] Nom[NUM=?n,SEM=?nom]
48
+ NP[LOC=?l,NUM=?n,SEM=?np] -> PropN[LOC=?l,NUM=?n,SEM=?np]
49
+ ...
50
+
51
+ A different grammar can be invoked by using the optional ``gramfile``
52
+ parameter when a ``DiscourseTester`` object is created.
53
+
54
+ Readings and Threads
55
+ ====================
56
+
57
+ Depending on
58
+ the grammar used, we may find some sentences have more than one
59
+ logical form. To check this, use the ``readings()`` method. Given a
60
+ sentence identifier of the form `s`\ :subscript:`i`, each reading of
61
+ that sentence is given an identifier `s`\ :sub:`i`-`r`\ :sub:`j`.
62
+
63
+
64
+ >>> dt.readings()
65
+ <BLANKLINE>
66
+ s0 readings:
67
+ <BLANKLINE>
68
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
69
+ s0-r1: exists z1.(boxerdog(z1) & walk(z1))
70
+ <BLANKLINE>
71
+ s1 readings:
72
+ <BLANKLINE>
73
+ s1-r0: all z2.(boxer(z2) -> exists z3.(girl(z3) & chase(z2,z3)))
74
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
75
+
76
+
77
+ In this case, the only source of ambiguity lies in the word *boxer*,
78
+ which receives two translations: ``boxer`` and ``boxerdog``. The
79
+ intention is that one of these corresponds to the ``person`` sense and
80
+ one to the ``dog`` sense. In principle, we would also expect to see a
81
+ quantifier scope ambiguity in ``s1``. However, the simple grammar we
82
+ are using, namely `sem4.fcfg <sem4.fcfg>`_, doesn't support quantifier
83
+ scope ambiguity.
84
+
85
+ We can also investigate the readings of a specific sentence:
86
+
87
+ >>> dt.readings('a boxer walks')
88
+ The sentence 'a boxer walks' has these readings:
89
+ exists x.(boxer(x) & walk(x))
90
+ exists x.(boxerdog(x) & walk(x))
91
+
92
+ Given that each sentence is two-ways ambiguous, we potentially have
93
+ four different discourse 'threads', taking all combinations of
94
+ readings. To see these, specify the ``threaded=True`` parameter on
95
+ the ``readings()`` method. Again, each thread is assigned an
96
+ identifier of the form `d`\ :sub:`i`. Following the identifier is a
97
+ list of the readings that constitute that thread.
98
+
99
+ >>> dt.readings(threaded=True)
100
+ d0: ['s0-r0', 's1-r0']
101
+ d1: ['s0-r0', 's1-r1']
102
+ d2: ['s0-r1', 's1-r0']
103
+ d3: ['s0-r1', 's1-r1']
104
+
105
+ Of course, this simple-minded approach doesn't scale: a discourse with, say, three
106
+ sentences, each of which has 3 readings, will generate 27 different
107
+ threads. It is an interesting exercise to consider how to manage
108
+ discourse ambiguity more efficiently.
109
+
110
+ Checking Consistency
111
+ ====================
112
+
113
+ Now, we can check whether some or all of the discourse threads are
114
+ consistent, using the ``models()`` method. With no parameter, this
115
+ method will try to find a model for every discourse thread in the
116
+ current discourse. However, we can also specify just one thread, say ``d1``.
117
+
118
+ >>> dt.models('d1')
119
+ --------------------------------------------------------------------------------
120
+ Model for Discourse Thread d1
121
+ --------------------------------------------------------------------------------
122
+ % number = 1
123
+ % seconds = 0
124
+ <BLANKLINE>
125
+ % Interpretation of size 2
126
+ <BLANKLINE>
127
+ c1 = 0.
128
+ <BLANKLINE>
129
+ f1(0) = 0.
130
+ f1(1) = 0.
131
+ <BLANKLINE>
132
+ boxer(0).
133
+ - boxer(1).
134
+ <BLANKLINE>
135
+ - boxerdog(0).
136
+ - boxerdog(1).
137
+ <BLANKLINE>
138
+ - girl(0).
139
+ - girl(1).
140
+ <BLANKLINE>
141
+ walk(0).
142
+ - walk(1).
143
+ <BLANKLINE>
144
+ - chase(0,0).
145
+ - chase(0,1).
146
+ - chase(1,0).
147
+ - chase(1,1).
148
+ <BLANKLINE>
149
+ Consistent discourse: d1 ['s0-r0', 's1-r1']:
150
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
151
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
152
+ <BLANKLINE>
153
+
154
+ There are various formats for rendering **Mace4** models --- here,
155
+ we have used the 'cooked' format (which is intended to be
156
+ human-readable). There are a number of points to note.
157
+
158
+ #. The entities in the domain are all treated as non-negative
159
+ integers. In this case, there are only two entities, ``0`` and
160
+ ``1``.
161
+
162
+ #. The ``-`` symbol indicates negation. So ``0`` is the only
163
+ ``boxerdog`` and the only thing that ``walk``\ s. Nothing is a
164
+ ``boxer``, or a ``girl`` or in the ``chase`` relation. Thus the
165
+ universal sentence is vacuously true.
166
+
167
+ #. ``c1`` is an introduced constant that denotes ``0``.
168
+
169
+ #. ``f1`` is a Skolem function, but it plays no significant role in
170
+ this model.
171
+
172
+
173
+ We might want to now add another sentence to the discourse, and there
174
+ is method ``add_sentence()`` for doing just this.
175
+
176
+ >>> dt.add_sentence('John is a boxer')
177
+ >>> dt.sentences()
178
+ s0: a boxer walks
179
+ s1: every boxer chases a girl
180
+ s2: John is a boxer
181
+
182
+ We can now test all the properties as before; here, we just show a
183
+ couple of them.
184
+
185
+ >>> dt.readings()
186
+ <BLANKLINE>
187
+ s0 readings:
188
+ <BLANKLINE>
189
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
190
+ s0-r1: exists z1.(boxerdog(z1) & walk(z1))
191
+ <BLANKLINE>
192
+ s1 readings:
193
+ <BLANKLINE>
194
+ s1-r0: all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
195
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
196
+ <BLANKLINE>
197
+ s2 readings:
198
+ <BLANKLINE>
199
+ s2-r0: boxer(John)
200
+ s2-r1: boxerdog(John)
201
+ >>> dt.readings(threaded=True)
202
+ d0: ['s0-r0', 's1-r0', 's2-r0']
203
+ d1: ['s0-r0', 's1-r0', 's2-r1']
204
+ d2: ['s0-r0', 's1-r1', 's2-r0']
205
+ d3: ['s0-r0', 's1-r1', 's2-r1']
206
+ d4: ['s0-r1', 's1-r0', 's2-r0']
207
+ d5: ['s0-r1', 's1-r0', 's2-r1']
208
+ d6: ['s0-r1', 's1-r1', 's2-r0']
209
+ d7: ['s0-r1', 's1-r1', 's2-r1']
210
+
211
+ If you are interested in a particular thread, the ``expand_threads()``
212
+ method will remind you of what readings it consists of:
213
+
214
+ >>> thread = dt.expand_threads('d1')
215
+ >>> for rid, reading in thread:
216
+ ... print(rid, str(reading.normalize()))
217
+ s0-r0 exists z1.(boxer(z1) & walk(z1))
218
+ s1-r0 all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
219
+ s2-r1 boxerdog(John)
220
+
221
+ Suppose we have already defined a discourse, as follows:
222
+
223
+ >>> dt = DiscourseTester(['A student dances', 'Every student is a person'])
224
+
225
+ Now, when we add a new sentence, is it consistent with what we already
226
+ have? The `` consistchk=True`` parameter of ``add_sentence()`` allows
227
+ us to check:
228
+
229
+ >>> dt.add_sentence('No person dances', consistchk=True)
230
+ Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
231
+ s0-r0: exists z1.(student(z1) & dance(z1))
232
+ s1-r0: all z1.(student(z1) -> person(z1))
233
+ s2-r0: -exists z1.(person(z1) & dance(z1))
234
+ <BLANKLINE>
235
+ >>> dt.readings()
236
+ <BLANKLINE>
237
+ s0 readings:
238
+ <BLANKLINE>
239
+ s0-r0: exists z1.(student(z1) & dance(z1))
240
+ <BLANKLINE>
241
+ s1 readings:
242
+ <BLANKLINE>
243
+ s1-r0: all z1.(student(z1) -> person(z1))
244
+ <BLANKLINE>
245
+ s2 readings:
246
+ <BLANKLINE>
247
+ s2-r0: -exists z1.(person(z1) & dance(z1))
248
+
249
+ So let's retract the inconsistent sentence:
250
+
251
+ >>> dt.retract_sentence('No person dances', verbose=True)
252
+ Current sentences are
253
+ s0: A student dances
254
+ s1: Every student is a person
255
+
256
+ We can now verify that result is consistent.
257
+
258
+ >>> dt.models()
259
+ --------------------------------------------------------------------------------
260
+ Model for Discourse Thread d0
261
+ --------------------------------------------------------------------------------
262
+ % number = 1
263
+ % seconds = 0
264
+ <BLANKLINE>
265
+ % Interpretation of size 2
266
+ <BLANKLINE>
267
+ c1 = 0.
268
+ <BLANKLINE>
269
+ dance(0).
270
+ - dance(1).
271
+ <BLANKLINE>
272
+ person(0).
273
+ - person(1).
274
+ <BLANKLINE>
275
+ student(0).
276
+ - student(1).
277
+ <BLANKLINE>
278
+ Consistent discourse: d0 ['s0-r0', 's1-r0']:
279
+ s0-r0: exists z1.(student(z1) & dance(z1))
280
+ s1-r0: all z1.(student(z1) -> person(z1))
281
+ <BLANKLINE>
282
+
283
+ Checking Informativity
284
+ ======================
285
+
286
+ Let's assume that we are still trying to extend the discourse *A
287
+ student dances.* *Every student is a person.* We add a new sentence,
288
+ but this time, we check whether it is informative with respect to what
289
+ has gone before.
290
+
291
+ >>> dt.add_sentence('A person dances', informchk=True)
292
+ Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
293
+ Not informative relative to thread 'd0'
294
+
295
+ In fact, we are just checking whether the new sentence is entailed by
296
+ the preceding discourse.
297
+
298
+ >>> dt.models()
299
+ --------------------------------------------------------------------------------
300
+ Model for Discourse Thread d0
301
+ --------------------------------------------------------------------------------
302
+ % number = 1
303
+ % seconds = 0
304
+ <BLANKLINE>
305
+ % Interpretation of size 2
306
+ <BLANKLINE>
307
+ c1 = 0.
308
+ <BLANKLINE>
309
+ c2 = 0.
310
+ <BLANKLINE>
311
+ dance(0).
312
+ - dance(1).
313
+ <BLANKLINE>
314
+ person(0).
315
+ - person(1).
316
+ <BLANKLINE>
317
+ student(0).
318
+ - student(1).
319
+ <BLANKLINE>
320
+ Consistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
321
+ s0-r0: exists z1.(student(z1) & dance(z1))
322
+ s1-r0: all z1.(student(z1) -> person(z1))
323
+ s2-r0: exists z1.(person(z1) & dance(z1))
324
+ <BLANKLINE>
325
+
326
+
327
+
328
+ Adding Background Knowledge
329
+ ===========================
330
+
331
+ Let's build a new discourse, and look at the readings of the component sentences:
332
+
333
+ >>> dt = DiscourseTester(['Vincent is a boxer', 'Fido is a boxer', 'Vincent is married', 'Fido barks'])
334
+ >>> dt.readings()
335
+ <BLANKLINE>
336
+ s0 readings:
337
+ <BLANKLINE>
338
+ s0-r0: boxer(Vincent)
339
+ s0-r1: boxerdog(Vincent)
340
+ <BLANKLINE>
341
+ s1 readings:
342
+ <BLANKLINE>
343
+ s1-r0: boxer(Fido)
344
+ s1-r1: boxerdog(Fido)
345
+ <BLANKLINE>
346
+ s2 readings:
347
+ <BLANKLINE>
348
+ s2-r0: married(Vincent)
349
+ <BLANKLINE>
350
+ s3 readings:
351
+ <BLANKLINE>
352
+ s3-r0: bark(Fido)
353
+
354
+ This gives us a lot of threads:
355
+
356
+ >>> dt.readings(threaded=True)
357
+ d0: ['s0-r0', 's1-r0', 's2-r0', 's3-r0']
358
+ d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
359
+ d2: ['s0-r1', 's1-r0', 's2-r0', 's3-r0']
360
+ d3: ['s0-r1', 's1-r1', 's2-r0', 's3-r0']
361
+
362
+
363
+ We can eliminate some of the readings, and hence some of the threads,
364
+ by adding background information.
365
+
366
+ >>> import nltk.data
367
+ >>> bg = nltk.data.load('grammars/book_grammars/background.fol')
368
+ >>> dt.add_background(bg)
369
+ >>> dt.background()
370
+ all x.(boxerdog(x) -> dog(x))
371
+ all x.(boxer(x) -> person(x))
372
+ all x.-(dog(x) & person(x))
373
+ all x.(married(x) <-> exists y.marry(x,y))
374
+ all x.(bark(x) -> dog(x))
375
+ all x y.(marry(x,y) -> (person(x) & person(y)))
376
+ -(Vincent = Mia)
377
+ -(Vincent = Fido)
378
+ -(Mia = Fido)
379
+
380
+ The background information allows us to reject three of the threads as
381
+ inconsistent. To see what remains, use the ``filter=True`` parameter
382
+ on ``readings()``.
383
+
384
+ >>> dt.readings(filter=True)
385
+ d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
386
+
387
+ The ``models()`` method gives us more information about the surviving thread.
388
+
389
+ >>> dt.models()
390
+ --------------------------------------------------------------------------------
391
+ Model for Discourse Thread d0
392
+ --------------------------------------------------------------------------------
393
+ No model found!
394
+ <BLANKLINE>
395
+ --------------------------------------------------------------------------------
396
+ Model for Discourse Thread d1
397
+ --------------------------------------------------------------------------------
398
+ % number = 1
399
+ % seconds = 0
400
+ <BLANKLINE>
401
+ % Interpretation of size 3
402
+ <BLANKLINE>
403
+ Fido = 0.
404
+ <BLANKLINE>
405
+ Mia = 1.
406
+ <BLANKLINE>
407
+ Vincent = 2.
408
+ <BLANKLINE>
409
+ f1(0) = 0.
410
+ f1(1) = 0.
411
+ f1(2) = 2.
412
+ <BLANKLINE>
413
+ bark(0).
414
+ - bark(1).
415
+ - bark(2).
416
+ <BLANKLINE>
417
+ - boxer(0).
418
+ - boxer(1).
419
+ boxer(2).
420
+ <BLANKLINE>
421
+ boxerdog(0).
422
+ - boxerdog(1).
423
+ - boxerdog(2).
424
+ <BLANKLINE>
425
+ dog(0).
426
+ - dog(1).
427
+ - dog(2).
428
+ <BLANKLINE>
429
+ - married(0).
430
+ - married(1).
431
+ married(2).
432
+ <BLANKLINE>
433
+ - person(0).
434
+ - person(1).
435
+ person(2).
436
+ <BLANKLINE>
437
+ - marry(0,0).
438
+ - marry(0,1).
439
+ - marry(0,2).
440
+ - marry(1,0).
441
+ - marry(1,1).
442
+ - marry(1,2).
443
+ - marry(2,0).
444
+ - marry(2,1).
445
+ marry(2,2).
446
+ <BLANKLINE>
447
+ --------------------------------------------------------------------------------
448
+ Model for Discourse Thread d2
449
+ --------------------------------------------------------------------------------
450
+ No model found!
451
+ <BLANKLINE>
452
+ --------------------------------------------------------------------------------
453
+ Model for Discourse Thread d3
454
+ --------------------------------------------------------------------------------
455
+ No model found!
456
+ <BLANKLINE>
457
+ Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0', 's3-r0']:
458
+ s0-r0: boxer(Vincent)
459
+ s1-r0: boxer(Fido)
460
+ s2-r0: married(Vincent)
461
+ s3-r0: bark(Fido)
462
+ <BLANKLINE>
463
+ Consistent discourse: d1 ['s0-r0', 's1-r1', 's2-r0', 's3-r0']:
464
+ s0-r0: boxer(Vincent)
465
+ s1-r1: boxerdog(Fido)
466
+ s2-r0: married(Vincent)
467
+ s3-r0: bark(Fido)
468
+ <BLANKLINE>
469
+ Inconsistent discourse: d2 ['s0-r1', 's1-r0', 's2-r0', 's3-r0']:
470
+ s0-r1: boxerdog(Vincent)
471
+ s1-r0: boxer(Fido)
472
+ s2-r0: married(Vincent)
473
+ s3-r0: bark(Fido)
474
+ <BLANKLINE>
475
+ Inconsistent discourse: d3 ['s0-r1', 's1-r1', 's2-r0', 's3-r0']:
476
+ s0-r1: boxerdog(Vincent)
477
+ s1-r1: boxerdog(Fido)
478
+ s2-r0: married(Vincent)
479
+ s3-r0: bark(Fido)
480
+ <BLANKLINE>
481
+
482
+
483
+ .. This will not be visible in the html output: create a tempdir to
484
+ play in.
485
+ >>> import tempfile, os
486
+ >>> tempdir = tempfile.mkdtemp()
487
+ >>> old_dir = os.path.abspath('.')
488
+ >>> os.chdir(tempdir)
489
+
490
+ In order to play around with your own version of background knowledge,
491
+ you might want to start off with a local copy of ``background.fol``:
492
+
493
+ >>> nltk.data.retrieve('grammars/book_grammars/background.fol')
494
+ Retrieving 'nltk:grammars/book_grammars/background.fol', saving to 'background.fol'
495
+
496
+ After you have modified the file, the ``load_fol()`` function will parse
497
+ the strings in the file into expressions of ``nltk.sem.logic``.
498
+
499
+ >>> from nltk.inference.discourse import load_fol
500
+ >>> mybg = load_fol(open('background.fol').read())
501
+
502
+ The result can be loaded as an argument of ``add_background()`` in the
503
+ manner shown earlier.
504
+
505
+ .. This will not be visible in the html output: clean up the tempdir.
506
+ >>> os.chdir(old_dir)
507
+ >>> for f in os.listdir(tempdir):
508
+ ... os.remove(os.path.join(tempdir, f))
509
+ >>> os.rmdir(tempdir)
510
+ >>> nltk.data.clear_cache()
511
+
512
+
513
+ Regression Testing from book
514
+ ============================
515
+
516
+ >>> logic._counter._value = 0
517
+
518
+ >>> from nltk.tag import RegexpTagger
519
+ >>> tagger = RegexpTagger(
520
+ ... [('^(chases|runs)$', 'VB'),
521
+ ... ('^(a)$', 'ex_quant'),
522
+ ... ('^(every)$', 'univ_quant'),
523
+ ... ('^(dog|boy)$', 'NN'),
524
+ ... ('^(He)$', 'PRP')
525
+ ... ])
526
+ >>> rc = DrtGlueReadingCommand(depparser=MaltParser(tagger=tagger))
527
+ >>> dt = DiscourseTester(map(str.split, ['Every dog chases a boy', 'He runs']), rc)
528
+ >>> dt.readings()
529
+ <BLANKLINE>
530
+ s0 readings:
531
+ <BLANKLINE>
532
+ s0-r0: ([z2],[boy(z2), (([z5],[dog(z5)]) -> ([],[chases(z5,z2)]))])
533
+ s0-r1: ([],[(([z1],[dog(z1)]) -> ([z2],[boy(z2), chases(z1,z2)]))])
534
+ <BLANKLINE>
535
+ s1 readings:
536
+ <BLANKLINE>
537
+ s1-r0: ([z1],[PRO(z1), runs(z1)])
538
+ >>> dt.readings(show_thread_readings=True)
539
+ d0: ['s0-r0', 's1-r0'] : ([z1,z2],[boy(z1), (([z3],[dog(z3)]) -> ([],[chases(z3,z1)])), (z2 = z1), runs(z2)])
540
+ d1: ['s0-r1', 's1-r0'] : INVALID: AnaphoraResolutionException
541
+ >>> dt.readings(filter=True, show_thread_readings=True)
542
+ d0: ['s0-r0', 's1-r0'] : ([z1,z3],[boy(z1), (([z2],[dog(z2)]) -> ([],[chases(z2,z1)])), (z3 = z1), runs(z3)])
543
+
544
+ >>> logic._counter._value = 0
545
+
546
+ >>> from nltk.parse import FeatureEarleyChartParser
547
+ >>> from nltk.sem.drt import DrtParser
548
+ >>> grammar = nltk.data.load('grammars/book_grammars/drt.fcfg', logic_parser=DrtParser())
549
+ >>> parser = FeatureEarleyChartParser(grammar, trace=0)
550
+ >>> trees = parser.parse('Angus owns a dog'.split())
551
+ >>> print(list(trees)[0].label()['SEM'].simplify().normalize())
552
+ ([z1,z2],[Angus(z1), dog(z2), own(z1,z2)])
llmeval-env/lib/python3.10/site-packages/nltk/test/featgram.doctest ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =========================
5
+ Feature Grammar Parsing
6
+ =========================
7
+
8
+ .. definitions from nltk_book/definitions.rst
9
+
10
+ .. role:: feat
11
+ :class: feature
12
+ .. role:: fval
13
+ :class: fval
14
+ .. |rarr| unicode:: U+2192 .. right arrow
15
+ .. |dot| unicode:: U+2022 .. bullet
16
+ .. |pi| unicode:: U+03C0
17
+
18
+ Grammars can be parsed from strings.
19
+
20
+ >>> import nltk
21
+ >>> from nltk import grammar, parse
22
+ >>> g = """
23
+ ... % start DP
24
+ ... DP[AGR=?a] -> D[AGR=?a] N[AGR=?a]
25
+ ... D[AGR=[NUM='sg', PERS=3]] -> 'this' | 'that'
26
+ ... D[AGR=[NUM='pl', PERS=3]] -> 'these' | 'those'
27
+ ... D[AGR=[NUM='pl', PERS=1]] -> 'we'
28
+ ... D[AGR=[PERS=2]] -> 'you'
29
+ ... N[AGR=[NUM='sg', GND='m']] -> 'boy'
30
+ ... N[AGR=[NUM='pl', GND='m']] -> 'boys'
31
+ ... N[AGR=[NUM='sg', GND='f']] -> 'girl'
32
+ ... N[AGR=[NUM='pl', GND='f']] -> 'girls'
33
+ ... N[AGR=[NUM='sg']] -> 'student'
34
+ ... N[AGR=[NUM='pl']] -> 'students'
35
+ ... """
36
+ >>> grammar = grammar.FeatureGrammar.fromstring(g)
37
+ >>> tokens = 'these girls'.split()
38
+ >>> parser = parse.FeatureEarleyChartParser(grammar)
39
+ >>> trees = parser.parse(tokens)
40
+ >>> for tree in trees: print(tree)
41
+ (DP[AGR=[GND='f', NUM='pl', PERS=3]]
42
+ (D[AGR=[NUM='pl', PERS=3]] these)
43
+ (N[AGR=[GND='f', NUM='pl']] girls))
44
+
45
+ In general, when we are trying to develop even a very small grammar,
46
+ it is convenient to put the rules in a file where they can be edited,
47
+ tested and revised. Let's assume that we have saved feat0cfg as a file named
48
+ ``'feat0.fcfg'`` and placed it in the NLTK ``data`` directory. We can
49
+ inspect it as follows:
50
+
51
+ >>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
52
+ % start S
53
+ # ###################
54
+ # Grammar Productions
55
+ # ###################
56
+ # S expansion productions
57
+ S -> NP[NUM=?n] VP[NUM=?n]
58
+ # NP expansion productions
59
+ NP[NUM=?n] -> N[NUM=?n]
60
+ NP[NUM=?n] -> PropN[NUM=?n]
61
+ NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
62
+ NP[NUM=pl] -> N[NUM=pl]
63
+ # VP expansion productions
64
+ VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
65
+ VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
66
+ # ###################
67
+ # Lexical Productions
68
+ # ###################
69
+ Det[NUM=sg] -> 'this' | 'every'
70
+ Det[NUM=pl] -> 'these' | 'all'
71
+ Det -> 'the' | 'some' | 'several'
72
+ PropN[NUM=sg]-> 'Kim' | 'Jody'
73
+ N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
74
+ N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
75
+ IV[TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
76
+ TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
77
+ IV[TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
78
+ TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
79
+ IV[TENSE=past] -> 'disappeared' | 'walked'
80
+ TV[TENSE=past] -> 'saw' | 'liked'
81
+
82
+ Assuming we have saved feat0cfg as a file named
83
+ ``'feat0.fcfg'``, the function ``parse.load_parser`` allows us to
84
+ read the grammar into NLTK, ready for use in parsing.
85
+
86
+
87
+ >>> cp = parse.load_parser('grammars/book_grammars/feat0.fcfg', trace=1)
88
+ >>> sent = 'Kim likes children'
89
+ >>> tokens = sent.split()
90
+ >>> tokens
91
+ ['Kim', 'likes', 'children']
92
+ >>> trees = cp.parse(tokens)
93
+ |.Kim .like.chil.|
94
+ |[----] . .| [0:1] 'Kim'
95
+ |. [----] .| [1:2] 'likes'
96
+ |. . [----]| [2:3] 'children'
97
+ |[----] . .| [0:1] PropN[NUM='sg'] -> 'Kim' *
98
+ |[----] . .| [0:1] NP[NUM='sg'] -> PropN[NUM='sg'] *
99
+ |[----> . .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
100
+ |. [----] .| [1:2] TV[NUM='sg', TENSE='pres'] -> 'likes' *
101
+ |. [----> .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: 'sg', ?t: 'pres'}
102
+ |. . [----]| [2:3] N[NUM='pl'] -> 'children' *
103
+ |. . [----]| [2:3] NP[NUM='pl'] -> N[NUM='pl'] *
104
+ |. . [---->| [2:3] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
105
+ |. [---------]| [1:3] VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] *
106
+ |[==============]| [0:3] S[] -> NP[NUM='sg'] VP[NUM='sg'] *
107
+ >>> for tree in trees: print(tree)
108
+ (S[]
109
+ (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
110
+ (VP[NUM='sg', TENSE='pres']
111
+ (TV[NUM='sg', TENSE='pres'] likes)
112
+ (NP[NUM='pl'] (N[NUM='pl'] children))))
113
+
114
+ The parser works directly with
115
+ the underspecified productions given by the grammar. That is, the
116
+ Predictor rule does not attempt to compile out all admissible feature
117
+ combinations before trying to expand the non-terminals on the left hand
118
+ side of a production. However, when the Scanner matches an input word
119
+ against a lexical production that has been predicted, the new edge will
120
+ typically contain fully specified features; e.g., the edge
121
+ [PropN[`num`:feat: = `sg`:fval:] |rarr| 'Kim', (0, 1)]. Recall from
122
+ Chapter 8 that the Fundamental (or Completer) Rule in
123
+ standard CFGs is used to combine an incomplete edge that's expecting a
124
+ nonterminal *B* with a following, complete edge whose left hand side
125
+ matches *B*. In our current setting, rather than checking for a
126
+ complete match, we test whether the expected category *B* will
127
+ unify with the left hand side *B'* of a following complete
128
+ edge. We will explain in more detail in Section 9.2 how
129
+ unification works; for the moment, it is enough to know that as a
130
+ result of unification, any variable values of features in *B* will be
131
+ instantiated by constant values in the corresponding feature structure
132
+ in *B'*, and these instantiated values will be used in the new edge
133
+ added by the Completer. This instantiation can be seen, for example,
134
+ in the edge
135
+ [NP [`num`:feat:\ =\ `sg`:fval:] |rarr| PropN[`num`:feat:\ =\ `sg`:fval:] |dot|, (0, 1)]
136
+ in Example 9.2, where the feature `num`:feat: has been assigned the value `sg`:fval:.
137
+
138
+ Feature structures in NLTK are ... Atomic feature values can be strings or
139
+ integers.
140
+
141
+ >>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
142
+ >>> print(fs1)
143
+ [ NUM = 'sg' ]
144
+ [ TENSE = 'past' ]
145
+
146
+ We can think of a feature structure as being like a Python dictionary,
147
+ and access its values by indexing in the usual way.
148
+
149
+ >>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
150
+ >>> print(fs1['GND'])
151
+ fem
152
+
153
+ We can also define feature structures which have complex values, as
154
+ discussed earlier.
155
+
156
+ >>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
157
+ >>> print(fs2)
158
+ [ [ GND = 'fem' ] ]
159
+ [ AGR = [ NUM = 'pl' ] ]
160
+ [ [ PER = 3 ] ]
161
+ [ ]
162
+ [ POS = 'N' ]
163
+ >>> print(fs2['AGR'])
164
+ [ GND = 'fem' ]
165
+ [ NUM = 'pl' ]
166
+ [ PER = 3 ]
167
+ >>> print(fs2['AGR']['PER'])
168
+ 3
169
+
170
+ Feature structures can also be constructed using the ``parse()``
171
+ method of the ``nltk.FeatStruct`` class. Note that in this case, atomic
172
+ feature values do not need to be enclosed in quotes.
173
+
174
+ >>> f1 = nltk.FeatStruct("[NUMBER = sg]")
175
+ >>> f2 = nltk.FeatStruct("[PERSON = 3]")
176
+ >>> print(nltk.unify(f1, f2))
177
+ [ NUMBER = 'sg' ]
178
+ [ PERSON = 3 ]
179
+
180
+ >>> f1 = nltk.FeatStruct("[A = [B = b, D = d]]")
181
+ >>> f2 = nltk.FeatStruct("[A = [C = c, D = d]]")
182
+ >>> print(nltk.unify(f1, f2))
183
+ [ [ B = 'b' ] ]
184
+ [ A = [ C = 'c' ] ]
185
+ [ [ D = 'd' ] ]
186
+
187
+
188
+ Feature Structures as Graphs
189
+ ----------------------------
190
+
191
+ Feature structures are not inherently tied to linguistic objects; they are
192
+ general purpose structures for representing knowledge. For example, we
193
+ could encode information about a person in a feature structure:
194
+
195
+ >>> person01 = nltk.FeatStruct("[NAME=Lee, TELNO='01 27 86 42 96',AGE=33]")
196
+ >>> print(person01)
197
+ [ AGE = 33 ]
198
+ [ NAME = 'Lee' ]
199
+ [ TELNO = '01 27 86 42 96' ]
200
+
201
+ There are a number of notations for representing reentrancy in
202
+ matrix-style representations of feature structures. In NLTK, we adopt
203
+ the following convention: the first occurrence of a shared feature structure
204
+ is prefixed with an integer in parentheses, such as ``(1)``, and any
205
+ subsequent reference to that structure uses the notation
206
+ ``->(1)``, as shown below.
207
+
208
+
209
+ >>> fs = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
210
+ ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
211
+ >>> print(fs)
212
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
213
+ [ [ STREET = 'rue Pascal' ] ]
214
+ [ ]
215
+ [ NAME = 'Lee' ]
216
+ [ ]
217
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
218
+ [ [ NAME = 'Kim' ] ]
219
+
220
+ There can be any number of tags within a single feature structure.
221
+
222
+ >>> fs3 = nltk.FeatStruct("[A=(1)[B=b], C=(2)[], D->(1), E->(2)]")
223
+ >>> print(fs3)
224
+ [ A = (1) [ B = 'b' ] ]
225
+ [ ]
226
+ [ C = (2) [] ]
227
+ [ ]
228
+ [ D -> (1) ]
229
+ [ E -> (2) ]
230
+ >>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
231
+ >>> fs2 = nltk.FeatStruct(CITY='Paris')
232
+ >>> print(nltk.unify(fs1, fs2))
233
+ [ CITY = 'Paris' ]
234
+ [ NUMBER = 74 ]
235
+ [ STREET = 'rue Pascal' ]
236
+
237
+ Unification is symmetric:
238
+
239
+ >>> nltk.unify(fs1, fs2) == nltk.unify(fs2, fs1)
240
+ True
241
+
242
+ Unification is commutative:
243
+
244
+ >>> fs3 = nltk.FeatStruct(TELNO='01 27 86 42 96')
245
+ >>> nltk.unify(nltk.unify(fs1, fs2), fs3) == nltk.unify(fs1, nltk.unify(fs2, fs3))
246
+ True
247
+
248
+ Unification between *FS*:math:`_0` and *FS*:math:`_1` will fail if the
249
+ two feature structures share a path |pi|,
250
+ but the value of |pi| in *FS*:math:`_0` is a distinct
251
+ atom from the value of |pi| in *FS*:math:`_1`. In NLTK,
252
+ this is implemented by setting the result of unification to be
253
+ ``None``.
254
+
255
+ >>> fs0 = nltk.FeatStruct(A='a')
256
+ >>> fs1 = nltk.FeatStruct(A='b')
257
+ >>> print(nltk.unify(fs0, fs1))
258
+ None
259
+
260
+ Now, if we look at how unification interacts with structure-sharing,
261
+ things become really interesting.
262
+
263
+
264
+
265
+ >>> fs0 = nltk.FeatStruct("""[NAME=Lee,
266
+ ... ADDRESS=[NUMBER=74,
267
+ ... STREET='rue Pascal'],
268
+ ... SPOUSE= [NAME=Kim,
269
+ ... ADDRESS=[NUMBER=74,
270
+ ... STREET='rue Pascal']]]""")
271
+ >>> print(fs0)
272
+ [ ADDRESS = [ NUMBER = 74 ] ]
273
+ [ [ STREET = 'rue Pascal' ] ]
274
+ [ ]
275
+ [ NAME = 'Lee' ]
276
+ [ ]
277
+ [ [ ADDRESS = [ NUMBER = 74 ] ] ]
278
+ [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ]
279
+ [ [ ] ]
280
+ [ [ NAME = 'Kim' ] ]
281
+
282
+
283
+ >>> fs1 = nltk.FeatStruct("[SPOUSE=[ADDRESS=[CITY=Paris]]]")
284
+ >>> print(nltk.unify(fs0, fs1))
285
+ [ ADDRESS = [ NUMBER = 74 ] ]
286
+ [ [ STREET = 'rue Pascal' ] ]
287
+ [ ]
288
+ [ NAME = 'Lee' ]
289
+ [ ]
290
+ [ [ [ CITY = 'Paris' ] ] ]
291
+ [ [ ADDRESS = [ NUMBER = 74 ] ] ]
292
+ [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ]
293
+ [ [ ] ]
294
+ [ [ NAME = 'Kim' ] ]
295
+
296
+ >>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
297
+ ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
298
+
299
+
300
+ >>> print(fs2)
301
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
302
+ [ [ STREET = 'rue Pascal' ] ]
303
+ [ ]
304
+ [ NAME = 'Lee' ]
305
+ [ ]
306
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
307
+ [ [ NAME = 'Kim' ] ]
308
+
309
+
310
+ >>> print(nltk.unify(fs2, fs1))
311
+ [ [ CITY = 'Paris' ] ]
312
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
313
+ [ [ STREET = 'rue Pascal' ] ]
314
+ [ ]
315
+ [ NAME = 'Lee' ]
316
+ [ ]
317
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
318
+ [ [ NAME = 'Kim' ] ]
319
+
320
+
321
+ >>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
322
+ >>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
323
+ >>> print(fs2)
324
+ [ ADDRESS1 = ?x ]
325
+ [ ADDRESS2 = ?x ]
326
+ >>> print(nltk.unify(fs1, fs2))
327
+ [ ADDRESS1 = (1) [ NUMBER = 74 ] ]
328
+ [ [ STREET = 'rue Pascal' ] ]
329
+ [ ]
330
+ [ ADDRESS2 -> (1) ]
331
+
332
+
333
+
334
+
335
+ >>> sent = 'who do you claim that you like'
336
+ >>> tokens = sent.split()
337
+ >>> cp = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1)
338
+ >>> trees = cp.parse(tokens)
339
+ |.w.d.y.c.t.y.l.|
340
+ |[-] . . . . . .| [0:1] 'who'
341
+ |. [-] . . . . .| [1:2] 'do'
342
+ |. . [-] . . . .| [2:3] 'you'
343
+ |. . . [-] . . .| [3:4] 'claim'
344
+ |. . . . [-] . .| [4:5] 'that'
345
+ |. . . . . [-] .| [5:6] 'you'
346
+ |. . . . . . [-]| [6:7] 'like'
347
+ |# . . . . . . .| [0:0] NP[]/NP[] -> *
348
+ |. # . . . . . .| [1:1] NP[]/NP[] -> *
349
+ |. . # . . . . .| [2:2] NP[]/NP[] -> *
350
+ |. . . # . . . .| [3:3] NP[]/NP[] -> *
351
+ |. . . . # . . .| [4:4] NP[]/NP[] -> *
352
+ |. . . . . # . .| [5:5] NP[]/NP[] -> *
353
+ |. . . . . . # .| [6:6] NP[]/NP[] -> *
354
+ |. . . . . . . #| [7:7] NP[]/NP[] -> *
355
+ |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
356
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
357
+ |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
358
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
359
+ |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
360
+ |. [-> . . . . .| [1:2] S[+INV] -> V[+AUX] * NP[] VP[] {}
361
+ |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
362
+ |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
363
+ |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
364
+ |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
365
+ |. . [-> . . . .| [2:3] S[-INV] -> NP[] * VP[] {}
366
+ |. . [-> . . . .| [2:3] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
367
+ |. . [-> . . . .| [2:3] S[-INV] -> NP[] * S[]/NP[] {}
368
+ |. [---> . . . .| [1:3] S[+INV] -> V[+AUX] NP[] * VP[] {}
369
+ |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
370
+ |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
371
+ |. . . [-> . . .| [3:4] VP[] -> V[-AUX, SUBCAT='clause'] * SBar[] {}
372
+ |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
373
+ |. . . . [-] . .| [4:5] Comp[] -> 'that' *
374
+ |. . . . [-> . .| [4:5] SBar[] -> Comp[] * S[-INV] {}
375
+ |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
376
+ |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
377
+ |. . . . . [-> .| [5:6] S[-INV] -> NP[] * VP[] {}
378
+ |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
379
+ |. . . . . [-> .| [5:6] S[-INV] -> NP[] * S[]/NP[] {}
380
+ |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
381
+ |. . . . . . [->| [6:7] VP[] -> V[-AUX, SUBCAT='trans'] * NP[] {}
382
+ |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
383
+ |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
384
+ |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
385
+ |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
386
+ |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
387
+ |. . [---------]| [2:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
388
+ |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
389
+ |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
390
+
391
+ >>> trees = list(trees)
392
+ >>> for tree in trees: print(tree)
393
+ (S[-INV]
394
+ (NP[+WH] who)
395
+ (S[+INV]/NP[]
396
+ (V[+AUX] do)
397
+ (NP[-WH] you)
398
+ (VP[]/NP[]
399
+ (V[-AUX, SUBCAT='clause'] claim)
400
+ (SBar[]/NP[]
401
+ (Comp[] that)
402
+ (S[-INV]/NP[]
403
+ (NP[-WH] you)
404
+ (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))
405
+
406
+ A different parser should give the same parse trees, but perhaps in a different order:
407
+
408
+ >>> cp2 = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1,
409
+ ... parser=parse.FeatureEarleyChartParser)
410
+ >>> trees2 = cp2.parse(tokens)
411
+ |.w.d.y.c.t.y.l.|
412
+ |[-] . . . . . .| [0:1] 'who'
413
+ |. [-] . . . . .| [1:2] 'do'
414
+ |. . [-] . . . .| [2:3] 'you'
415
+ |. . . [-] . . .| [3:4] 'claim'
416
+ |. . . . [-] . .| [4:5] 'that'
417
+ |. . . . . [-] .| [5:6] 'you'
418
+ |. . . . . . [-]| [6:7] 'like'
419
+ |> . . . . . . .| [0:0] S[-INV] -> * NP[] VP[] {}
420
+ |> . . . . . . .| [0:0] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
421
+ |> . . . . . . .| [0:0] S[-INV] -> * NP[] S[]/NP[] {}
422
+ |> . . . . . . .| [0:0] S[-INV] -> * Adv[+NEG] S[+INV] {}
423
+ |> . . . . . . .| [0:0] S[+INV] -> * V[+AUX] NP[] VP[] {}
424
+ |> . . . . . . .| [0:0] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
425
+ |> . . . . . . .| [0:0] NP[+WH] -> * 'who' {}
426
+ |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
427
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
428
+ |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
429
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
430
+ |. > . . . . . .| [1:1] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
431
+ |. > . . . . . .| [1:1] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
432
+ |. > . . . . . .| [1:1] V[+AUX] -> * 'do' {}
433
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
434
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
435
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
436
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
437
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
438
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
439
+ |. > . . . . . .| [1:1] VP[] -> * V[+AUX] VP[] {}
440
+ |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
441
+ |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
442
+ |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
443
+ |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
444
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
445
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
446
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
447
+ |. . > . . . . .| [2:2] VP[] -> * V[+AUX] VP[] {}
448
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
449
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
450
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
451
+ |. . > . . . . .| [2:2] NP[-WH] -> * 'you' {}
452
+ |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
453
+ |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
454
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
455
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
456
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
457
+ |. . . > . . . .| [3:3] V[-AUX, SUBCAT='clause'] -> * 'claim' {}
458
+ |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
459
+ |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
460
+ |. . . . > . . .| [4:4] SBar[]/?x[] -> * Comp[] S[-INV]/?x[] {}
461
+ |. . . . > . . .| [4:4] Comp[] -> * 'that' {}
462
+ |. . . . [-] . .| [4:5] Comp[] -> 'that' *
463
+ |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
464
+ |. . . . . > . .| [5:5] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
465
+ |. . . . . > . .| [5:5] NP[-WH] -> * 'you' {}
466
+ |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
467
+ |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
468
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
469
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
470
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
471
+ |. . . . . . > .| [6:6] V[-AUX, SUBCAT='trans'] -> * 'like' {}
472
+ |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
473
+ |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
474
+ |. . . . . . . #| [7:7] NP[]/NP[] -> *
475
+ |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
476
+ |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
477
+ |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
478
+ |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
479
+ |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
480
+ |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
481
+
482
+ >>> sorted(trees) == sorted(trees2)
483
+ True
484
+
485
+
486
+ Let's load a German grammar:
487
+
488
+ >>> cp = parse.load_parser('grammars/book_grammars/german.fcfg', trace=0)
489
+ >>> sent = 'die Katze sieht den Hund'
490
+ >>> tokens = sent.split()
491
+ >>> trees = cp.parse(tokens)
492
+ >>> for tree in trees: print(tree)
493
+ (S[]
494
+ (NP[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom']
495
+ (Det[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] die)
496
+ (N[AGR=[GND='fem', NUM='sg', PER=3]] Katze))
497
+ (VP[AGR=[NUM='sg', PER=3]]
498
+ (TV[AGR=[NUM='sg', PER=3], OBJCASE='acc'] sieht)
499
+ (NP[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc']
500
+ (Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] den)
501
+ (N[AGR=[GND='masc', NUM='sg', PER=3]] Hund))))
502
+
503
+ Grammar with Binding Operators
504
+ ------------------------------
505
+ The bindop.fcfg grammar is a semantic grammar that uses lambda
506
+ calculus. Each element has a core semantics, which is a single lambda
507
+ calculus expression; and a set of binding operators, which bind
508
+ variables.
509
+
510
+ In order to make the binding operators work right, they need to
511
+ instantiate their bound variable every time they are added to the
512
+ chart. To do this, we use a special subclass of `Chart`, called
513
+ `InstantiateVarsChart`.
514
+
515
+ >>> from nltk.parse.featurechart import InstantiateVarsChart
516
+ >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=1,
517
+ ... chart_class=InstantiateVarsChart)
518
+ >>> print(cp.grammar())
519
+ Grammar with 15 productions (start state = S[])
520
+ S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] VP[SEM=[BO=?b2, CORE=?vp]]
521
+ VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] NP[SEM=[BO=?b2, CORE=?obj]]
522
+ VP[SEM=?s] -> IV[SEM=?s]
523
+ NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] N[SEM=[BO=?b2, CORE=?n]]
524
+ Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a'
525
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'dog'
526
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'cat'
527
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'mouse'
528
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks'
529
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'eats'
530
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'walks'
531
+ TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds'
532
+ TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'walks'
533
+ NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'john'
534
+ NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'alex'
535
+
536
+ A simple intransitive sentence:
537
+
538
+ >>> from nltk.sem import logic
539
+ >>> logic._counter._value = 100
540
+
541
+ >>> trees = cp.parse('john barks'.split())
542
+ |. john.barks.|
543
+ |[-----] .| [0:1] 'john'
544
+ |. [-----]| [1:2] 'barks'
545
+ |[-----] .| [0:1] NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] -> 'john' *
546
+ |[-----> .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
547
+ |. [-----]| [1:2] IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' *
548
+ |. [-----]| [1:2] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
549
+ |[===========]| [0:2] S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
550
+ >>> for tree in trees: print(tree)
551
+ (S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]]
552
+ (NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] john)
553
+ (VP[SEM=[BO={/}, CORE=<\x.bark(x)>]]
554
+ (IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] barks)))
555
+
556
+ A transitive sentence:
557
+
558
+ >>> trees = cp.parse('john feeds a dog'.split())
559
+ |.joh.fee. a .dog.|
560
+ |[---] . . .| [0:1] 'john'
561
+ |. [---] . .| [1:2] 'feeds'
562
+ |. . [---] .| [2:3] 'a'
563
+ |. . . [---]| [3:4] 'dog'
564
+ |[---] . . .| [0:1] NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] -> 'john' *
565
+ |[---> . . .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
566
+ |. [---] . .| [1:2] TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' *
567
+ |. [---> . .| [1:2] VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] * NP[SEM=[BO=?b2, CORE=?obj]] {?b1: {/}, ?v: <LambdaExpression \x y.feed(y,x)>}
568
+ |. . [---] .| [2:3] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' *
569
+ |. . [---> .| [2:3] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] * N[SEM=[BO=?b2, CORE=?n]] {?b1: {/}, ?det: <LambdaExpression \Q P.exists x.(Q(x) & P(x))>}
570
+ |. . . [---]| [3:4] N[SEM=[BO={/}, CORE=<dog>]] -> 'dog' *
571
+ |. . [-------]| [2:4] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]] -> Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] N[SEM=[BO={/}, CORE=<dog>]] *
572
+ |. . [------->| [2:4] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.exists x.(dog(x) & P(x)),z2)}, ?subj: <IndividualVariableExpression z2>}
573
+ |. [-----------]| [1:4] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] -> TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<z2>]] *
574
+ |[===============]| [0:4] S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<\y.feed(y,z3)>]] *
575
+
576
+ >>> for tree in trees: print(tree)
577
+ (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
578
+ (NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] john)
579
+ (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
580
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
581
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]]
582
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
583
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))))
584
+
585
+ Turn down the verbosity:
586
+
587
+ >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=0,
588
+ ... chart_class=InstantiateVarsChart)
589
+
590
+ Reuse the same lexical item twice:
591
+
592
+ >>> trees = cp.parse('john feeds john'.split())
593
+ >>> for tree in trees: print(tree)
594
+ (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.P(John),z3)}, CORE=<feed(z2,z3)>]]
595
+ (NP[SEM=[BO={bo(\P.P(John),z104)}, CORE=<z104>]] john)
596
+ (VP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<\y.feed(y,z2)>]]
597
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
598
+ (NP[SEM=[BO={bo(\P.P(John),z105)}, CORE=<z105>]] john)))
599
+
600
+ >>> trees = cp.parse('a dog feeds a dog'.split())
601
+ >>> for tree in trees: print(tree)
602
+ (S[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
603
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z106)}, CORE=<z106>]]
604
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
605
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))
606
+ (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
607
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
608
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z107)}, CORE=<z107>]]
609
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
610
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))))
llmeval-env/lib/python3.10/site-packages/nltk/test/gensim_fixt.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ def setup_module():
2
+ import pytest
3
+
4
+ pytest.importorskip("gensim")
llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics.doctest ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============================================================================
5
+ Glue Semantics
6
+ ==============================================================================
7
+
8
+
9
+
10
+ ======================
11
+ Linear logic
12
+ ======================
13
+
14
+ >>> from nltk.sem import logic
15
+ >>> from nltk.sem.glue import *
16
+ >>> from nltk.sem.linearlogic import *
17
+
18
+ >>> from nltk.sem.linearlogic import Expression
19
+ >>> read_expr = Expression.fromstring
20
+
21
+ Parser
22
+
23
+ >>> print(read_expr(r'f'))
24
+ f
25
+ >>> print(read_expr(r'(g -o f)'))
26
+ (g -o f)
27
+ >>> print(read_expr(r'(g -o (h -o f))'))
28
+ (g -o (h -o f))
29
+ >>> print(read_expr(r'((g -o G) -o G)'))
30
+ ((g -o G) -o G)
31
+ >>> print(read_expr(r'(g -o f)(g)'))
32
+ (g -o f)(g)
33
+ >>> print(read_expr(r'((g -o G) -o G)((g -o f))'))
34
+ ((g -o G) -o G)((g -o f))
35
+
36
+ Simplify
37
+
38
+ >>> print(read_expr(r'f').simplify())
39
+ f
40
+ >>> print(read_expr(r'(g -o f)').simplify())
41
+ (g -o f)
42
+ >>> print(read_expr(r'((g -o G) -o G)').simplify())
43
+ ((g -o G) -o G)
44
+ >>> print(read_expr(r'(g -o f)(g)').simplify())
45
+ f
46
+ >>> try: read_expr(r'(g -o f)(f)').simplify()
47
+ ... except LinearLogicApplicationException as e: print(e)
48
+ ...
49
+ Cannot apply (g -o f) to f. Cannot unify g with f given {}
50
+ >>> print(read_expr(r'(G -o f)(g)').simplify())
51
+ f
52
+ >>> print(read_expr(r'((g -o G) -o G)((g -o f))').simplify())
53
+ f
54
+
55
+ Test BindingDict
56
+
57
+ >>> h = ConstantExpression('h')
58
+ >>> g = ConstantExpression('g')
59
+ >>> f = ConstantExpression('f')
60
+
61
+ >>> H = VariableExpression('H')
62
+ >>> G = VariableExpression('G')
63
+ >>> F = VariableExpression('F')
64
+
65
+ >>> d1 = BindingDict({H: h})
66
+ >>> d2 = BindingDict({F: f, G: F})
67
+ >>> d12 = d1 + d2
68
+ >>> all12 = ['%s: %s' % (v, d12[v]) for v in d12.d]
69
+ >>> all12.sort()
70
+ >>> print(all12)
71
+ ['F: f', 'G: f', 'H: h']
72
+
73
+ >>> BindingDict([(F,f),(G,g),(H,h)]) == BindingDict({F:f, G:g, H:h})
74
+ True
75
+
76
+ >>> d4 = BindingDict({F: f})
77
+ >>> try: d4[F] = g
78
+ ... except VariableBindingException as e: print(e)
79
+ Variable F already bound to another value
80
+
81
+ Test Unify
82
+
83
+ >>> try: f.unify(g, BindingDict())
84
+ ... except UnificationException as e: print(e)
85
+ ...
86
+ Cannot unify f with g given {}
87
+
88
+ >>> f.unify(G, BindingDict()) == BindingDict({G: f})
89
+ True
90
+ >>> try: f.unify(G, BindingDict({G: h}))
91
+ ... except UnificationException as e: print(e)
92
+ ...
93
+ Cannot unify f with G given {G: h}
94
+ >>> f.unify(G, BindingDict({G: f})) == BindingDict({G: f})
95
+ True
96
+ >>> f.unify(G, BindingDict({H: f})) == BindingDict({G: f, H: f})
97
+ True
98
+
99
+ >>> G.unify(f, BindingDict()) == BindingDict({G: f})
100
+ True
101
+ >>> try: G.unify(f, BindingDict({G: h}))
102
+ ... except UnificationException as e: print(e)
103
+ ...
104
+ Cannot unify G with f given {G: h}
105
+ >>> G.unify(f, BindingDict({G: f})) == BindingDict({G: f})
106
+ True
107
+ >>> G.unify(f, BindingDict({H: f})) == BindingDict({G: f, H: f})
108
+ True
109
+
110
+ >>> G.unify(F, BindingDict()) == BindingDict({G: F})
111
+ True
112
+ >>> try: G.unify(F, BindingDict({G: H}))
113
+ ... except UnificationException as e: print(e)
114
+ ...
115
+ Cannot unify G with F given {G: H}
116
+ >>> G.unify(F, BindingDict({G: F})) == BindingDict({G: F})
117
+ True
118
+ >>> G.unify(F, BindingDict({H: F})) == BindingDict({G: F, H: F})
119
+ True
120
+
121
+ Test Compile
122
+
123
+ >>> print(read_expr('g').compile_pos(Counter(), GlueFormula))
124
+ (<ConstantExpression g>, [])
125
+ >>> print(read_expr('(g -o f)').compile_pos(Counter(), GlueFormula))
126
+ (<ImpExpression (g -o f)>, [])
127
+ >>> print(read_expr('(g -o (h -o f))').compile_pos(Counter(), GlueFormula))
128
+ (<ImpExpression (g -o (h -o f))>, [])
129
+
130
+
131
+ ======================
132
+ Glue
133
+ ======================
134
+
135
+ Demo of "John walks"
136
+ --------------------
137
+
138
+ >>> john = GlueFormula("John", "g")
139
+ >>> print(john)
140
+ John : g
141
+ >>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
142
+ >>> print(walks)
143
+ \x.walks(x) : (g -o f)
144
+ >>> print(walks.applyto(john))
145
+ \x.walks(x)(John) : (g -o f)(g)
146
+ >>> print(walks.applyto(john).simplify())
147
+ walks(John) : f
148
+
149
+
150
+ Demo of "A dog walks"
151
+ ---------------------
152
+
153
+ >>> a = GlueFormula("\\P Q.some x.(P(x) and Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
154
+ >>> print(a)
155
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
156
+ >>> man = GlueFormula(r"\x.man(x)", "(gv -o gr)")
157
+ >>> print(man)
158
+ \x.man(x) : (gv -o gr)
159
+ >>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
160
+ >>> print(walks)
161
+ \x.walks(x) : (g -o f)
162
+ >>> a_man = a.applyto(man)
163
+ >>> print(a_man.simplify())
164
+ \Q.exists x.(man(x) & Q(x)) : ((g -o G) -o G)
165
+ >>> a_man_walks = a_man.applyto(walks)
166
+ >>> print(a_man_walks.simplify())
167
+ exists x.(man(x) & walks(x)) : f
168
+
169
+
170
+ Demo of 'every girl chases a dog'
171
+ ---------------------------------
172
+
173
+ Individual words:
174
+
175
+ >>> every = GlueFormula("\\P Q.all x.(P(x) -> Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
176
+ >>> print(every)
177
+ \P Q.all x.(P(x) -> Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
178
+ >>> girl = GlueFormula(r"\x.girl(x)", "(gv -o gr)")
179
+ >>> print(girl)
180
+ \x.girl(x) : (gv -o gr)
181
+ >>> chases = GlueFormula(r"\x y.chases(x,y)", "(g -o (h -o f))")
182
+ >>> print(chases)
183
+ \x y.chases(x,y) : (g -o (h -o f))
184
+ >>> a = GlueFormula("\\P Q.some x.(P(x) and Q(x))", "((hv -o hr) -o ((h -o H) -o H))")
185
+ >>> print(a)
186
+ \P Q.exists x.(P(x) & Q(x)) : ((hv -o hr) -o ((h -o H) -o H))
187
+ >>> dog = GlueFormula(r"\x.dog(x)", "(hv -o hr)")
188
+ >>> print(dog)
189
+ \x.dog(x) : (hv -o hr)
190
+
191
+ Noun Quantification can only be done one way:
192
+
193
+ >>> every_girl = every.applyto(girl)
194
+ >>> print(every_girl.simplify())
195
+ \Q.all x.(girl(x) -> Q(x)) : ((g -o G) -o G)
196
+ >>> a_dog = a.applyto(dog)
197
+ >>> print(a_dog.simplify())
198
+ \Q.exists x.(dog(x) & Q(x)) : ((h -o H) -o H)
199
+
200
+ The first reading is achieved by combining 'chases' with 'a dog' first.
201
+ Since 'a girl' requires something of the form '(h -o H)' we must
202
+ get rid of the 'g' in the glue of 'see'. We will do this with
203
+ the '-o elimination' rule. So, x1 will be our subject placeholder.
204
+
205
+ >>> xPrime = GlueFormula("x1", "g")
206
+ >>> print(xPrime)
207
+ x1 : g
208
+ >>> xPrime_chases = chases.applyto(xPrime)
209
+ >>> print(xPrime_chases.simplify())
210
+ \y.chases(x1,y) : (h -o f)
211
+ >>> xPrime_chases_a_dog = a_dog.applyto(xPrime_chases)
212
+ >>> print(xPrime_chases_a_dog.simplify())
213
+ exists x.(dog(x) & chases(x1,x)) : f
214
+
215
+ Now we can retract our subject placeholder using lambda-abstraction and
216
+ combine with the true subject.
217
+
218
+ >>> chases_a_dog = xPrime_chases_a_dog.lambda_abstract(xPrime)
219
+ >>> print(chases_a_dog.simplify())
220
+ \x1.exists x.(dog(x) & chases(x1,x)) : (g -o f)
221
+ >>> every_girl_chases_a_dog = every_girl.applyto(chases_a_dog)
222
+ >>> r1 = every_girl_chases_a_dog.simplify()
223
+ >>> r2 = GlueFormula(r'all x.(girl(x) -> exists z1.(dog(z1) & chases(x,z1)))', 'f')
224
+ >>> r1 == r2
225
+ True
226
+
227
+ The second reading is achieved by combining 'every girl' with 'chases' first.
228
+
229
+ >>> xPrime = GlueFormula("x1", "g")
230
+ >>> print(xPrime)
231
+ x1 : g
232
+ >>> xPrime_chases = chases.applyto(xPrime)
233
+ >>> print(xPrime_chases.simplify())
234
+ \y.chases(x1,y) : (h -o f)
235
+ >>> yPrime = GlueFormula("x2", "h")
236
+ >>> print(yPrime)
237
+ x2 : h
238
+ >>> xPrime_chases_yPrime = xPrime_chases.applyto(yPrime)
239
+ >>> print(xPrime_chases_yPrime.simplify())
240
+ chases(x1,x2) : f
241
+ >>> chases_yPrime = xPrime_chases_yPrime.lambda_abstract(xPrime)
242
+ >>> print(chases_yPrime.simplify())
243
+ \x1.chases(x1,x2) : (g -o f)
244
+ >>> every_girl_chases_yPrime = every_girl.applyto(chases_yPrime)
245
+ >>> print(every_girl_chases_yPrime.simplify())
246
+ all x.(girl(x) -> chases(x,x2)) : f
247
+ >>> every_girl_chases = every_girl_chases_yPrime.lambda_abstract(yPrime)
248
+ >>> print(every_girl_chases.simplify())
249
+ \x2.all x.(girl(x) -> chases(x,x2)) : (h -o f)
250
+ >>> every_girl_chases_a_dog = a_dog.applyto(every_girl_chases)
251
+ >>> r1 = every_girl_chases_a_dog.simplify()
252
+ >>> r2 = GlueFormula(r'exists x.(dog(x) & all z2.(girl(z2) -> chases(z2,x)))', 'f')
253
+ >>> r1 == r2
254
+ True
255
+
256
+
257
+ Compilation
258
+ -----------
259
+
260
+ >>> for cp in GlueFormula('m', '(b -o a)').compile(Counter()): print(cp)
261
+ m : (b -o a) : {1}
262
+ >>> for cp in GlueFormula('m', '((c -o b) -o a)').compile(Counter()): print(cp)
263
+ v1 : c : {1}
264
+ m : (b[1] -o a) : {2}
265
+ >>> for cp in GlueFormula('m', '((d -o (c -o b)) -o a)').compile(Counter()): print(cp)
266
+ v1 : c : {1}
267
+ v2 : d : {2}
268
+ m : (b[1, 2] -o a) : {3}
269
+ >>> for cp in GlueFormula('m', '((d -o e) -o ((c -o b) -o a))').compile(Counter()): print(cp)
270
+ v1 : d : {1}
271
+ v2 : c : {2}
272
+ m : (e[1] -o (b[2] -o a)) : {3}
273
+ >>> for cp in GlueFormula('m', '(((d -o c) -o b) -o a)').compile(Counter()): print(cp)
274
+ v1 : (d -o c) : {1}
275
+ m : (b[1] -o a) : {2}
276
+ >>> for cp in GlueFormula('m', '((((e -o d) -o c) -o b) -o a)').compile(Counter()): print(cp)
277
+ v1 : e : {1}
278
+ v2 : (d[1] -o c) : {2}
279
+ m : (b[2] -o a) : {3}
280
+
281
+
282
+ Demo of 'a man walks' using Compilation
283
+ ---------------------------------------
284
+
285
+ Premises
286
+
287
+ >>> a = GlueFormula('\\P Q.some x.(P(x) and Q(x))', '((gv -o gr) -o ((g -o G) -o G))')
288
+ >>> print(a)
289
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
290
+
291
+ >>> man = GlueFormula('\\x.man(x)', '(gv -o gr)')
292
+ >>> print(man)
293
+ \x.man(x) : (gv -o gr)
294
+
295
+ >>> walks = GlueFormula('\\x.walks(x)', '(g -o f)')
296
+ >>> print(walks)
297
+ \x.walks(x) : (g -o f)
298
+
299
+ Compiled Premises:
300
+
301
+ >>> counter = Counter()
302
+ >>> ahc = a.compile(counter)
303
+ >>> g1 = ahc[0]
304
+ >>> print(g1)
305
+ v1 : gv : {1}
306
+ >>> g2 = ahc[1]
307
+ >>> print(g2)
308
+ v2 : g : {2}
309
+ >>> g3 = ahc[2]
310
+ >>> print(g3)
311
+ \P Q.exists x.(P(x) & Q(x)) : (gr[1] -o (G[2] -o G)) : {3}
312
+ >>> g4 = man.compile(counter)[0]
313
+ >>> print(g4)
314
+ \x.man(x) : (gv -o gr) : {4}
315
+ >>> g5 = walks.compile(counter)[0]
316
+ >>> print(g5)
317
+ \x.walks(x) : (g -o f) : {5}
318
+
319
+ Derivation:
320
+
321
+ >>> g14 = g4.applyto(g1)
322
+ >>> print(g14.simplify())
323
+ man(v1) : gr : {1, 4}
324
+ >>> g134 = g3.applyto(g14)
325
+ >>> print(g134.simplify())
326
+ \Q.exists x.(man(x) & Q(x)) : (G[2] -o G) : {1, 3, 4}
327
+ >>> g25 = g5.applyto(g2)
328
+ >>> print(g25.simplify())
329
+ walks(v2) : f : {2, 5}
330
+ >>> g12345 = g134.applyto(g25)
331
+ >>> print(g12345.simplify())
332
+ exists x.(man(x) & walks(x)) : f : {1, 2, 3, 4, 5}
333
+
334
+ ---------------------------------
335
+ Dependency Graph to Glue Formulas
336
+ ---------------------------------
337
+ >>> from nltk.corpus.reader.dependency import DependencyGraph
338
+
339
+ >>> depgraph = DependencyGraph("""1 John _ NNP NNP _ 2 SUBJ _ _
340
+ ... 2 sees _ VB VB _ 0 ROOT _ _
341
+ ... 3 a _ ex_quant ex_quant _ 4 SPEC _ _
342
+ ... 4 dog _ NN NN _ 2 OBJ _ _
343
+ ... """)
344
+ >>> gfl = GlueDict('nltk:grammars/sample_grammars/glue.semtype').to_glueformula_list(depgraph)
345
+ >>> print(gfl) # doctest: +SKIP
346
+ [\x y.sees(x,y) : (f -o (i -o g)),
347
+ \x.dog(x) : (iv -o ir),
348
+ \P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I3) -o I3)),
349
+ \P Q.exists x.(P(x) & Q(x)) : ((fv -o fr) -o ((f -o F4) -o F4)),
350
+ \x.John(x) : (fv -o fr)]
351
+ >>> glue = Glue()
352
+ >>> for r in sorted([r.simplify().normalize() for r in glue.get_readings(glue.gfl_to_compiled(gfl))], key=str):
353
+ ... print(r)
354
+ exists z1.(John(z1) & exists z2.(dog(z2) & sees(z1,z2)))
355
+ exists z1.(dog(z1) & exists z2.(John(z2) & sees(z2,z1)))
356
+
357
+ -----------------------------------
358
+ Dependency Graph to LFG f-structure
359
+ -----------------------------------
360
+ >>> from nltk.sem.lfg import FStructure
361
+
362
+ >>> fstruct = FStructure.read_depgraph(depgraph)
363
+
364
+ >>> print(fstruct) # doctest: +SKIP
365
+ f:[pred 'sees'
366
+ obj h:[pred 'dog'
367
+ spec 'a']
368
+ subj g:[pred 'John']]
369
+
370
+ >>> fstruct.to_depgraph().tree().pprint()
371
+ (sees (dog a) John)
372
+
373
+ ---------------------------------
374
+ LFG f-structure to Glue
375
+ ---------------------------------
376
+ >>> fstruct.to_glueformula_list(GlueDict('nltk:grammars/sample_grammars/glue.semtype')) # doctest: +SKIP
377
+ [\x y.sees(x,y) : (i -o (g -o f)),
378
+ \x.dog(x) : (gv -o gr),
379
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G3) -o G3)),
380
+ \P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I4) -o I4)),
381
+ \x.John(x) : (iv -o ir)]
382
+
383
+ .. see gluesemantics_malt.doctest for more
llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics_malt_fixt.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def setup_module():
2
+ import pytest
3
+
4
+ from nltk.parse.malt import MaltParser
5
+
6
+ try:
7
+ depparser = MaltParser()
8
+ except (AssertionError, LookupError) as e:
9
+ pytest.skip("MaltParser is not available")
llmeval-env/lib/python3.10/site-packages/nltk/test/grammar.doctest ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===============
5
+ Grammar Parsing
6
+ ===============
7
+
8
+ Grammars can be parsed from strings:
9
+
10
+ >>> from nltk import CFG
11
+ >>> grammar = CFG.fromstring("""
12
+ ... S -> NP VP
13
+ ... PP -> P NP
14
+ ... NP -> Det N | NP PP
15
+ ... VP -> V NP | VP PP
16
+ ... Det -> 'a' | 'the'
17
+ ... N -> 'dog' | 'cat'
18
+ ... V -> 'chased' | 'sat'
19
+ ... P -> 'on' | 'in'
20
+ ... """)
21
+ >>> grammar
22
+ <Grammar with 14 productions>
23
+ >>> grammar.start()
24
+ S
25
+ >>> grammar.productions()
26
+ [S -> NP VP, PP -> P NP, NP -> Det N, NP -> NP PP, VP -> V NP, VP -> VP PP,
27
+ Det -> 'a', Det -> 'the', N -> 'dog', N -> 'cat', V -> 'chased', V -> 'sat',
28
+ P -> 'on', P -> 'in']
29
+
30
+ Probabilistic CFGs:
31
+
32
+ >>> from nltk import PCFG
33
+ >>> toy_pcfg1 = PCFG.fromstring("""
34
+ ... S -> NP VP [1.0]
35
+ ... NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
36
+ ... Det -> 'the' [0.8] | 'my' [0.2]
37
+ ... N -> 'man' [0.5] | 'telescope' [0.5]
38
+ ... VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
39
+ ... V -> 'ate' [0.35] | 'saw' [0.65]
40
+ ... PP -> P NP [1.0]
41
+ ... P -> 'with' [0.61] | 'under' [0.39]
42
+ ... """)
43
+
44
+ Chomsky Normal Form grammar (Test for bug 474)
45
+
46
+ >>> g = CFG.fromstring("VP^<TOP> -> VBP NP^<VP-TOP>")
47
+ >>> g.productions()[0].lhs()
48
+ VP^<TOP>
49
+
50
+ Grammars can contain both empty strings and empty productions:
51
+
52
+ >>> from nltk.grammar import CFG
53
+ >>> from nltk.parse.generate import generate
54
+ >>> grammar = CFG.fromstring("""
55
+ ... S -> A B
56
+ ... A -> 'a'
57
+ ... # An empty string:
58
+ ... B -> 'b' | ''
59
+ ... """)
60
+ >>> list(generate(grammar))
61
+ [['a', 'b'], ['a', '']]
62
+ >>> grammar = CFG.fromstring("""
63
+ ... S -> A B
64
+ ... A -> 'a'
65
+ ... # An empty production:
66
+ ... B -> 'b' |
67
+ ... """)
68
+ >>> list(generate(grammar))
69
+ [['a', 'b'], ['a']]
llmeval-env/lib/python3.10/site-packages/nltk/test/index.doctest ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ .. _align howto: align.html
5
+ .. _ccg howto: ccg.html
6
+ .. _chat80 howto: chat80.html
7
+ .. _childes howto: childes.html
8
+ .. _chunk howto: chunk.html
9
+ .. _classify howto: classify.html
10
+ .. _collocations howto: collocations.html
11
+ .. _compat howto: compat.html
12
+ .. _corpus howto: corpus.html
13
+ .. _data howto: data.html
14
+ .. _dependency howto: dependency.html
15
+ .. _discourse howto: discourse.html
16
+ .. _drt howto: drt.html
17
+ .. _featgram howto: featgram.html
18
+ .. _featstruct howto: featstruct.html
19
+ .. _framenet howto: framenet.html
20
+ .. _generate howto: generate.html
21
+ .. _gluesemantics howto: gluesemantics.html
22
+ .. _gluesemantics_malt howto: gluesemantics_malt.html
23
+ .. _grammar howto: grammar.html
24
+ .. _grammartestsuites howto: grammartestsuites.html
25
+ .. _index howto: index.html
26
+ .. _inference howto: inference.html
27
+ .. _internals howto: internals.html
28
+ .. _japanese howto: japanese.html
29
+ .. _logic howto: logic.html
30
+ .. _metrics howto: metrics.html
31
+ .. _misc howto: misc.html
32
+ .. _nonmonotonic howto: nonmonotonic.html
33
+ .. _parse howto: parse.html
34
+ .. _portuguese_en howto: portuguese_en.html
35
+ .. _probability howto: probability.html
36
+ .. _propbank howto: propbank.html
37
+ .. _relextract howto: relextract.html
38
+ .. _resolution howto: resolution.html
39
+ .. _semantics howto: semantics.html
40
+ .. _simple howto: simple.html
41
+ .. _stem howto: stem.html
42
+ .. _tag howto: tag.html
43
+ .. _tokenize howto: tokenize.html
44
+ .. _toolbox howto: toolbox.html
45
+ .. _tree howto: tree.html
46
+ .. _treetransforms howto: treetransforms.html
47
+ .. _util howto: util.html
48
+ .. _wordnet howto: wordnet.html
49
+ .. _wordnet_lch howto: wordnet_lch.html
50
+
51
+ ===========
52
+ NLTK HOWTOs
53
+ ===========
54
+
55
+ * `align HOWTO`_
56
+ * `ccg HOWTO`_
57
+ * `chat80 HOWTO`_
58
+ * `childes HOWTO`_
59
+ * `chunk HOWTO`_
60
+ * `classify HOWTO`_
61
+ * `collocations HOWTO`_
62
+ * `compat HOWTO`_
63
+ * `corpus HOWTO`_
64
+ * `data HOWTO`_
65
+ * `dependency HOWTO`_
66
+ * `discourse HOWTO`_
67
+ * `drt HOWTO`_
68
+ * `featgram HOWTO`_
69
+ * `featstruct HOWTO`_
70
+ * `framenet HOWTO`_
71
+ * `generate HOWTO`_
72
+ * `gluesemantics HOWTO`_
73
+ * `gluesemantics_malt HOWTO`_
74
+ * `grammar HOWTO`_
75
+ * `grammartestsuites HOWTO`_
76
+ * `index HOWTO`_
77
+ * `inference HOWTO`_
78
+ * `internals HOWTO`_
79
+ * `japanese HOWTO`_
80
+ * `logic HOWTO`_
81
+ * `metrics HOWTO`_
82
+ * `misc HOWTO`_
83
+ * `nonmonotonic HOWTO`_
84
+ * `parse HOWTO`_
85
+ * `portuguese_en HOWTO`_
86
+ * `probability HOWTO`_
87
+ * `propbank HOWTO`_
88
+ * `relextract HOWTO`_
89
+ * `resolution HOWTO`_
90
+ * `semantics HOWTO`_
91
+ * `simple HOWTO`_
92
+ * `stem HOWTO`_
93
+ * `tag HOWTO`_
94
+ * `tokenize HOWTO`_
95
+ * `toolbox HOWTO`_
96
+ * `tree HOWTO`_
97
+ * `treetransforms HOWTO`_
98
+ * `util HOWTO`_
99
+ * `wordnet HOWTO`_
100
+ * `wordnet_lch HOWTO`_
llmeval-env/lib/python3.10/site-packages/nltk/test/inference.doctest ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ====================================
5
+ Logical Inference and Model Building
6
+ ====================================
7
+
8
+ >>> from nltk.test.setup_fixt import check_binary
9
+ >>> check_binary('mace4')
10
+
11
+ >>> from nltk import *
12
+ >>> from nltk.sem.drt import DrtParser
13
+ >>> from nltk.sem import logic
14
+ >>> logic._counter._value = 0
15
+
16
+ ------------
17
+ Introduction
18
+ ------------
19
+
20
+ Within the area of automated reasoning, first order theorem proving
21
+ and model building (or model generation) have both received much
22
+ attention, and have given rise to highly sophisticated techniques. We
23
+ focus therefore on providing an NLTK interface to third party tools
24
+ for these tasks. In particular, the module ``nltk.inference`` can be
25
+ used to access both theorem provers and model builders.
26
+
27
+ ---------------------------------
28
+ NLTK Interface to Theorem Provers
29
+ ---------------------------------
30
+
31
+ The main class used to interface with a theorem prover is the ``Prover``
32
+ class, found in ``nltk.api``. The ``prove()`` method takes three optional
33
+ arguments: a goal, a list of assumptions, and a ``verbose`` boolean to
34
+ indicate whether the proof should be printed to the console. The proof goal
35
+ and any assumptions need to be instances of the ``Expression`` class
36
+ specified by ``nltk.sem.logic``. There are currently three theorem provers
37
+ included with NLTK: ``Prover9``, ``TableauProver``, and
38
+ ``ResolutionProver``. The first is an off-the-shelf prover, while the other
39
+ two are written in Python and included in the ``nltk.inference`` package.
40
+
41
+ >>> from nltk.sem import Expression
42
+ >>> read_expr = Expression.fromstring
43
+ >>> p1 = read_expr('man(socrates)')
44
+ >>> p2 = read_expr('all x.(man(x) -> mortal(x))')
45
+ >>> c = read_expr('mortal(socrates)')
46
+ >>> Prover9().prove(c, [p1,p2])
47
+ True
48
+ >>> TableauProver().prove(c, [p1,p2])
49
+ True
50
+ >>> ResolutionProver().prove(c, [p1,p2], verbose=True)
51
+ [1] {-mortal(socrates)} A
52
+ [2] {man(socrates)} A
53
+ [3] {-man(z2), mortal(z2)} A
54
+ [4] {-man(socrates)} (1, 3)
55
+ [5] {mortal(socrates)} (2, 3)
56
+ [6] {} (1, 5)
57
+ <BLANKLINE>
58
+ True
59
+
60
+ ---------------------
61
+ The ``ProverCommand``
62
+ ---------------------
63
+
64
+ A ``ProverCommand`` is a stateful holder for a theorem
65
+ prover. The command stores a theorem prover instance (of type ``Prover``),
66
+ a goal, a list of assumptions, the result of the proof, and a string version
67
+ of the entire proof. Corresponding to the three included ``Prover``
68
+ implementations, there are three ``ProverCommand`` implementations:
69
+ ``Prover9Command``, ``TableauProverCommand``, and
70
+ ``ResolutionProverCommand``.
71
+
72
+ The ``ProverCommand``'s constructor takes its goal and assumptions. The
73
+ ``prove()`` command executes the ``Prover`` and ``proof()``
74
+ returns a String form of the proof
75
+ If the ``prove()`` method has not been called,
76
+ then the prover command will be unable to display a proof.
77
+
78
+ >>> prover = ResolutionProverCommand(c, [p1,p2])
79
+ >>> print(prover.proof())
80
+ Traceback (most recent call last):
81
+ File "...", line 1212, in __run
82
+ compileflags, 1) in test.globs
83
+ File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
84
+ File "...", line ..., in proof
85
+ raise LookupError("You have to call prove() first to get a proof!")
86
+ LookupError: You have to call prove() first to get a proof!
87
+ >>> prover.prove()
88
+ True
89
+ >>> print(prover.proof())
90
+ [1] {-mortal(socrates)} A
91
+ [2] {man(socrates)} A
92
+ [3] {-man(z4), mortal(z4)} A
93
+ [4] {-man(socrates)} (1, 3)
94
+ [5] {mortal(socrates)} (2, 3)
95
+ [6] {} (1, 5)
96
+ <BLANKLINE>
97
+
98
+ The prover command stores the result of proving so that if ``prove()`` is
99
+ called again, then the command can return the result without executing the
100
+ prover again. This allows the user to access the result of the proof without
101
+ wasting time re-computing what it already knows.
102
+
103
+ >>> prover.prove()
104
+ True
105
+ >>> prover.prove()
106
+ True
107
+
108
+ The assumptions and goal may be accessed using the ``assumptions()`` and
109
+ ``goal()`` methods, respectively.
110
+
111
+ >>> prover.assumptions()
112
+ [<ApplicationExpression man(socrates)>, <AllExpression all x.(man(x) -> mortal(x))>]
113
+ >>> prover.goal()
114
+ <ApplicationExpression mortal(socrates)>
115
+
116
+ The assumptions list may be modified using the ``add_assumptions()`` and
117
+ ``retract_assumptions()`` methods. Both methods take a list of ``Expression``
118
+ objects. Since adding or removing assumptions may change the result of the
119
+ proof, the stored result is cleared when either of these methods are called.
120
+ That means that ``proof()`` will be unavailable until ``prove()`` is called and
121
+ a call to ``prove()`` will execute the theorem prover.
122
+
123
+ >>> prover.retract_assumptions([read_expr('man(socrates)')])
124
+ >>> print(prover.proof())
125
+ Traceback (most recent call last):
126
+ File "...", line 1212, in __run
127
+ compileflags, 1) in test.globs
128
+ File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
129
+ File "...", line ..., in proof
130
+ raise LookupError("You have to call prove() first to get a proof!")
131
+ LookupError: You have to call prove() first to get a proof!
132
+ >>> prover.prove()
133
+ False
134
+ >>> print(prover.proof())
135
+ [1] {-mortal(socrates)} A
136
+ [2] {-man(z6), mortal(z6)} A
137
+ [3] {-man(socrates)} (1, 2)
138
+ <BLANKLINE>
139
+ >>> prover.add_assumptions([read_expr('man(socrates)')])
140
+ >>> prover.prove()
141
+ True
142
+
143
+ -------
144
+ Prover9
145
+ -------
146
+
147
+ Prover9 Installation
148
+ ~~~~~~~~~~~~~~~~~~~~
149
+
150
+ You can download Prover9 from https://www.cs.unm.edu/~mccune/prover9/.
151
+
152
+ Extract the source code into a suitable directory and follow the
153
+ instructions in the Prover9 ``README.make`` file to compile the executables.
154
+ Install these into an appropriate location; the
155
+ ``prover9_search`` variable is currently configured to look in the
156
+ following locations:
157
+
158
+ >>> p = Prover9()
159
+ >>> p.binary_locations()
160
+ ['/usr/local/bin/prover9',
161
+ '/usr/local/bin/prover9/bin',
162
+ '/usr/local/bin',
163
+ '/usr/bin',
164
+ '/usr/local/prover9',
165
+ '/usr/local/share/prover9']
166
+
167
+ Alternatively, the environment variable ``PROVER9HOME`` may be configured with
168
+ the binary's location.
169
+
170
+ The path to the correct directory can be set manually in the following
171
+ manner:
172
+
173
+ >>> config_prover9(path='/usr/local/bin') # doctest: +SKIP
174
+ [Found prover9: /usr/local/bin/prover9]
175
+
176
+ If the executables cannot be found, ``Prover9`` will issue a warning message:
177
+
178
+ >>> p.prove() # doctest: +SKIP
179
+ Traceback (most recent call last):
180
+ ...
181
+ LookupError:
182
+ ===========================================================================
183
+ NLTK was unable to find the prover9 executable! Use config_prover9() or
184
+ set the PROVER9HOME environment variable.
185
+ <BLANKLINE>
186
+ >> config_prover9('/path/to/prover9')
187
+ <BLANKLINE>
188
+ For more information, on prover9, see:
189
+ <https://www.cs.unm.edu/~mccune/prover9/>
190
+ ===========================================================================
191
+
192
+
193
+ Using Prover9
194
+ ~~~~~~~~~~~~~
195
+
196
+ The general case in theorem proving is to determine whether ``S |- g``
197
+ holds, where ``S`` is a possibly empty set of assumptions, and ``g``
198
+ is a proof goal.
199
+
200
+ As mentioned earlier, NLTK input to ``Prover9`` must be
201
+ ``Expression``\ s of ``nltk.sem.logic``. A ``Prover9`` instance is
202
+ initialized with a proof goal and, possibly, some assumptions. The
203
+ ``prove()`` method attempts to find a proof of the goal, given the
204
+ list of assumptions (in this case, none).
205
+
206
+ >>> goal = read_expr('(man(x) <-> --man(x))')
207
+ >>> prover = Prover9Command(goal)
208
+ >>> prover.prove()
209
+ True
210
+
211
+ Given a ``ProverCommand`` instance ``prover``, the method
212
+ ``prover.proof()`` will return a String of the extensive proof information
213
+ provided by Prover9, shown in abbreviated form here::
214
+
215
+ ============================== Prover9 ===============================
216
+ Prover9 (32) version ...
217
+ Process ... was started by ... on ...
218
+ ...
219
+ The command was ".../prover9 -f ...".
220
+ ============================== end of head ===========================
221
+
222
+ ============================== INPUT =================================
223
+
224
+ % Reading from file /var/...
225
+
226
+
227
+ formulas(goals).
228
+ (all x (man(x) -> man(x))).
229
+ end_of_list.
230
+
231
+ ...
232
+ ============================== end of search =========================
233
+
234
+ THEOREM PROVED
235
+
236
+ Exiting with 1 proof.
237
+
238
+ Process 6317 exit (max_proofs) Mon Jan 21 15:23:28 2008
239
+
240
+
241
+ As mentioned earlier, we may want to list some assumptions for
242
+ the proof, as shown here.
243
+
244
+ >>> g = read_expr('mortal(socrates)')
245
+ >>> a1 = read_expr('all x.(man(x) -> mortal(x))')
246
+ >>> prover = Prover9Command(g, assumptions=[a1])
247
+ >>> prover.print_assumptions()
248
+ all x.(man(x) -> mortal(x))
249
+
250
+ However, the assumptions are not sufficient to derive the goal:
251
+
252
+ >>> print(prover.prove())
253
+ False
254
+
255
+ So let's add another assumption:
256
+
257
+ >>> a2 = read_expr('man(socrates)')
258
+ >>> prover.add_assumptions([a2])
259
+ >>> prover.print_assumptions()
260
+ all x.(man(x) -> mortal(x))
261
+ man(socrates)
262
+ >>> print(prover.prove())
263
+ True
264
+
265
+ We can also show the assumptions in ``Prover9`` format.
266
+
267
+ >>> prover.print_assumptions(output_format='Prover9')
268
+ all x (man(x) -> mortal(x))
269
+ man(socrates)
270
+
271
+ >>> prover.print_assumptions(output_format='Spass')
272
+ Traceback (most recent call last):
273
+ . . .
274
+ NameError: Unrecognized value for 'output_format': Spass
275
+
276
+ Assumptions can be retracted from the list of assumptions.
277
+
278
+ >>> prover.retract_assumptions([a1])
279
+ >>> prover.print_assumptions()
280
+ man(socrates)
281
+ >>> prover.retract_assumptions([a1])
282
+
283
+ Statements can be loaded from a file and parsed. We can then add these
284
+ statements as new assumptions.
285
+
286
+ >>> g = read_expr('all x.(boxer(x) -> -boxerdog(x))')
287
+ >>> prover = Prover9Command(g)
288
+ >>> prover.prove()
289
+ False
290
+ >>> import nltk.data
291
+ >>> new = nltk.data.load('grammars/sample_grammars/background0.fol')
292
+ >>> for a in new:
293
+ ... print(a)
294
+ all x.(boxerdog(x) -> dog(x))
295
+ all x.(boxer(x) -> person(x))
296
+ all x.-(dog(x) & person(x))
297
+ exists x.boxer(x)
298
+ exists x.boxerdog(x)
299
+ >>> prover.add_assumptions(new)
300
+ >>> print(prover.prove())
301
+ True
302
+ >>> print(prover.proof())
303
+ ============================== prooftrans ============================
304
+ Prover9 (...) version ...
305
+ Process ... was started by ... on ...
306
+ ...
307
+ The command was ".../prover9".
308
+ ============================== end of head ===========================
309
+ <BLANKLINE>
310
+ ============================== end of input ==========================
311
+ <BLANKLINE>
312
+ ============================== PROOF =================================
313
+ <BLANKLINE>
314
+ % -------- Comments from original proof --------
315
+ % Proof 1 at ... seconds.
316
+ % Length of proof is 13.
317
+ % Level of proof is 4.
318
+ % Maximum clause weight is 0.
319
+ % Given clauses 0.
320
+ <BLANKLINE>
321
+ 1 (all x (boxerdog(x) -> dog(x))). [assumption].
322
+ 2 (all x (boxer(x) -> person(x))). [assumption].
323
+ 3 (all x -(dog(x) & person(x))). [assumption].
324
+ 6 (all x (boxer(x) -> -boxerdog(x))). [goal].
325
+ 8 -boxerdog(x) | dog(x). [clausify(1)].
326
+ 9 boxerdog(c3). [deny(6)].
327
+ 11 -boxer(x) | person(x). [clausify(2)].
328
+ 12 boxer(c3). [deny(6)].
329
+ 14 -dog(x) | -person(x). [clausify(3)].
330
+ 15 dog(c3). [resolve(9,a,8,a)].
331
+ 18 person(c3). [resolve(12,a,11,a)].
332
+ 19 -person(c3). [resolve(15,a,14,a)].
333
+ 20 $F. [resolve(19,a,18,a)].
334
+ <BLANKLINE>
335
+ ============================== end of proof ==========================
336
+
337
+ ----------------------
338
+ The equiv() method
339
+ ----------------------
340
+
341
+ One application of the theorem prover functionality is to check if
342
+ two Expressions have the same meaning.
343
+ The ``equiv()`` method calls a theorem prover to determine whether two
344
+ Expressions are logically equivalent.
345
+
346
+ >>> a = read_expr(r'exists x.(man(x) & walks(x))')
347
+ >>> b = read_expr(r'exists x.(walks(x) & man(x))')
348
+ >>> print(a.equiv(b))
349
+ True
350
+
351
+ The same method can be used on Discourse Representation Structures (DRSs).
352
+ In this case, each DRS is converted to a first order logic form, and then
353
+ passed to the theorem prover.
354
+
355
+ >>> dp = DrtParser()
356
+ >>> a = dp.parse(r'([x],[man(x), walks(x)])')
357
+ >>> b = dp.parse(r'([x],[walks(x), man(x)])')
358
+ >>> print(a.equiv(b))
359
+ True
360
+
361
+
362
+ --------------------------------
363
+ NLTK Interface to Model Builders
364
+ --------------------------------
365
+
366
+ The top-level to model builders is parallel to that for
367
+ theorem-provers. The ``ModelBuilder`` interface is located
368
+ in ``nltk.inference.api``. It is currently only implemented by
369
+ ``Mace``, which interfaces with the Mace4 model builder.
370
+
371
+ Typically we use a model builder to show that some set of formulas has
372
+ a model, and is therefore consistent. One way of doing this is by
373
+ treating our candidate set of sentences as assumptions, and leaving
374
+ the goal unspecified.
375
+ Thus, the following interaction shows how both ``{a, c1}`` and ``{a, c2}``
376
+ are consistent sets, since Mace succeeds in a building a
377
+ model for each of them, while ``{c1, c2}`` is inconsistent.
378
+
379
+ >>> a3 = read_expr('exists x.(man(x) and walks(x))')
380
+ >>> c1 = read_expr('mortal(socrates)')
381
+ >>> c2 = read_expr('-mortal(socrates)')
382
+ >>> mace = Mace()
383
+ >>> print(mace.build_model(None, [a3, c1]))
384
+ True
385
+ >>> print(mace.build_model(None, [a3, c2]))
386
+ True
387
+
388
+ We can also use the model builder as an adjunct to theorem prover.
389
+ Let's suppose we are trying to prove ``S |- g``, i.e. that ``g``
390
+ is logically entailed by assumptions ``S = {s1, s2, ..., sn}``.
391
+ We can this same input to Mace4, and the model builder will try to
392
+ find a counterexample, that is, to show that ``g`` does *not* follow
393
+ from ``S``. So, given this input, Mace4 will try to find a model for
394
+ the set ``S' = {s1, s2, ..., sn, (not g)}``. If ``g`` fails to follow
395
+ from ``S``, then Mace4 may well return with a counterexample faster
396
+ than Prover9 concludes that it cannot find the required proof.
397
+ Conversely, if ``g`` *is* provable from ``S``, Mace4 may take a long
398
+ time unsuccessfully trying to find a counter model, and will eventually give up.
399
+
400
+ In the following example, we see that the model builder does succeed
401
+ in building a model of the assumptions together with the negation of
402
+ the goal. That is, it succeeds in finding a model
403
+ where there is a woman that every man loves; Adam is a man; Eve is a
404
+ woman; but Adam does not love Eve.
405
+
406
+ >>> a4 = read_expr('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')
407
+ >>> a5 = read_expr('man(adam)')
408
+ >>> a6 = read_expr('woman(eve)')
409
+ >>> g = read_expr('love(adam,eve)')
410
+ >>> print(mace.build_model(g, [a4, a5, a6]))
411
+ True
412
+
413
+ The Model Builder will fail to find a model if the assumptions do entail
414
+ the goal. Mace will continue to look for models of ever-increasing sizes
415
+ until the end_size number is reached. By default, end_size is 500,
416
+ but it can be set manually for quicker response time.
417
+
418
+ >>> a7 = read_expr('all x.(man(x) -> mortal(x))')
419
+ >>> a8 = read_expr('man(socrates)')
420
+ >>> g2 = read_expr('mortal(socrates)')
421
+ >>> print(Mace(end_size=50).build_model(g2, [a7, a8]))
422
+ False
423
+
424
+ There is also a ``ModelBuilderCommand`` class that, like ``ProverCommand``,
425
+ stores a ``ModelBuilder``, a goal, assumptions, a result, and a model. The
426
+ only implementation in NLTK is ``MaceCommand``.
427
+
428
+
429
+ -----
430
+ Mace4
431
+ -----
432
+
433
+ Mace4 Installation
434
+ ~~~~~~~~~~~~~~~~~~
435
+
436
+ Mace4 is packaged with Prover9, and can be downloaded from the same
437
+ source, namely https://www.cs.unm.edu/~mccune/prover9/. It is installed
438
+ in the same manner as Prover9.
439
+
440
+ Using Mace4
441
+ ~~~~~~~~~~~
442
+
443
+ Check whether Mace4 can find a model.
444
+
445
+ >>> a = read_expr('(see(mary,john) & -(mary = john))')
446
+ >>> mb = MaceCommand(assumptions=[a])
447
+ >>> mb.build_model()
448
+ True
449
+
450
+ Show the model in 'tabular' format.
451
+
452
+ >>> print(mb.model(format='tabular'))
453
+ % number = 1
454
+ % seconds = 0
455
+ <BLANKLINE>
456
+ % Interpretation of size 2
457
+ <BLANKLINE>
458
+ john : 0
459
+ <BLANKLINE>
460
+ mary : 1
461
+ <BLANKLINE>
462
+ see :
463
+ | 0 1
464
+ ---+----
465
+ 0 | 0 0
466
+ 1 | 1 0
467
+ <BLANKLINE>
468
+
469
+ Show the model in 'tabular' format.
470
+
471
+ >>> print(mb.model(format='cooked'))
472
+ % number = 1
473
+ % seconds = 0
474
+ <BLANKLINE>
475
+ % Interpretation of size 2
476
+ <BLANKLINE>
477
+ john = 0.
478
+ <BLANKLINE>
479
+ mary = 1.
480
+ <BLANKLINE>
481
+ - see(0,0).
482
+ - see(0,1).
483
+ see(1,0).
484
+ - see(1,1).
485
+ <BLANKLINE>
486
+
487
+ The property ``valuation`` accesses the stored ``Valuation``.
488
+
489
+ >>> print(mb.valuation)
490
+ {'john': 'a', 'mary': 'b', 'see': {('b', 'a')}}
491
+
492
+ We can return to our earlier example and inspect the model:
493
+
494
+ >>> mb = MaceCommand(g, assumptions=[a4, a5, a6])
495
+ >>> m = mb.build_model()
496
+ >>> print(mb.model(format='cooked'))
497
+ % number = 1
498
+ % seconds = 0
499
+ <BLANKLINE>
500
+ % Interpretation of size 2
501
+ <BLANKLINE>
502
+ adam = 0.
503
+ <BLANKLINE>
504
+ eve = 0.
505
+ <BLANKLINE>
506
+ c1 = 1.
507
+ <BLANKLINE>
508
+ man(0).
509
+ - man(1).
510
+ <BLANKLINE>
511
+ woman(0).
512
+ woman(1).
513
+ <BLANKLINE>
514
+ - love(0,0).
515
+ love(0,1).
516
+ - love(1,0).
517
+ - love(1,1).
518
+ <BLANKLINE>
519
+
520
+ Here, we can see that ``adam`` and ``eve`` have been assigned the same
521
+ individual, namely ``0`` as value; ``0`` is both a man and a woman; a second
522
+ individual ``1`` is also a woman; and ``0`` loves ``1``. Thus, this is
523
+ an interpretation in which there is a woman that every man loves but
524
+ Adam doesn't love Eve.
525
+
526
+ Mace can also be used with propositional logic.
527
+
528
+ >>> p = read_expr('P')
529
+ >>> q = read_expr('Q')
530
+ >>> mb = MaceCommand(q, [p, p>-q])
531
+ >>> mb.build_model()
532
+ True
533
+ >>> mb.valuation['P']
534
+ True
535
+ >>> mb.valuation['Q']
536
+ False
llmeval-env/lib/python3.10/site-packages/nltk/test/japanese.doctest ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ============================
5
+ Japanese Language Processing
6
+ ============================
7
+
8
+ >>> from nltk import *
9
+
10
+ -------------
11
+ Corpus Access
12
+ -------------
13
+
14
+ KNB Corpus
15
+ ----------
16
+
17
+ >>> from nltk.corpus import knbc
18
+
19
+ Access the words: this should produce a list of strings:
20
+
21
+ >>> type(knbc.words()[0]) is not bytes
22
+ True
23
+
24
+ Access the sentences: this should produce a list of lists of strings:
25
+
26
+ >>> type(knbc.sents()[0][0]) is not bytes
27
+ True
28
+
29
+ Access the tagged words: this should produce a list of word, tag pairs:
30
+
31
+ >>> type(knbc.tagged_words()[0])
32
+ <... 'tuple'>
33
+
34
+ Access the tagged sentences: this should produce a list of lists of word, tag pairs:
35
+
36
+ >>> type(knbc.tagged_sents()[0][0])
37
+ <... 'tuple'>
38
+
39
+
40
+ JEITA Corpus
41
+ ------------
42
+
43
+ >>> from nltk.corpus import jeita
44
+
45
+ Access the tagged words: this should produce a list of word, tag pairs, where a tag is a string:
46
+
47
+ >>> type(jeita.tagged_words()[0][1]) is not bytes
48
+ True
llmeval-env/lib/python3.10/site-packages/nltk/test/meteor.doctest ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ .. -*- coding: utf-8 -*-
5
+
6
+ =============
7
+ METEOR tests
8
+ =============
9
+
10
+ No Alignment test
11
+ ------------------
12
+
13
+ >>> from nltk.translate import meteor
14
+ >>> from nltk import word_tokenize
15
+
16
+ If the candidate has no alignment to any of the references, the METEOR score is 0.
17
+
18
+ >>> round(meteor(
19
+ ... [word_tokenize('The candidate has no alignment to any of the references')],
20
+ ... word_tokenize('John loves Mary')
21
+ ... ), 4)
22
+ 0.0
23
+
24
+ Tests based on wikipedia examples
25
+ ---------------------------------
26
+
27
+ Testing on `wikipedia examples <https://en.wikipedia.org/wiki/METEOR#Examples>`_
28
+
29
+ >>> same_res = round(meteor(
30
+ ... [word_tokenize('The cat sat on the mat')],
31
+ ... word_tokenize('The cat sat on the mat')
32
+ ... ), 4)
33
+ >>> abs(same_res - 0.9977) < 1e-2
34
+ True
35
+
36
+ >>> meteor(
37
+ ... [word_tokenize('The cat sat on the mat')],
38
+ ... word_tokenize('on the mat sat the cat')
39
+ ... )
40
+ 0.5
41
+
42
+ >>> round(meteor(
43
+ ... [word_tokenize('The cat sat on the mat')],
44
+ ... word_tokenize('The cat was sat on the mat')
45
+ ... ), 4)
46
+ 0.9654
47
+
48
+ Test corresponding to issue #2751, where METEOR score > 1
49
+
50
+ >>> round(meteor(
51
+ ... [word_tokenize('create or update a vm set')],
52
+ ... word_tokenize('creates or updates a virtual machine scale set')
53
+ ... ), 4)
54
+ 0.7806
llmeval-env/lib/python3.10/site-packages/nltk/test/nonmonotonic.doctest ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ======================
5
+ Nonmonotonic Reasoning
6
+ ======================
7
+
8
+ >>> from nltk.test.setup_fixt import check_binary
9
+ >>> check_binary('mace4')
10
+
11
+ >>> from nltk import *
12
+ >>> from nltk.inference.nonmonotonic import *
13
+ >>> from nltk.sem import logic
14
+ >>> logic._counter._value = 0
15
+ >>> read_expr = logic.Expression.fromstring
16
+
17
+ ------------------------
18
+ Closed Domain Assumption
19
+ ------------------------
20
+
21
+ The only entities in the domain are those found in the assumptions or goal.
22
+ If the domain only contains "A" and "B", then the expression "exists x.P(x)" can
23
+ be replaced with "P(A) | P(B)" and an expression "all x.P(x)" can be replaced
24
+ with "P(A) & P(B)".
25
+
26
+ >>> p1 = read_expr(r'all x.(man(x) -> mortal(x))')
27
+ >>> p2 = read_expr(r'man(Socrates)')
28
+ >>> c = read_expr(r'mortal(Socrates)')
29
+ >>> prover = Prover9Command(c, [p1,p2])
30
+ >>> prover.prove()
31
+ True
32
+ >>> cdp = ClosedDomainProver(prover)
33
+ >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
34
+ (man(Socrates) -> mortal(Socrates))
35
+ man(Socrates)
36
+ >>> cdp.prove()
37
+ True
38
+
39
+ >>> p1 = read_expr(r'exists x.walk(x)')
40
+ >>> p2 = read_expr(r'man(Socrates)')
41
+ >>> c = read_expr(r'walk(Socrates)')
42
+ >>> prover = Prover9Command(c, [p1,p2])
43
+ >>> prover.prove()
44
+ False
45
+ >>> cdp = ClosedDomainProver(prover)
46
+ >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
47
+ walk(Socrates)
48
+ man(Socrates)
49
+ >>> cdp.prove()
50
+ True
51
+
52
+ >>> p1 = read_expr(r'exists x.walk(x)')
53
+ >>> p2 = read_expr(r'man(Socrates)')
54
+ >>> p3 = read_expr(r'-walk(Bill)')
55
+ >>> c = read_expr(r'walk(Socrates)')
56
+ >>> prover = Prover9Command(c, [p1,p2,p3])
57
+ >>> prover.prove()
58
+ False
59
+ >>> cdp = ClosedDomainProver(prover)
60
+ >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
61
+ (walk(Socrates) | walk(Bill))
62
+ man(Socrates)
63
+ -walk(Bill)
64
+ >>> cdp.prove()
65
+ True
66
+
67
+ >>> p1 = read_expr(r'walk(Socrates)')
68
+ >>> p2 = read_expr(r'walk(Bill)')
69
+ >>> c = read_expr(r'all x.walk(x)')
70
+ >>> prover = Prover9Command(c, [p1,p2])
71
+ >>> prover.prove()
72
+ False
73
+ >>> cdp = ClosedDomainProver(prover)
74
+ >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
75
+ walk(Socrates)
76
+ walk(Bill)
77
+ >>> print(cdp.goal()) # doctest: +SKIP
78
+ (walk(Socrates) & walk(Bill))
79
+ >>> cdp.prove()
80
+ True
81
+
82
+ >>> p1 = read_expr(r'girl(mary)')
83
+ >>> p2 = read_expr(r'dog(rover)')
84
+ >>> p3 = read_expr(r'all x.(girl(x) -> -dog(x))')
85
+ >>> p4 = read_expr(r'all x.(dog(x) -> -girl(x))')
86
+ >>> p5 = read_expr(r'chase(mary, rover)')
87
+ >>> c = read_expr(r'exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))')
88
+ >>> prover = Prover9Command(c, [p1,p2,p3,p4,p5])
89
+ >>> print(prover.prove())
90
+ False
91
+ >>> cdp = ClosedDomainProver(prover)
92
+ >>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
93
+ girl(mary)
94
+ dog(rover)
95
+ ((girl(rover) -> -dog(rover)) & (girl(mary) -> -dog(mary)))
96
+ ((dog(rover) -> -girl(rover)) & (dog(mary) -> -girl(mary)))
97
+ chase(mary,rover)
98
+ >>> print(cdp.goal()) # doctest: +SKIP
99
+ ((dog(rover) & (girl(rover) -> chase(rover,rover)) & (girl(mary) -> chase(mary,rover))) | (dog(mary) & (girl(rover) -> chase(rover,mary)) & (girl(mary) -> chase(mary,mary))))
100
+ >>> print(cdp.prove())
101
+ True
102
+
103
+ -----------------------
104
+ Unique Names Assumption
105
+ -----------------------
106
+
107
+ No two entities in the domain represent the same entity unless it can be
108
+ explicitly proven that they do. Therefore, if the domain contains "A" and "B",
109
+ then add the assumption "-(A = B)" if it is not the case that
110
+ "<assumptions> \|- (A = B)".
111
+
112
+ >>> p1 = read_expr(r'man(Socrates)')
113
+ >>> p2 = read_expr(r'man(Bill)')
114
+ >>> c = read_expr(r'exists x.exists y.-(x = y)')
115
+ >>> prover = Prover9Command(c, [p1,p2])
116
+ >>> prover.prove()
117
+ False
118
+ >>> unp = UniqueNamesProver(prover)
119
+ >>> for a in unp.assumptions(): print(a) # doctest: +SKIP
120
+ man(Socrates)
121
+ man(Bill)
122
+ -(Socrates = Bill)
123
+ >>> unp.prove()
124
+ True
125
+
126
+ >>> p1 = read_expr(r'all x.(walk(x) -> (x = Socrates))')
127
+ >>> p2 = read_expr(r'Bill = William')
128
+ >>> p3 = read_expr(r'Bill = Billy')
129
+ >>> c = read_expr(r'-walk(William)')
130
+ >>> prover = Prover9Command(c, [p1,p2,p3])
131
+ >>> prover.prove()
132
+ False
133
+ >>> unp = UniqueNamesProver(prover)
134
+ >>> for a in unp.assumptions(): print(a) # doctest: +SKIP
135
+ all x.(walk(x) -> (x = Socrates))
136
+ (Bill = William)
137
+ (Bill = Billy)
138
+ -(William = Socrates)
139
+ -(Billy = Socrates)
140
+ -(Socrates = Bill)
141
+ >>> unp.prove()
142
+ True
143
+
144
+ -----------------------
145
+ Closed World Assumption
146
+ -----------------------
147
+
148
+ The only entities that have certain properties are those that is it stated
149
+ have the properties. We accomplish this assumption by "completing" predicates.
150
+
151
+ If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion
152
+ of "P". If the assumptions contain "all x.(ostrich(x) -> bird(x))", then
153
+ "all x.(bird(x) -> ostrich(x))" is the completion of "bird". If the
154
+ assumptions don't contain anything that are "P", then "all x.-P(x)" is the
155
+ completion of "P".
156
+
157
+ >>> p1 = read_expr(r'walk(Socrates)')
158
+ >>> p2 = read_expr(r'-(Socrates = Bill)')
159
+ >>> c = read_expr(r'-walk(Bill)')
160
+ >>> prover = Prover9Command(c, [p1,p2])
161
+ >>> prover.prove()
162
+ False
163
+ >>> cwp = ClosedWorldProver(prover)
164
+ >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
165
+ walk(Socrates)
166
+ -(Socrates = Bill)
167
+ all z1.(walk(z1) -> (z1 = Socrates))
168
+ >>> cwp.prove()
169
+ True
170
+
171
+ >>> p1 = read_expr(r'see(Socrates, John)')
172
+ >>> p2 = read_expr(r'see(John, Mary)')
173
+ >>> p3 = read_expr(r'-(Socrates = John)')
174
+ >>> p4 = read_expr(r'-(John = Mary)')
175
+ >>> c = read_expr(r'-see(Socrates, Mary)')
176
+ >>> prover = Prover9Command(c, [p1,p2,p3,p4])
177
+ >>> prover.prove()
178
+ False
179
+ >>> cwp = ClosedWorldProver(prover)
180
+ >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
181
+ see(Socrates,John)
182
+ see(John,Mary)
183
+ -(Socrates = John)
184
+ -(John = Mary)
185
+ all z3 z4.(see(z3,z4) -> (((z3 = Socrates) & (z4 = John)) | ((z3 = John) & (z4 = Mary))))
186
+ >>> cwp.prove()
187
+ True
188
+
189
+ >>> p1 = read_expr(r'all x.(ostrich(x) -> bird(x))')
190
+ >>> p2 = read_expr(r'bird(Tweety)')
191
+ >>> p3 = read_expr(r'-ostrich(Sam)')
192
+ >>> p4 = read_expr(r'Sam != Tweety')
193
+ >>> c = read_expr(r'-bird(Sam)')
194
+ >>> prover = Prover9Command(c, [p1,p2,p3,p4])
195
+ >>> prover.prove()
196
+ False
197
+ >>> cwp = ClosedWorldProver(prover)
198
+ >>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
199
+ all x.(ostrich(x) -> bird(x))
200
+ bird(Tweety)
201
+ -ostrich(Sam)
202
+ -(Sam = Tweety)
203
+ all z7.-ostrich(z7)
204
+ all z8.(bird(z8) -> ((z8 = Tweety) | ostrich(z8)))
205
+ >>> print(cwp.prove())
206
+ True
207
+
208
+ -----------------------
209
+ Multi-Decorator Example
210
+ -----------------------
211
+
212
+ Decorators can be nested to utilize multiple assumptions.
213
+
214
+ >>> p1 = read_expr(r'see(Socrates, John)')
215
+ >>> p2 = read_expr(r'see(John, Mary)')
216
+ >>> c = read_expr(r'-see(Socrates, Mary)')
217
+ >>> prover = Prover9Command(c, [p1,p2])
218
+ >>> print(prover.prove())
219
+ False
220
+ >>> cmd = ClosedDomainProver(UniqueNamesProver(ClosedWorldProver(prover)))
221
+ >>> print(cmd.prove())
222
+ True
223
+
224
+ -----------------
225
+ Default Reasoning
226
+ -----------------
227
+ >>> logic._counter._value = 0
228
+ >>> premises = []
229
+
230
+ define the taxonomy
231
+
232
+ >>> premises.append(read_expr(r'all x.(elephant(x) -> animal(x))'))
233
+ >>> premises.append(read_expr(r'all x.(bird(x) -> animal(x))'))
234
+ >>> premises.append(read_expr(r'all x.(dove(x) -> bird(x))'))
235
+ >>> premises.append(read_expr(r'all x.(ostrich(x) -> bird(x))'))
236
+ >>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> ostrich(x))'))
237
+
238
+ default the properties using abnormalities
239
+
240
+ >>> premises.append(read_expr(r'all x.((animal(x) & -Ab1(x)) -> -fly(x))')) #normal animals don't fly
241
+ >>> premises.append(read_expr(r'all x.((bird(x) & -Ab2(x)) -> fly(x))')) #normal birds fly
242
+ >>> premises.append(read_expr(r'all x.((ostrich(x) & -Ab3(x)) -> -fly(x))')) #normal ostriches don't fly
243
+
244
+ specify abnormal entities
245
+
246
+ >>> premises.append(read_expr(r'all x.(bird(x) -> Ab1(x))')) #flight
247
+ >>> premises.append(read_expr(r'all x.(ostrich(x) -> Ab2(x))')) #non-flying bird
248
+ >>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> Ab3(x))')) #flying ostrich
249
+
250
+ define entities
251
+
252
+ >>> premises.append(read_expr(r'elephant(el)'))
253
+ >>> premises.append(read_expr(r'dove(do)'))
254
+ >>> premises.append(read_expr(r'ostrich(os)'))
255
+
256
+ print the augmented assumptions list
257
+
258
+ >>> prover = Prover9Command(None, premises)
259
+ >>> command = UniqueNamesProver(ClosedWorldProver(prover))
260
+ >>> for a in command.assumptions(): print(a) # doctest: +SKIP
261
+ all x.(elephant(x) -> animal(x))
262
+ all x.(bird(x) -> animal(x))
263
+ all x.(dove(x) -> bird(x))
264
+ all x.(ostrich(x) -> bird(x))
265
+ all x.(flying_ostrich(x) -> ostrich(x))
266
+ all x.((animal(x) & -Ab1(x)) -> -fly(x))
267
+ all x.((bird(x) & -Ab2(x)) -> fly(x))
268
+ all x.((ostrich(x) & -Ab3(x)) -> -fly(x))
269
+ all x.(bird(x) -> Ab1(x))
270
+ all x.(ostrich(x) -> Ab2(x))
271
+ all x.(flying_ostrich(x) -> Ab3(x))
272
+ elephant(el)
273
+ dove(do)
274
+ ostrich(os)
275
+ all z1.(animal(z1) -> (elephant(z1) | bird(z1)))
276
+ all z2.(Ab1(z2) -> bird(z2))
277
+ all z3.(bird(z3) -> (dove(z3) | ostrich(z3)))
278
+ all z4.(dove(z4) -> (z4 = do))
279
+ all z5.(Ab2(z5) -> ostrich(z5))
280
+ all z6.(Ab3(z6) -> flying_ostrich(z6))
281
+ all z7.(ostrich(z7) -> ((z7 = os) | flying_ostrich(z7)))
282
+ all z8.-flying_ostrich(z8)
283
+ all z9.(elephant(z9) -> (z9 = el))
284
+ -(el = os)
285
+ -(el = do)
286
+ -(os = do)
287
+
288
+ >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(el)'), premises))).prove()
289
+ True
290
+ >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('fly(do)'), premises))).prove()
291
+ True
292
+ >>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(os)'), premises))).prove()
293
+ True
llmeval-env/lib/python3.10/site-packages/nltk/test/paice.doctest ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ =====================================================
3
+ PAICE's evaluation statistics for stemming algorithms
4
+ =====================================================
5
+
6
+ Given a list of words with their real lemmas and stems according to stemming algorithm under evaluation,
7
+ counts Understemming Index (UI), Overstemming Index (OI), Stemming Weight (SW) and Error-rate relative to truncation (ERRT).
8
+
9
+ >>> from nltk.metrics import Paice
10
+
11
+
12
+ -------------------------------------
13
+ Understemming and Overstemming values
14
+ -------------------------------------
15
+
16
+ >>> lemmas = {'kneel': ['kneel', 'knelt'],
17
+ ... 'range': ['range', 'ranged'],
18
+ ... 'ring': ['ring', 'rang', 'rung']}
19
+ >>> stems = {'kneel': ['kneel'],
20
+ ... 'knelt': ['knelt'],
21
+ ... 'rang': ['rang', 'range', 'ranged'],
22
+ ... 'ring': ['ring'],
23
+ ... 'rung': ['rung']}
24
+ >>> p = Paice(lemmas, stems)
25
+ >>> p.gumt, p.gdmt, p.gwmt, p.gdnt
26
+ (4.0, 5.0, 2.0, 16.0)
27
+
28
+ >>> p.ui, p.oi, p.sw
29
+ (0.8..., 0.125..., 0.15625...)
30
+
31
+ >>> p.errt
32
+ 1.0
33
+
34
+ >>> [('{0:.3f}'.format(a), '{0:.3f}'.format(b)) for a, b in p.coords]
35
+ [('0.000', '1.000'), ('0.000', '0.375'), ('0.600', '0.125'), ('0.800', '0.125')]
llmeval-env/lib/python3.10/site-packages/nltk/test/parse.doctest ADDED
@@ -0,0 +1,933 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =========
5
+ Parsing
6
+ =========
7
+
8
+ Unit tests for the Context Free Grammar class
9
+ ---------------------------------------------
10
+
11
+ >>> import pickle
12
+ >>> import subprocess
13
+ >>> import sys
14
+ >>> from nltk import Nonterminal, nonterminals, Production, CFG
15
+
16
+ >>> nt1 = Nonterminal('NP')
17
+ >>> nt2 = Nonterminal('VP')
18
+
19
+ >>> nt1.symbol()
20
+ 'NP'
21
+
22
+ >>> nt1 == Nonterminal('NP')
23
+ True
24
+
25
+ >>> nt1 == nt2
26
+ False
27
+
28
+ >>> S, NP, VP, PP = nonterminals('S, NP, VP, PP')
29
+ >>> N, V, P, DT = nonterminals('N, V, P, DT')
30
+
31
+ >>> prod1 = Production(S, [NP, VP])
32
+ >>> prod2 = Production(NP, [DT, NP])
33
+
34
+ >>> prod1.lhs()
35
+ S
36
+
37
+ >>> prod1.rhs()
38
+ (NP, VP)
39
+
40
+ >>> prod1 == Production(S, [NP, VP])
41
+ True
42
+
43
+ >>> prod1 == prod2
44
+ False
45
+
46
+ >>> grammar = CFG.fromstring("""
47
+ ... S -> NP VP
48
+ ... PP -> P NP
49
+ ... NP -> 'the' N | N PP | 'the' N PP
50
+ ... VP -> V NP | V PP | V NP PP
51
+ ... N -> 'cat'
52
+ ... N -> 'dog'
53
+ ... N -> 'rug'
54
+ ... V -> 'chased'
55
+ ... V -> 'sat'
56
+ ... P -> 'in'
57
+ ... P -> 'on'
58
+ ... """)
59
+
60
+ >>> cmd = """import pickle
61
+ ... from nltk import Production
62
+ ... p = Production('S', ['NP', 'VP'])
63
+ ... print(pickle.dumps(p))
64
+ ... """
65
+
66
+ >>> # Start a subprocess to simulate pickling in another process
67
+ >>> proc = subprocess.run([sys.executable, '-c', cmd], stdout=subprocess.PIPE)
68
+ >>> p1 = pickle.loads(eval(proc.stdout))
69
+ >>> p2 = Production('S', ['NP', 'VP'])
70
+ >>> print(hash(p1) == hash(p2))
71
+ True
72
+
73
+ Unit tests for the rd (Recursive Descent Parser) class
74
+ ------------------------------------------------------
75
+
76
+ Create and run a recursive descent parser over both a syntactically ambiguous
77
+ and unambiguous sentence.
78
+
79
+ >>> from nltk.parse import RecursiveDescentParser
80
+ >>> rd = RecursiveDescentParser(grammar)
81
+
82
+ >>> sentence1 = 'the cat chased the dog'.split()
83
+ >>> sentence2 = 'the cat chased the dog on the rug'.split()
84
+
85
+ >>> for t in rd.parse(sentence1):
86
+ ... print(t)
87
+ (S (NP the (N cat)) (VP (V chased) (NP the (N dog))))
88
+
89
+ >>> for t in rd.parse(sentence2):
90
+ ... print(t)
91
+ (S
92
+ (NP the (N cat))
93
+ (VP (V chased) (NP the (N dog) (PP (P on) (NP the (N rug))))))
94
+ (S
95
+ (NP the (N cat))
96
+ (VP (V chased) (NP the (N dog)) (PP (P on) (NP the (N rug)))))
97
+
98
+
99
+ (dolist (expr doctest-font-lock-keywords)
100
+ (add-to-list 'font-lock-keywords expr))
101
+
102
+ font-lock-keywords
103
+ (add-to-list 'font-lock-keywords
104
+ (car doctest-font-lock-keywords))
105
+
106
+
107
+ Unit tests for the sr (Shift Reduce Parser) class
108
+ -------------------------------------------------
109
+
110
+ Create and run a shift reduce parser over both a syntactically ambiguous
111
+ and unambiguous sentence. Note that unlike the recursive descent parser, one
112
+ and only one parse is ever returned.
113
+
114
+ >>> from nltk.parse import ShiftReduceParser
115
+ >>> sr = ShiftReduceParser(grammar)
116
+
117
+ >>> sentence1 = 'the cat chased the dog'.split()
118
+ >>> sentence2 = 'the cat chased the dog on the rug'.split()
119
+
120
+ >>> for t in sr.parse(sentence1):
121
+ ... print(t)
122
+ (S (NP the (N cat)) (VP (V chased) (NP the (N dog))))
123
+
124
+
125
+ The shift reduce parser uses heuristics to decide what to do when there are
126
+ multiple possible shift or reduce operations available - for the supplied
127
+ grammar clearly the wrong operation is selected.
128
+
129
+ >>> for t in sr.parse(sentence2):
130
+ ... print(t)
131
+
132
+
133
+ Unit tests for the Chart Parser class
134
+ -------------------------------------
135
+
136
+ We use the demo() function for testing.
137
+ We must turn off showing of times.
138
+
139
+ >>> import nltk
140
+
141
+ First we test tracing with a short sentence
142
+
143
+ >>> nltk.parse.chart.demo(2, print_times=False, trace=1,
144
+ ... sent='I saw a dog', numparses=1)
145
+ * Sentence:
146
+ I saw a dog
147
+ ['I', 'saw', 'a', 'dog']
148
+ <BLANKLINE>
149
+ * Strategy: Bottom-up
150
+ <BLANKLINE>
151
+ |. I . saw . a . dog .|
152
+ |[---------] . . .| [0:1] 'I'
153
+ |. [---------] . .| [1:2] 'saw'
154
+ |. . [---------] .| [2:3] 'a'
155
+ |. . . [---------]| [3:4] 'dog'
156
+ |> . . . .| [0:0] NP -> * 'I'
157
+ |[---------] . . .| [0:1] NP -> 'I' *
158
+ |> . . . .| [0:0] S -> * NP VP
159
+ |> . . . .| [0:0] NP -> * NP PP
160
+ |[---------> . . .| [0:1] S -> NP * VP
161
+ |[---------> . . .| [0:1] NP -> NP * PP
162
+ |. > . . .| [1:1] Verb -> * 'saw'
163
+ |. [---------] . .| [1:2] Verb -> 'saw' *
164
+ |. > . . .| [1:1] VP -> * Verb NP
165
+ |. > . . .| [1:1] VP -> * Verb
166
+ |. [---------> . .| [1:2] VP -> Verb * NP
167
+ |. [---------] . .| [1:2] VP -> Verb *
168
+ |. > . . .| [1:1] VP -> * VP PP
169
+ |[-------------------] . .| [0:2] S -> NP VP *
170
+ |. [---------> . .| [1:2] VP -> VP * PP
171
+ |. . > . .| [2:2] Det -> * 'a'
172
+ |. . [---------] .| [2:3] Det -> 'a' *
173
+ |. . > . .| [2:2] NP -> * Det Noun
174
+ |. . [---------> .| [2:3] NP -> Det * Noun
175
+ |. . . > .| [3:3] Noun -> * 'dog'
176
+ |. . . [---------]| [3:4] Noun -> 'dog' *
177
+ |. . [-------------------]| [2:4] NP -> Det Noun *
178
+ |. . > . .| [2:2] S -> * NP VP
179
+ |. . > . .| [2:2] NP -> * NP PP
180
+ |. [-----------------------------]| [1:4] VP -> Verb NP *
181
+ |. . [------------------->| [2:4] S -> NP * VP
182
+ |. . [------------------->| [2:4] NP -> NP * PP
183
+ |[=======================================]| [0:4] S -> NP VP *
184
+ |. [----------------------------->| [1:4] VP -> VP * PP
185
+ Nr edges in chart: 33
186
+ (S (NP I) (VP (Verb saw) (NP (Det a) (Noun dog))))
187
+ <BLANKLINE>
188
+
189
+ Then we test the different parsing Strategies.
190
+ Note that the number of edges differ between the strategies.
191
+
192
+ Top-down
193
+
194
+ >>> nltk.parse.chart.demo(1, print_times=False, trace=0,
195
+ ... sent='I saw John with a dog', numparses=2)
196
+ * Sentence:
197
+ I saw John with a dog
198
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
199
+ <BLANKLINE>
200
+ * Strategy: Top-down
201
+ <BLANKLINE>
202
+ Nr edges in chart: 48
203
+ (S
204
+ (NP I)
205
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
206
+ (S
207
+ (NP I)
208
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
209
+ <BLANKLINE>
210
+
211
+ Bottom-up
212
+
213
+ >>> nltk.parse.chart.demo(2, print_times=False, trace=0,
214
+ ... sent='I saw John with a dog', numparses=2)
215
+ * Sentence:
216
+ I saw John with a dog
217
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
218
+ <BLANKLINE>
219
+ * Strategy: Bottom-up
220
+ <BLANKLINE>
221
+ Nr edges in chart: 53
222
+ (S
223
+ (NP I)
224
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
225
+ (S
226
+ (NP I)
227
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
228
+ <BLANKLINE>
229
+
230
+ Bottom-up Left-Corner
231
+
232
+ >>> nltk.parse.chart.demo(3, print_times=False, trace=0,
233
+ ... sent='I saw John with a dog', numparses=2)
234
+ * Sentence:
235
+ I saw John with a dog
236
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
237
+ <BLANKLINE>
238
+ * Strategy: Bottom-up left-corner
239
+ <BLANKLINE>
240
+ Nr edges in chart: 36
241
+ (S
242
+ (NP I)
243
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
244
+ (S
245
+ (NP I)
246
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
247
+ <BLANKLINE>
248
+
249
+ Left-Corner with Bottom-Up Filter
250
+
251
+ >>> nltk.parse.chart.demo(4, print_times=False, trace=0,
252
+ ... sent='I saw John with a dog', numparses=2)
253
+ * Sentence:
254
+ I saw John with a dog
255
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
256
+ <BLANKLINE>
257
+ * Strategy: Filtered left-corner
258
+ <BLANKLINE>
259
+ Nr edges in chart: 28
260
+ (S
261
+ (NP I)
262
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
263
+ (S
264
+ (NP I)
265
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
266
+ <BLANKLINE>
267
+
268
+ The stepping chart parser
269
+
270
+ >>> nltk.parse.chart.demo(5, print_times=False, trace=1,
271
+ ... sent='I saw John with a dog', numparses=2)
272
+ * Sentence:
273
+ I saw John with a dog
274
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
275
+ <BLANKLINE>
276
+ * Strategy: Stepping (top-down vs bottom-up)
277
+ <BLANKLINE>
278
+ *** SWITCH TO TOP DOWN
279
+ |[------] . . . . .| [0:1] 'I'
280
+ |. [------] . . . .| [1:2] 'saw'
281
+ |. . [------] . . .| [2:3] 'John'
282
+ |. . . [------] . .| [3:4] 'with'
283
+ |. . . . [------] .| [4:5] 'a'
284
+ |. . . . . [------]| [5:6] 'dog'
285
+ |> . . . . . .| [0:0] S -> * NP VP
286
+ |> . . . . . .| [0:0] NP -> * NP PP
287
+ |> . . . . . .| [0:0] NP -> * Det Noun
288
+ |> . . . . . .| [0:0] NP -> * 'I'
289
+ |[------] . . . . .| [0:1] NP -> 'I' *
290
+ |[------> . . . . .| [0:1] S -> NP * VP
291
+ |[------> . . . . .| [0:1] NP -> NP * PP
292
+ |. > . . . . .| [1:1] VP -> * VP PP
293
+ |. > . . . . .| [1:1] VP -> * Verb NP
294
+ |. > . . . . .| [1:1] VP -> * Verb
295
+ |. > . . . . .| [1:1] Verb -> * 'saw'
296
+ |. [------] . . . .| [1:2] Verb -> 'saw' *
297
+ |. [------> . . . .| [1:2] VP -> Verb * NP
298
+ |. [------] . . . .| [1:2] VP -> Verb *
299
+ |[-------------] . . . .| [0:2] S -> NP VP *
300
+ |. [------> . . . .| [1:2] VP -> VP * PP
301
+ *** SWITCH TO BOTTOM UP
302
+ |. . > . . . .| [2:2] NP -> * 'John'
303
+ |. . . > . . .| [3:3] PP -> * 'with' NP
304
+ |. . . > . . .| [3:3] Prep -> * 'with'
305
+ |. . . . > . .| [4:4] Det -> * 'a'
306
+ |. . . . . > .| [5:5] Noun -> * 'dog'
307
+ |. . [------] . . .| [2:3] NP -> 'John' *
308
+ |. . . [------> . .| [3:4] PP -> 'with' * NP
309
+ |. . . [------] . .| [3:4] Prep -> 'with' *
310
+ |. . . . [------] .| [4:5] Det -> 'a' *
311
+ |. . . . . [------]| [5:6] Noun -> 'dog' *
312
+ |. [-------------] . . .| [1:3] VP -> Verb NP *
313
+ |[--------------------] . . .| [0:3] S -> NP VP *
314
+ |. [-------------> . . .| [1:3] VP -> VP * PP
315
+ |. . > . . . .| [2:2] S -> * NP VP
316
+ |. . > . . . .| [2:2] NP -> * NP PP
317
+ |. . . . > . .| [4:4] NP -> * Det Noun
318
+ |. . [------> . . .| [2:3] S -> NP * VP
319
+ |. . [------> . . .| [2:3] NP -> NP * PP
320
+ |. . . . [------> .| [4:5] NP -> Det * Noun
321
+ |. . . . [-------------]| [4:6] NP -> Det Noun *
322
+ |. . . [--------------------]| [3:6] PP -> 'with' NP *
323
+ |. [----------------------------------]| [1:6] VP -> VP PP *
324
+ *** SWITCH TO TOP DOWN
325
+ |. . > . . . .| [2:2] NP -> * Det Noun
326
+ |. . . . > . .| [4:4] NP -> * NP PP
327
+ |. . . > . . .| [3:3] VP -> * VP PP
328
+ |. . . > . . .| [3:3] VP -> * Verb NP
329
+ |. . . > . . .| [3:3] VP -> * Verb
330
+ |[=========================================]| [0:6] S -> NP VP *
331
+ |. [---------------------------------->| [1:6] VP -> VP * PP
332
+ |. . [---------------------------]| [2:6] NP -> NP PP *
333
+ |. . . . [------------->| [4:6] NP -> NP * PP
334
+ |. [----------------------------------]| [1:6] VP -> Verb NP *
335
+ |. . [--------------------------->| [2:6] S -> NP * VP
336
+ |. . [--------------------------->| [2:6] NP -> NP * PP
337
+ |[=========================================]| [0:6] S -> NP VP *
338
+ |. [---------------------------------->| [1:6] VP -> VP * PP
339
+ |. . . . . . >| [6:6] VP -> * VP PP
340
+ |. . . . . . >| [6:6] VP -> * Verb NP
341
+ |. . . . . . >| [6:6] VP -> * Verb
342
+ *** SWITCH TO BOTTOM UP
343
+ |. . . . > . .| [4:4] S -> * NP VP
344
+ |. . . . [------------->| [4:6] S -> NP * VP
345
+ *** SWITCH TO TOP DOWN
346
+ *** SWITCH TO BOTTOM UP
347
+ *** SWITCH TO TOP DOWN
348
+ *** SWITCH TO BOTTOM UP
349
+ *** SWITCH TO TOP DOWN
350
+ *** SWITCH TO BOTTOM UP
351
+ Nr edges in chart: 61
352
+ (S
353
+ (NP I)
354
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
355
+ (S
356
+ (NP I)
357
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
358
+ <BLANKLINE>
359
+
360
+
361
+ Unit tests for the Incremental Chart Parser class
362
+ -------------------------------------------------
363
+
364
+ The incremental chart parsers are defined in earleychart.py.
365
+ We use the demo() function for testing. We must turn off showing of times.
366
+
367
+ >>> import nltk
368
+
369
+ Earley Chart Parser
370
+
371
+ >>> nltk.parse.earleychart.demo(print_times=False, trace=1,
372
+ ... sent='I saw John with a dog', numparses=2)
373
+ * Sentence:
374
+ I saw John with a dog
375
+ ['I', 'saw', 'John', 'with', 'a', 'dog']
376
+ <BLANKLINE>
377
+ |. I . saw . John . with . a . dog .|
378
+ |[------] . . . . .| [0:1] 'I'
379
+ |. [------] . . . .| [1:2] 'saw'
380
+ |. . [------] . . .| [2:3] 'John'
381
+ |. . . [------] . .| [3:4] 'with'
382
+ |. . . . [------] .| [4:5] 'a'
383
+ |. . . . . [------]| [5:6] 'dog'
384
+ |> . . . . . .| [0:0] S -> * NP VP
385
+ |> . . . . . .| [0:0] NP -> * NP PP
386
+ |> . . . . . .| [0:0] NP -> * Det Noun
387
+ |> . . . . . .| [0:0] NP -> * 'I'
388
+ |[------] . . . . .| [0:1] NP -> 'I' *
389
+ |[------> . . . . .| [0:1] S -> NP * VP
390
+ |[------> . . . . .| [0:1] NP -> NP * PP
391
+ |. > . . . . .| [1:1] VP -> * VP PP
392
+ |. > . . . . .| [1:1] VP -> * Verb NP
393
+ |. > . . . . .| [1:1] VP -> * Verb
394
+ |. > . . . . .| [1:1] Verb -> * 'saw'
395
+ |. [------] . . . .| [1:2] Verb -> 'saw' *
396
+ |. [------> . . . .| [1:2] VP -> Verb * NP
397
+ |. [------] . . . .| [1:2] VP -> Verb *
398
+ |[-------------] . . . .| [0:2] S -> NP VP *
399
+ |. [------> . . . .| [1:2] VP -> VP * PP
400
+ |. . > . . . .| [2:2] NP -> * NP PP
401
+ |. . > . . . .| [2:2] NP -> * Det Noun
402
+ |. . > . . . .| [2:2] NP -> * 'John'
403
+ |. . [------] . . .| [2:3] NP -> 'John' *
404
+ |. [-------------] . . .| [1:3] VP -> Verb NP *
405
+ |. . [------> . . .| [2:3] NP -> NP * PP
406
+ |. . . > . . .| [3:3] PP -> * 'with' NP
407
+ |[--------------------] . . .| [0:3] S -> NP VP *
408
+ |. [-------------> . . .| [1:3] VP -> VP * PP
409
+ |. . . [------> . .| [3:4] PP -> 'with' * NP
410
+ |. . . . > . .| [4:4] NP -> * NP PP
411
+ |. . . . > . .| [4:4] NP -> * Det Noun
412
+ |. . . . > . .| [4:4] Det -> * 'a'
413
+ |. . . . [------] .| [4:5] Det -> 'a' *
414
+ |. . . . [------> .| [4:5] NP -> Det * Noun
415
+ |. . . . . > .| [5:5] Noun -> * 'dog'
416
+ |. . . . . [------]| [5:6] Noun -> 'dog' *
417
+ |. . . . [-------------]| [4:6] NP -> Det Noun *
418
+ |. . . [--------------------]| [3:6] PP -> 'with' NP *
419
+ |. . . . [------------->| [4:6] NP -> NP * PP
420
+ |. . [---------------------------]| [2:6] NP -> NP PP *
421
+ |. [----------------------------------]| [1:6] VP -> VP PP *
422
+ |[=========================================]| [0:6] S -> NP VP *
423
+ |. [---------------------------------->| [1:6] VP -> VP * PP
424
+ |. [----------------------------------]| [1:6] VP -> Verb NP *
425
+ |. . [--------------------------->| [2:6] NP -> NP * PP
426
+ |[=========================================]| [0:6] S -> NP VP *
427
+ |. [---------------------------------->| [1:6] VP -> VP * PP
428
+ (S
429
+ (NP I)
430
+ (VP (VP (Verb saw) (NP John)) (PP with (NP (Det a) (Noun dog)))))
431
+ (S
432
+ (NP I)
433
+ (VP (Verb saw) (NP (NP John) (PP with (NP (Det a) (Noun dog))))))
434
+
435
+
436
+ Unit tests for LARGE context-free grammars
437
+ ------------------------------------------
438
+
439
+ Reading the ATIS grammar.
440
+
441
+ >>> grammar = nltk.data.load('grammars/large_grammars/atis.cfg')
442
+ >>> grammar
443
+ <Grammar with 5517 productions>
444
+
445
+ Reading the test sentences.
446
+
447
+ >>> sentences = nltk.data.load('grammars/large_grammars/atis_sentences.txt')
448
+ >>> sentences = nltk.parse.util.extract_test_sentences(sentences)
449
+ >>> len(sentences)
450
+ 98
451
+ >>> testsentence = sentences[22]
452
+ >>> testsentence[0]
453
+ ['show', 'me', 'northwest', 'flights', 'to', 'detroit', '.']
454
+ >>> testsentence[1]
455
+ 17
456
+ >>> sentence = testsentence[0]
457
+
458
+ Now we test all different parsing strategies.
459
+ Note that the number of edges differ between the strategies.
460
+
461
+ Bottom-up parsing.
462
+
463
+ >>> parser = nltk.parse.BottomUpChartParser(grammar)
464
+ >>> chart = parser.chart_parse(sentence)
465
+ >>> print((chart.num_edges()))
466
+ 7661
467
+ >>> print((len(list(chart.parses(grammar.start())))))
468
+ 17
469
+
470
+ Bottom-up Left-corner parsing.
471
+
472
+ >>> parser = nltk.parse.BottomUpLeftCornerChartParser(grammar)
473
+ >>> chart = parser.chart_parse(sentence)
474
+ >>> print((chart.num_edges()))
475
+ 4986
476
+ >>> print((len(list(chart.parses(grammar.start())))))
477
+ 17
478
+
479
+ Left-corner parsing with bottom-up filter.
480
+
481
+ >>> parser = nltk.parse.LeftCornerChartParser(grammar)
482
+ >>> chart = parser.chart_parse(sentence)
483
+ >>> print((chart.num_edges()))
484
+ 1342
485
+ >>> print((len(list(chart.parses(grammar.start())))))
486
+ 17
487
+
488
+ Top-down parsing.
489
+
490
+ >>> parser = nltk.parse.TopDownChartParser(grammar)
491
+ >>> chart = parser.chart_parse(sentence)
492
+ >>> print((chart.num_edges()))
493
+ 28352
494
+ >>> print((len(list(chart.parses(grammar.start())))))
495
+ 17
496
+
497
+ Incremental Bottom-up parsing.
498
+
499
+ >>> parser = nltk.parse.IncrementalBottomUpChartParser(grammar)
500
+ >>> chart = parser.chart_parse(sentence)
501
+ >>> print((chart.num_edges()))
502
+ 7661
503
+ >>> print((len(list(chart.parses(grammar.start())))))
504
+ 17
505
+
506
+ Incremental Bottom-up Left-corner parsing.
507
+
508
+ >>> parser = nltk.parse.IncrementalBottomUpLeftCornerChartParser(grammar)
509
+ >>> chart = parser.chart_parse(sentence)
510
+ >>> print((chart.num_edges()))
511
+ 4986
512
+ >>> print((len(list(chart.parses(grammar.start())))))
513
+ 17
514
+
515
+ Incremental Left-corner parsing with bottom-up filter.
516
+
517
+ >>> parser = nltk.parse.IncrementalLeftCornerChartParser(grammar)
518
+ >>> chart = parser.chart_parse(sentence)
519
+ >>> print((chart.num_edges()))
520
+ 1342
521
+ >>> print((len(list(chart.parses(grammar.start())))))
522
+ 17
523
+
524
+ Incremental Top-down parsing.
525
+
526
+ >>> parser = nltk.parse.IncrementalTopDownChartParser(grammar)
527
+ >>> chart = parser.chart_parse(sentence)
528
+ >>> print((chart.num_edges()))
529
+ 28352
530
+ >>> print((len(list(chart.parses(grammar.start())))))
531
+ 17
532
+
533
+ Earley parsing. This is similar to the incremental top-down algorithm.
534
+
535
+ >>> parser = nltk.parse.EarleyChartParser(grammar)
536
+ >>> chart = parser.chart_parse(sentence)
537
+ >>> print((chart.num_edges()))
538
+ 28352
539
+ >>> print((len(list(chart.parses(grammar.start())))))
540
+ 17
541
+
542
+
543
+ Unit tests for the Probabilistic CFG class
544
+ ------------------------------------------
545
+
546
+ >>> from nltk.corpus import treebank
547
+ >>> from itertools import islice
548
+ >>> from nltk.grammar import PCFG, induce_pcfg
549
+ >>> toy_pcfg1 = PCFG.fromstring("""
550
+ ... S -> NP VP [1.0]
551
+ ... NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
552
+ ... Det -> 'the' [0.8] | 'my' [0.2]
553
+ ... N -> 'man' [0.5] | 'telescope' [0.5]
554
+ ... VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
555
+ ... V -> 'ate' [0.35] | 'saw' [0.65]
556
+ ... PP -> P NP [1.0]
557
+ ... P -> 'with' [0.61] | 'under' [0.39]
558
+ ... """)
559
+
560
+ >>> toy_pcfg2 = PCFG.fromstring("""
561
+ ... S -> NP VP [1.0]
562
+ ... VP -> V NP [.59]
563
+ ... VP -> V [.40]
564
+ ... VP -> VP PP [.01]
565
+ ... NP -> Det N [.41]
566
+ ... NP -> Name [.28]
567
+ ... NP -> NP PP [.31]
568
+ ... PP -> P NP [1.0]
569
+ ... V -> 'saw' [.21]
570
+ ... V -> 'ate' [.51]
571
+ ... V -> 'ran' [.28]
572
+ ... N -> 'boy' [.11]
573
+ ... N -> 'cookie' [.12]
574
+ ... N -> 'table' [.13]
575
+ ... N -> 'telescope' [.14]
576
+ ... N -> 'hill' [.5]
577
+ ... Name -> 'Jack' [.52]
578
+ ... Name -> 'Bob' [.48]
579
+ ... P -> 'with' [.61]
580
+ ... P -> 'under' [.39]
581
+ ... Det -> 'the' [.41]
582
+ ... Det -> 'a' [.31]
583
+ ... Det -> 'my' [.28]
584
+ ... """)
585
+
586
+ Create a set of PCFG productions.
587
+
588
+ >>> grammar = PCFG.fromstring("""
589
+ ... A -> B B [.3] | C B C [.7]
590
+ ... B -> B D [.5] | C [.5]
591
+ ... C -> 'a' [.1] | 'b' [0.9]
592
+ ... D -> 'b' [1.0]
593
+ ... """)
594
+ >>> prod = grammar.productions()[0]
595
+ >>> prod
596
+ A -> B B [0.3]
597
+
598
+ >>> prod.lhs()
599
+ A
600
+
601
+ >>> prod.rhs()
602
+ (B, B)
603
+
604
+ >>> print((prod.prob()))
605
+ 0.3
606
+
607
+ >>> grammar.start()
608
+ A
609
+
610
+ >>> grammar.productions()
611
+ [A -> B B [0.3], A -> C B C [0.7], B -> B D [0.5], B -> C [0.5], C -> 'a' [0.1], C -> 'b' [0.9], D -> 'b' [1.0]]
612
+
613
+ Induce some productions using parsed Treebank data.
614
+
615
+ >>> productions = []
616
+ >>> for fileid in treebank.fileids()[:2]:
617
+ ... for t in treebank.parsed_sents(fileid):
618
+ ... productions += t.productions()
619
+
620
+ >>> grammar = induce_pcfg(S, productions)
621
+ >>> grammar
622
+ <Grammar with 71 productions>
623
+
624
+ >>> sorted(grammar.productions(lhs=Nonterminal('PP')))[:2]
625
+ [PP -> IN NP [1.0]]
626
+ >>> sorted(grammar.productions(lhs=Nonterminal('NNP')))[:2]
627
+ [NNP -> 'Agnew' [0.0714286], NNP -> 'Consolidated' [0.0714286]]
628
+ >>> sorted(grammar.productions(lhs=Nonterminal('JJ')))[:2]
629
+ [JJ -> 'British' [0.142857], JJ -> 'former' [0.142857]]
630
+ >>> sorted(grammar.productions(lhs=Nonterminal('NP')))[:2]
631
+ [NP -> CD NNS [0.133333], NP -> DT JJ JJ NN [0.0666667]]
632
+
633
+ Unit tests for the Probabilistic Chart Parse classes
634
+ ----------------------------------------------------
635
+
636
+ >>> tokens = "Jack saw Bob with my cookie".split()
637
+ >>> grammar = toy_pcfg2
638
+ >>> print(grammar)
639
+ Grammar with 23 productions (start state = S)
640
+ S -> NP VP [1.0]
641
+ VP -> V NP [0.59]
642
+ VP -> V [0.4]
643
+ VP -> VP PP [0.01]
644
+ NP -> Det N [0.41]
645
+ NP -> Name [0.28]
646
+ NP -> NP PP [0.31]
647
+ PP -> P NP [1.0]
648
+ V -> 'saw' [0.21]
649
+ V -> 'ate' [0.51]
650
+ V -> 'ran' [0.28]
651
+ N -> 'boy' [0.11]
652
+ N -> 'cookie' [0.12]
653
+ N -> 'table' [0.13]
654
+ N -> 'telescope' [0.14]
655
+ N -> 'hill' [0.5]
656
+ Name -> 'Jack' [0.52]
657
+ Name -> 'Bob' [0.48]
658
+ P -> 'with' [0.61]
659
+ P -> 'under' [0.39]
660
+ Det -> 'the' [0.41]
661
+ Det -> 'a' [0.31]
662
+ Det -> 'my' [0.28]
663
+
664
+ Create several parsers using different queuing strategies and show the
665
+ resulting parses.
666
+
667
+ >>> from nltk.parse import pchart
668
+
669
+ >>> parser = pchart.InsideChartParser(grammar)
670
+ >>> for t in parser.parse(tokens):
671
+ ... print(t)
672
+ (S
673
+ (NP (Name Jack))
674
+ (VP
675
+ (V saw)
676
+ (NP
677
+ (NP (Name Bob))
678
+ (PP (P with) (NP (Det my) (N cookie)))))) (p=6.31607e-06)
679
+ (S
680
+ (NP (Name Jack))
681
+ (VP
682
+ (VP (V saw) (NP (Name Bob)))
683
+ (PP (P with) (NP (Det my) (N cookie))))) (p=2.03744e-07)
684
+
685
+ >>> parser = pchart.RandomChartParser(grammar)
686
+ >>> for t in parser.parse(tokens):
687
+ ... print(t)
688
+ (S
689
+ (NP (Name Jack))
690
+ (VP
691
+ (V saw)
692
+ (NP
693
+ (NP (Name Bob))
694
+ (PP (P with) (NP (Det my) (N cookie)))))) (p=6.31607e-06)
695
+ (S
696
+ (NP (Name Jack))
697
+ (VP
698
+ (VP (V saw) (NP (Name Bob)))
699
+ (PP (P with) (NP (Det my) (N cookie))))) (p=2.03744e-07)
700
+
701
+ >>> parser = pchart.UnsortedChartParser(grammar)
702
+ >>> for t in parser.parse(tokens):
703
+ ... print(t)
704
+ (S
705
+ (NP (Name Jack))
706
+ (VP
707
+ (V saw)
708
+ (NP
709
+ (NP (Name Bob))
710
+ (PP (P with) (NP (Det my) (N cookie)))))) (p=6.31607e-06)
711
+ (S
712
+ (NP (Name Jack))
713
+ (VP
714
+ (VP (V saw) (NP (Name Bob)))
715
+ (PP (P with) (NP (Det my) (N cookie))))) (p=2.03744e-07)
716
+
717
+ >>> parser = pchart.LongestChartParser(grammar)
718
+ >>> for t in parser.parse(tokens):
719
+ ... print(t)
720
+ (S
721
+ (NP (Name Jack))
722
+ (VP
723
+ (V saw)
724
+ (NP
725
+ (NP (Name Bob))
726
+ (PP (P with) (NP (Det my) (N cookie)))))) (p=6.31607e-06)
727
+ (S
728
+ (NP (Name Jack))
729
+ (VP
730
+ (VP (V saw) (NP (Name Bob)))
731
+ (PP (P with) (NP (Det my) (N cookie))))) (p=2.03744e-07)
732
+
733
+ >>> parser = pchart.InsideChartParser(grammar, beam_size = len(tokens)+1)
734
+ >>> for t in parser.parse(tokens):
735
+ ... print(t)
736
+
737
+
738
+ Unit tests for the Viterbi Parse classes
739
+ ----------------------------------------
740
+
741
+ >>> from nltk.parse import ViterbiParser
742
+ >>> tokens = "Jack saw Bob with my cookie".split()
743
+ >>> grammar = toy_pcfg2
744
+
745
+ Parse the tokenized sentence.
746
+
747
+ >>> parser = ViterbiParser(grammar)
748
+ >>> for t in parser.parse(tokens):
749
+ ... print(t)
750
+ (S
751
+ (NP (Name Jack))
752
+ (VP
753
+ (V saw)
754
+ (NP
755
+ (NP (Name Bob))
756
+ (PP (P with) (NP (Det my) (N cookie)))))) (p=6.31607e-06)
757
+
758
+
759
+ Unit tests for the FeatStructNonterminal class
760
+ ----------------------------------------------
761
+
762
+ >>> from nltk.grammar import FeatStructNonterminal
763
+ >>> FeatStructNonterminal(
764
+ ... pos='n', agr=FeatStructNonterminal(number='pl', gender='f'))
765
+ [agr=[gender='f', number='pl'], pos='n']
766
+
767
+ >>> FeatStructNonterminal('VP[+fin]/NP[+pl]')
768
+ VP[+fin]/NP[+pl]
769
+
770
+
771
+ Tracing the Feature Chart Parser
772
+ --------------------------------
773
+
774
+ We use the featurechart.demo() function for tracing the Feature Chart Parser.
775
+
776
+ >>> nltk.parse.featurechart.demo(print_times=False,
777
+ ... print_grammar=True,
778
+ ... parser=nltk.parse.featurechart.FeatureChartParser,
779
+ ... sent='I saw John with a dog')
780
+ <BLANKLINE>
781
+ Grammar with 18 productions (start state = S[])
782
+ S[] -> NP[] VP[]
783
+ PP[] -> Prep[] NP[]
784
+ NP[] -> NP[] PP[]
785
+ VP[] -> VP[] PP[]
786
+ VP[] -> Verb[] NP[]
787
+ VP[] -> Verb[]
788
+ NP[] -> Det[pl=?x] Noun[pl=?x]
789
+ NP[] -> 'John'
790
+ NP[] -> 'I'
791
+ Det[] -> 'the'
792
+ Det[] -> 'my'
793
+ Det[-pl] -> 'a'
794
+ Noun[-pl] -> 'dog'
795
+ Noun[-pl] -> 'cookie'
796
+ Verb[] -> 'ate'
797
+ Verb[] -> 'saw'
798
+ Prep[] -> 'with'
799
+ Prep[] -> 'under'
800
+ <BLANKLINE>
801
+ * FeatureChartParser
802
+ Sentence: I saw John with a dog
803
+ |.I.s.J.w.a.d.|
804
+ |[-] . . . . .| [0:1] 'I'
805
+ |. [-] . . . .| [1:2] 'saw'
806
+ |. . [-] . . .| [2:3] 'John'
807
+ |. . . [-] . .| [3:4] 'with'
808
+ |. . . . [-] .| [4:5] 'a'
809
+ |. . . . . [-]| [5:6] 'dog'
810
+ |[-] . . . . .| [0:1] NP[] -> 'I' *
811
+ |[-> . . . . .| [0:1] S[] -> NP[] * VP[] {}
812
+ |[-> . . . . .| [0:1] NP[] -> NP[] * PP[] {}
813
+ |. [-] . . . .| [1:2] Verb[] -> 'saw' *
814
+ |. [-> . . . .| [1:2] VP[] -> Verb[] * NP[] {}
815
+ |. [-] . . . .| [1:2] VP[] -> Verb[] *
816
+ |. [-> . . . .| [1:2] VP[] -> VP[] * PP[] {}
817
+ |[---] . . . .| [0:2] S[] -> NP[] VP[] *
818
+ |. . [-] . . .| [2:3] NP[] -> 'John' *
819
+ |. . [-> . . .| [2:3] S[] -> NP[] * VP[] {}
820
+ |. . [-> . . .| [2:3] NP[] -> NP[] * PP[] {}
821
+ |. [---] . . .| [1:3] VP[] -> Verb[] NP[] *
822
+ |. [---> . . .| [1:3] VP[] -> VP[] * PP[] {}
823
+ |[-----] . . .| [0:3] S[] -> NP[] VP[] *
824
+ |. . . [-] . .| [3:4] Prep[] -> 'with' *
825
+ |. . . [-> . .| [3:4] PP[] -> Prep[] * NP[] {}
826
+ |. . . . [-] .| [4:5] Det[-pl] -> 'a' *
827
+ |. . . . [-> .| [4:5] NP[] -> Det[pl=?x] * Noun[pl=?x] {?x: False}
828
+ |. . . . . [-]| [5:6] Noun[-pl] -> 'dog' *
829
+ |. . . . [---]| [4:6] NP[] -> Det[-pl] Noun[-pl] *
830
+ |. . . . [--->| [4:6] S[] -> NP[] * VP[] {}
831
+ |. . . . [--->| [4:6] NP[] -> NP[] * PP[] {}
832
+ |. . . [-----]| [3:6] PP[] -> Prep[] NP[] *
833
+ |. . [-------]| [2:6] NP[] -> NP[] PP[] *
834
+ |. [---------]| [1:6] VP[] -> VP[] PP[] *
835
+ |. [--------->| [1:6] VP[] -> VP[] * PP[] {}
836
+ |[===========]| [0:6] S[] -> NP[] VP[] *
837
+ |. . [------->| [2:6] S[] -> NP[] * VP[] {}
838
+ |. . [------->| [2:6] NP[] -> NP[] * PP[] {}
839
+ |. [---------]| [1:6] VP[] -> Verb[] NP[] *
840
+ |. [--------->| [1:6] VP[] -> VP[] * PP[] {}
841
+ |[===========]| [0:6] S[] -> NP[] VP[] *
842
+ (S[]
843
+ (NP[] I)
844
+ (VP[]
845
+ (VP[] (Verb[] saw) (NP[] John))
846
+ (PP[] (Prep[] with) (NP[] (Det[-pl] a) (Noun[-pl] dog)))))
847
+ (S[]
848
+ (NP[] I)
849
+ (VP[]
850
+ (Verb[] saw)
851
+ (NP[]
852
+ (NP[] John)
853
+ (PP[] (Prep[] with) (NP[] (Det[-pl] a) (Noun[-pl] dog))))))
854
+
855
+
856
+ Unit tests for the Feature Chart Parser classes
857
+ -----------------------------------------------
858
+
859
+ The list of parsers we want to test.
860
+
861
+ >>> parsers = [nltk.parse.featurechart.FeatureChartParser,
862
+ ... nltk.parse.featurechart.FeatureTopDownChartParser,
863
+ ... nltk.parse.featurechart.FeatureBottomUpChartParser,
864
+ ... nltk.parse.featurechart.FeatureBottomUpLeftCornerChartParser,
865
+ ... nltk.parse.earleychart.FeatureIncrementalChartParser,
866
+ ... nltk.parse.earleychart.FeatureEarleyChartParser,
867
+ ... nltk.parse.earleychart.FeatureIncrementalTopDownChartParser,
868
+ ... nltk.parse.earleychart.FeatureIncrementalBottomUpChartParser,
869
+ ... nltk.parse.earleychart.FeatureIncrementalBottomUpLeftCornerChartParser,
870
+ ... ]
871
+
872
+ A helper function that tests each parser on the given grammar and sentence.
873
+ We check that the number of trees are correct, and that all parsers
874
+ return the same trees. Otherwise an error is printed.
875
+
876
+ >>> def unittest(grammar, sentence, nr_trees):
877
+ ... sentence = sentence.split()
878
+ ... trees = None
879
+ ... for P in parsers:
880
+ ... result = P(grammar).parse(sentence)
881
+ ... result = set(tree.freeze() for tree in result)
882
+ ... if len(result) != nr_trees:
883
+ ... print("Wrong nr of trees:", len(result))
884
+ ... elif trees is None:
885
+ ... trees = result
886
+ ... elif result != trees:
887
+ ... print("Trees differ for parser:", P.__name__)
888
+
889
+ The demo grammar from before, with an ambiguous sentence.
890
+
891
+ >>> isawjohn = nltk.parse.featurechart.demo_grammar()
892
+ >>> unittest(isawjohn, "I saw John with a dog with my cookie", 5)
893
+
894
+ This grammar tests that variables in different grammar rules are renamed
895
+ before unification. (The problematic variable is in this case ?X).
896
+
897
+ >>> whatwasthat = nltk.grammar.FeatureGrammar.fromstring('''
898
+ ... S[] -> NP[num=?N] VP[num=?N, slash=?X]
899
+ ... NP[num=?X] -> "what"
900
+ ... NP[num=?X] -> "that"
901
+ ... VP[num=?P, slash=none] -> V[num=?P] NP[]
902
+ ... V[num=sg] -> "was"
903
+ ... ''')
904
+ >>> unittest(whatwasthat, "what was that", 1)
905
+
906
+ This grammar tests that the same rule can be used in different places
907
+ in another rule, and that the variables are properly renamed.
908
+
909
+ >>> thislovesthat = nltk.grammar.FeatureGrammar.fromstring('''
910
+ ... S[] -> NP[case=nom] V[] NP[case=acc]
911
+ ... NP[case=?X] -> Pron[case=?X]
912
+ ... Pron[] -> "this"
913
+ ... Pron[] -> "that"
914
+ ... V[] -> "loves"
915
+ ... ''')
916
+ >>> unittest(thislovesthat, "this loves that", 1)
917
+
918
+
919
+ Tests for loading feature grammar files
920
+ ---------------------------------------
921
+
922
+ Alternative 1: first load the grammar, then create the parser.
923
+
924
+ >>> fcfg = nltk.data.load('grammars/book_grammars/feat0.fcfg')
925
+ >>> fcp1 = nltk.parse.FeatureChartParser(fcfg)
926
+ >>> print((type(fcp1)))
927
+ <class 'nltk.parse.featurechart.FeatureChartParser'>
928
+
929
+ Alternative 2: directly load the parser.
930
+
931
+ >>> fcp2 = nltk.parse.load_parser('grammars/book_grammars/feat0.fcfg')
932
+ >>> print((type(fcp2)))
933
+ <class 'nltk.parse.featurechart.FeatureChartParser'>
llmeval-env/lib/python3.10/site-packages/nltk/test/portuguese_en.doctest ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==================================
5
+ Examples for Portuguese Processing
6
+ ==================================
7
+
8
+ This HOWTO contains a variety of examples relating to the Portuguese language.
9
+ It is intended to be read in conjunction with the NLTK book
10
+ (``https://www.nltk.org/book/``). For instructions on running the Python
11
+ interpreter, please see the section *Getting Started with Python*, in Chapter 1.
12
+
13
+ --------------------------------------------
14
+ Python Programming, with Portuguese Examples
15
+ --------------------------------------------
16
+
17
+ Chapter 1 of the NLTK book contains many elementary programming examples, all
18
+ with English texts. In this section, we'll see some corresponding examples
19
+ using Portuguese. Please refer to the chapter for full discussion. *Vamos!*
20
+
21
+ >>> from nltk.test.portuguese_en_fixt import setup_module
22
+ >>> setup_module()
23
+
24
+ >>> from nltk.examples.pt import *
25
+ *** Introductory Examples for the NLTK Book ***
26
+ Loading ptext1, ... and psent1, ...
27
+ Type the name of the text or sentence to view it.
28
+ Type: 'texts()' or 'sents()' to list the materials.
29
+ ptext1: Memórias Póstumas de Brás Cubas (1881)
30
+ ptext2: Dom Casmurro (1899)
31
+ ptext3: Gênesis
32
+ ptext4: Folha de Sao Paulo (1994)
33
+
34
+
35
+ Any time we want to find out about these texts, we just have
36
+ to enter their names at the Python prompt:
37
+
38
+ >>> ptext2
39
+ <Text: Dom Casmurro (1899)>
40
+
41
+ Searching Text
42
+ --------------
43
+
44
+ A concordance permits us to see words in context.
45
+
46
+ >>> ptext1.concordance('olhos')
47
+ Building index...
48
+ Displaying 25 of 138 matches:
49
+ De pé , à cabeceira da cama , com os olhos estúpidos , a boca entreaberta , a t
50
+ orelhas . Pela minha parte fechei os olhos e deixei - me ir à ventura . Já agor
51
+ xões de cérebro enfermo . Como ia de olhos fechados , não via o caminho ; lembr
52
+ gelos eternos . Com efeito , abri os olhos e vi que o meu animal galopava numa
53
+ me apareceu então , fitando - me uns olhos rutilantes como o sol . Tudo nessa f
54
+ mim mesmo . Então , encarei - a com olhos súplices , e pedi mais alguns anos .
55
+ ...
56
+
57
+ For a given word, we can find words with a similar text distribution:
58
+
59
+ >>> ptext1.similar('chegar')
60
+ Building word-context index...
61
+ acabada acudir aludir avistar bramanismo casamento cheguei com contar
62
+ contrário corpo dali deixei desferirem dizer fazer filhos já leitor lhe
63
+ >>> ptext3.similar('chegar')
64
+ Building word-context index...
65
+ achar alumiar arrombar destruir governar guardar ir lavrar passar que
66
+ toda tomar ver vir
67
+
68
+ We can search for the statistically significant collocations in a text:
69
+
70
+ >>> ptext1.collocations()
71
+ Building collocations list
72
+ Quincas Borba; Lobo Neves; alguma coisa; Brás Cubas; meu pai; dia
73
+ seguinte; não sei; Meu pai; alguns instantes; outra vez; outra coisa;
74
+ por exemplo; mim mesmo; coisa nenhuma; mesma coisa; não era; dias
75
+ depois; Passeio Público; olhar para; das coisas
76
+
77
+ We can search for words in context, with the help of *regular expressions*, e.g.:
78
+
79
+ >>> ptext1.findall("<olhos> (<.*>)")
80
+ estúpidos; e; fechados; rutilantes; súplices; a; do; babavam;
81
+ na; moles; se; da; umas; espraiavam; chamejantes; espetados;
82
+ ...
83
+
84
+ We can automatically generate random text based on a given text, e.g.:
85
+
86
+ >>> ptext3.generate() # doctest: +SKIP
87
+ No princípio , criou Deus os abençoou , dizendo : Onde { estão } e até
88
+ à ave dos céus , { que } será . Disse mais Abrão : Dá - me a mulher
89
+ que tomaste ; porque daquele poço Eseque , { tinha .} E disse : Não
90
+ poderemos descer ; mas , do campo ainda não estava na casa do teu
91
+ pescoço . E viveu Serugue , depois Simeão e Levi { são } estes ? E o
92
+ varão , porque habitava na terra de Node , da mão de Esaú : Jeús ,
93
+ Jalão e Corá
94
+
95
+ Texts as List of Words
96
+ ----------------------
97
+
98
+ A few sentences have been defined for you.
99
+
100
+ >>> psent1
101
+ ['o', 'amor', 'da', 'gl\xf3ria', 'era', 'a', 'coisa', 'mais',
102
+ 'verdadeiramente', 'humana', 'que', 'h\xe1', 'no', 'homem', ',',
103
+ 'e', ',', 'conseq\xfcentemente', ',', 'a', 'sua', 'mais',
104
+ 'genu\xedna', 'fei\xe7\xe3o', '.']
105
+ >>>
106
+
107
+ Notice that the sentence has been *tokenized*. Each token is
108
+ represented as a string, represented using quotes, e.g. ``'coisa'``.
109
+ Some strings contain special characters, e.g. ``\xf3``,
110
+ the internal representation for ó.
111
+ The tokens are combined in the form of a *list*. How long is this list?
112
+
113
+ >>> len(psent1)
114
+ 25
115
+ >>>
116
+
117
+ What is the vocabulary of this sentence?
118
+
119
+ >>> sorted(set(psent1))
120
+ [',', '.', 'a', 'amor', 'coisa', 'conseqüentemente', 'da', 'e', 'era',
121
+ 'feição', 'genuína', 'glória', 'homem', 'humana', 'há', 'mais', 'no',
122
+ 'o', 'que', 'sua', 'verdadeiramente']
123
+ >>>
124
+
125
+ Let's iterate over each item in ``psent2``, and print information for each:
126
+
127
+ >>> for w in psent2:
128
+ ... print(w, len(w), w[-1])
129
+ ...
130
+ Não 3 o
131
+ consultes 9 s
132
+ dicionários 11 s
133
+ . 1 .
134
+
135
+ Observe how we make a human-readable version of a string, using ``decode()``.
136
+ Also notice that we accessed the last character of a string ``w`` using ``w[-1]``.
137
+
138
+ We just saw a ``for`` loop above. Another useful control structure is a
139
+ *list comprehension*.
140
+
141
+ >>> [w.upper() for w in psent2]
142
+ ['N\xc3O', 'CONSULTES', 'DICION\xc1RIOS', '.']
143
+ >>> [w for w in psent1 if w.endswith('a')]
144
+ ['da', 'gl\xf3ria', 'era', 'a', 'coisa', 'humana', 'a', 'sua', 'genu\xedna']
145
+ >>> [w for w in ptext4 if len(w) > 15]
146
+ ['norte-irlandeses', 'pan-nacionalismo', 'predominatemente', 'primeiro-ministro',
147
+ 'primeiro-ministro', 'irlandesa-americana', 'responsabilidades', 'significativamente']
148
+
149
+ We can examine the relative frequency of words in a text, using ``FreqDist``:
150
+
151
+ >>> fd1 = FreqDist(ptext1)
152
+ >>> fd1
153
+ <FreqDist with 10848 samples and 77098 outcomes>
154
+ >>> fd1['olhos']
155
+ 137
156
+ >>> fd1.max()
157
+ ','
158
+ >>> fd1.samples()[:100]
159
+ [',', '.', 'a', 'que', 'de', 'e', '-', 'o', ';', 'me', 'um', 'n\xe3o',
160
+ '\x97', 'se', 'do', 'da', 'uma', 'com', 'os', '\xe9', 'era', 'as', 'eu',
161
+ 'lhe', 'ao', 'em', 'para', 'mas', '...', '!', '\xe0', 'na', 'mais', '?',
162
+ 'no', 'como', 'por', 'N\xe3o', 'dos', 'o', 'ele', ':', 'Virg\xedlia',
163
+ 'me', 'disse', 'minha', 'das', 'O', '/', 'A', 'CAP\xcdTULO', 'muito',
164
+ 'depois', 'coisa', 'foi', 'sem', 'olhos', 'ela', 'nos', 'tinha', 'nem',
165
+ 'E', 'outro', 'vida', 'nada', 'tempo', 'menos', 'outra', 'casa', 'homem',
166
+ 'porque', 'quando', 'mim', 'mesmo', 'ser', 'pouco', 'estava', 'dia',
167
+ 't\xe3o', 'tudo', 'Mas', 'at\xe9', 'D', 'ainda', 's\xf3', 'alguma',
168
+ 'la', 'vez', 'anos', 'h\xe1', 'Era', 'pai', 'esse', 'lo', 'dizer', 'assim',
169
+ 'ent\xe3o', 'dizia', 'aos', 'Borba']
170
+
171
+ ---------------
172
+ Reading Corpora
173
+ ---------------
174
+
175
+ Accessing the Machado Text Corpus
176
+ ---------------------------------
177
+
178
+ NLTK includes the complete works of Machado de Assis.
179
+
180
+ >>> from nltk.corpus import machado
181
+ >>> machado.fileids()
182
+ ['contos/macn001.txt', 'contos/macn002.txt', 'contos/macn003.txt', ...]
183
+
184
+ Each file corresponds to one of the works of Machado de Assis. To see a complete
185
+ list of works, you can look at the corpus README file: ``print machado.readme()``.
186
+ Let's access the text of the *Posthumous Memories of Brás Cubas*.
187
+
188
+ We can access the text as a list of characters, and access 200 characters starting
189
+ from position 10,000.
190
+
191
+ >>> raw_text = machado.raw('romance/marm05.txt')
192
+ >>> raw_text[10000:10200]
193
+ u', primou no\nEstado, e foi um dos amigos particulares do vice-rei Conde
194
+ da Cunha.\n\nComo este apelido de Cubas lhe\ncheirasse excessivamente a
195
+ tanoaria, alegava meu pai, bisneto de Dami\xe3o, que o\ndito ape'
196
+
197
+ However, this is not a very useful way to work with a text. We generally think
198
+ of a text as a sequence of words and punctuation, not characters:
199
+
200
+ >>> text1 = machado.words('romance/marm05.txt')
201
+ >>> text1
202
+ ['Romance', ',', 'Mem\xf3rias', 'P\xf3stumas', 'de', ...]
203
+ >>> len(text1)
204
+ 77098
205
+ >>> len(set(text1))
206
+ 10848
207
+
208
+ Here's a program that finds the most common ngrams that contain a
209
+ particular target word.
210
+
211
+ >>> from nltk import ngrams, FreqDist
212
+ >>> target_word = 'olhos'
213
+ >>> fd = FreqDist(ng
214
+ ... for ng in ngrams(text1, 5)
215
+ ... if target_word in ng)
216
+ >>> for hit in fd.samples():
217
+ ... print(' '.join(hit))
218
+ ...
219
+ , com os olhos no
220
+ com os olhos no ar
221
+ com os olhos no chão
222
+ e todos com os olhos
223
+ me estar com os olhos
224
+ os olhos estúpidos , a
225
+ os olhos na costura ,
226
+ os olhos no ar ,
227
+ , com os olhos espetados
228
+ , com os olhos estúpidos
229
+ , com os olhos fitos
230
+ , com os olhos naquele
231
+ , com os olhos para
232
+
233
+
234
+ Accessing the MacMorpho Tagged Corpus
235
+ -------------------------------------
236
+
237
+ NLTK includes the MAC-MORPHO Brazilian Portuguese POS-tagged news text,
238
+ with over a million words of
239
+ journalistic texts extracted from ten sections of
240
+ the daily newspaper *Folha de Sao Paulo*, 1994.
241
+
242
+ We can access this corpus as a sequence of words or tagged words as follows:
243
+
244
+ >>> import nltk.corpus
245
+ >>> nltk.corpus.mac_morpho.words()
246
+ ['Jersei', 'atinge', 'm\xe9dia', 'de', 'Cr$', '1,4', ...]
247
+ >>> nltk.corpus.mac_morpho.sents()
248
+ [['Jersei', 'atinge', 'm\xe9dia', 'de', 'Cr$', '1,4', 'milh\xe3o',
249
+ 'em', 'a', 'venda', 'de', 'a', 'Pinhal', 'em', 'S\xe3o', 'Paulo'],
250
+ ['Programe', 'sua', 'viagem', 'a', 'a', 'Exposi\xe7\xe3o', 'Nacional',
251
+ 'do', 'Zeb', ',', 'que', 'come\xe7a', 'dia', '25'], ...]
252
+ >>> nltk.corpus.mac_morpho.tagged_words()
253
+ [('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ...]
254
+
255
+ We can also access it in sentence chunks.
256
+
257
+ >>> nltk.corpus.mac_morpho.tagged_sents()
258
+ [[('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ('de', 'PREP'),
259
+ ('Cr$', 'CUR'), ('1,4', 'NUM'), ('milh\xe3o', 'N'), ('em', 'PREP|+'),
260
+ ('a', 'ART'), ('venda', 'N'), ('de', 'PREP|+'), ('a', 'ART'),
261
+ ('Pinhal', 'NPROP'), ('em', 'PREP'), ('S\xe3o', 'NPROP'),
262
+ ('Paulo', 'NPROP')],
263
+ [('Programe', 'V'), ('sua', 'PROADJ'), ('viagem', 'N'), ('a', 'PREP|+'),
264
+ ('a', 'ART'), ('Exposi\xe7\xe3o', 'NPROP'), ('Nacional', 'NPROP'),
265
+ ('do', 'NPROP'), ('Zeb', 'NPROP'), (',', ','), ('que', 'PRO-KS-REL'),
266
+ ('come\xe7a', 'V'), ('dia', 'N'), ('25', 'N|AP')], ...]
267
+
268
+ This data can be used to train taggers (examples below for the Floresta treebank).
269
+
270
+ Accessing the Floresta Portuguese Treebank
271
+ ------------------------------------------
272
+
273
+ The NLTK data distribution includes the
274
+ "Floresta Sinta(c)tica Corpus" version 7.4, available from
275
+ ``https://www.linguateca.pt/Floresta/``.
276
+
277
+ We can access this corpus as a sequence of words or tagged words as follows:
278
+
279
+ >>> from nltk.corpus import floresta
280
+ >>> floresta.words()
281
+ ['Um', 'revivalismo', 'refrescante', 'O', '7_e_Meio', ...]
282
+ >>> floresta.tagged_words()
283
+ [('Um', '>N+art'), ('revivalismo', 'H+n'), ...]
284
+
285
+ The tags consist of some syntactic information, followed by a plus sign,
286
+ followed by a conventional part-of-speech tag. Let's strip off the material before
287
+ the plus sign:
288
+
289
+ >>> def simplify_tag(t):
290
+ ... if "+" in t:
291
+ ... return t[t.index("+")+1:]
292
+ ... else:
293
+ ... return t
294
+ >>> twords = floresta.tagged_words()
295
+ >>> twords = [(w.lower(), simplify_tag(t)) for (w,t) in twords]
296
+ >>> twords[:10]
297
+ [('um', 'art'), ('revivalismo', 'n'), ('refrescante', 'adj'), ('o', 'art'), ('7_e_meio', 'prop'),
298
+ ('\xe9', 'v-fin'), ('um', 'art'), ('ex-libris', 'n'), ('de', 'prp'), ('a', 'art')]
299
+
300
+ Pretty printing the tagged words:
301
+
302
+ >>> print(' '.join(word + '/' + tag for (word, tag) in twords[:10]))
303
+ um/art revivalismo/n refrescante/adj o/art 7_e_meio/prop é/v-fin um/art ex-libris/n de/prp a/art
304
+
305
+ Count the word tokens and types, and determine the most common word:
306
+
307
+ >>> words = floresta.words()
308
+ >>> len(words)
309
+ 211852
310
+ >>> fd = nltk.FreqDist(words)
311
+ >>> len(fd)
312
+ 29421
313
+ >>> fd.max()
314
+ 'de'
315
+
316
+ List the 20 most frequent tags, in order of decreasing frequency:
317
+
318
+ >>> tags = [simplify_tag(tag) for (word,tag) in floresta.tagged_words()]
319
+ >>> fd = nltk.FreqDist(tags)
320
+ >>> fd.keys()[:20]
321
+ ['n', 'prp', 'art', 'v-fin', ',', 'prop', 'adj', 'adv', '.',
322
+ 'conj-c', 'v-inf', 'pron-det', 'v-pcp', 'num', 'pron-indp',
323
+ 'pron-pers', '\xab', '\xbb', 'conj-s', '}']
324
+
325
+ We can also access the corpus grouped by sentence:
326
+
327
+ >>> floresta.sents()
328
+ [['Um', 'revivalismo', 'refrescante'],
329
+ ['O', '7_e_Meio', '\xe9', 'um', 'ex-libris', 'de', 'a', 'noite',
330
+ 'algarvia', '.'], ...]
331
+ >>> floresta.tagged_sents()
332
+ [[('Um', '>N+art'), ('revivalismo', 'H+n'), ('refrescante', 'N<+adj')],
333
+ [('O', '>N+art'), ('7_e_Meio', 'H+prop'), ('\xe9', 'P+v-fin'),
334
+ ('um', '>N+art'), ('ex-libris', 'H+n'), ('de', 'H+prp'),
335
+ ('a', '>N+art'), ('noite', 'H+n'), ('algarvia', 'N<+adj'), ('.', '.')],
336
+ ...]
337
+ >>> floresta.parsed_sents()
338
+ [Tree('UTT+np', [Tree('>N+art', ['Um']), Tree('H+n', ['revivalismo']),
339
+ Tree('N<+adj', ['refrescante'])]),
340
+ Tree('STA+fcl',
341
+ [Tree('SUBJ+np', [Tree('>N+art', ['O']),
342
+ Tree('H+prop', ['7_e_Meio'])]),
343
+ Tree('P+v-fin', ['\xe9']),
344
+ Tree('SC+np',
345
+ [Tree('>N+art', ['um']),
346
+ Tree('H+n', ['ex-libris']),
347
+ Tree('N<+pp', [Tree('H+prp', ['de']),
348
+ Tree('P<+np', [Tree('>N+art', ['a']),
349
+ Tree('H+n', ['noite']),
350
+ Tree('N<+adj', ['algarvia'])])])]),
351
+ Tree('.', ['.'])]), ...]
352
+
353
+ To view a parse tree, use the ``draw()`` method, e.g.:
354
+
355
+ >>> psents = floresta.parsed_sents()
356
+ >>> psents[5].draw() # doctest: +SKIP
357
+
358
+ Character Encodings
359
+ -------------------
360
+
361
+ Python understands the common character encoding used for Portuguese, ISO 8859-1 (ISO Latin 1).
362
+
363
+ >>> import os, nltk.test
364
+ >>> testdir = os.path.split(nltk.test.__file__)[0]
365
+ >>> text = open(os.path.join(testdir, 'floresta.txt'), 'rb').read().decode('ISO 8859-1')
366
+ >>> text[:60]
367
+ 'O 7 e Meio \xe9 um ex-libris da noite algarvia.\n\xc9 uma das mais '
368
+ >>> print(text[:60])
369
+ O 7 e Meio é um ex-libris da noite algarvia.
370
+ É uma das mais
371
+
372
+ For more information about character encodings and Python, please see section 3.3 of the book.
373
+
374
+ ----------------
375
+ Processing Tasks
376
+ ----------------
377
+
378
+
379
+ Simple Concordancing
380
+ --------------------
381
+
382
+ Here's a function that takes a word and a specified amount of context (measured
383
+ in characters), and generates a concordance for that word.
384
+
385
+ >>> def concordance(word, context=30):
386
+ ... for sent in floresta.sents():
387
+ ... if word in sent:
388
+ ... pos = sent.index(word)
389
+ ... left = ' '.join(sent[:pos])
390
+ ... right = ' '.join(sent[pos+1:])
391
+ ... print('%*s %s %-*s' %
392
+ ... (context, left[-context:], word, context, right[:context]))
393
+
394
+ >>> concordance("dar") # doctest: +SKIP
395
+ anduru , foi o suficiente para dar a volta a o resultado .
396
+ 1. O P?BLICO veio dar a a imprensa di?ria portuguesa
397
+ A fartura de pensamento pode dar maus resultados e n?s n?o quer
398
+ Come?a a dar resultados a pol?tica de a Uni
399
+ ial come?ar a incorporar- lo e dar forma a um ' site ' que tem se
400
+ r com Constantino para ele lhe dar tamb?m os pap?is assinados .
401
+ va a brincar , pois n?o lhe ia dar procura??o nenhuma enquanto n?
402
+ ?rica como o ant?doto capaz de dar sentido a o seu enorme poder .
403
+ . . .
404
+ >>> concordance("vender") # doctest: +SKIP
405
+ er recebido uma encomenda para vender 4000 blindados a o Iraque .
406
+ m?rico_Amorim caso conseguisse vender o lote de ac??es de o empres?r
407
+ mpre ter jovens simp?ticos a ? vender ? chega ! }
408
+ Disse que o governo vai vender ? desde autom?vel at? particip
409
+ ndiciou ontem duas pessoas por vender carro com ?gio .
410
+ A inten??o de Fleury ? vender as a??es para equilibrar as fi
411
+
412
+ Part-of-Speech Tagging
413
+ ----------------------
414
+
415
+ Let's begin by getting the tagged sentence data, and simplifying the tags
416
+ as described earlier.
417
+
418
+ >>> from nltk.corpus import floresta
419
+ >>> tsents = floresta.tagged_sents()
420
+ >>> tsents = [[(w.lower(),simplify_tag(t)) for (w,t) in sent] for sent in tsents if sent]
421
+ >>> train = tsents[100:]
422
+ >>> test = tsents[:100]
423
+
424
+ We already know that ``n`` is the most common tag, so we can set up a
425
+ default tagger that tags every word as a noun, and see how well it does:
426
+
427
+ >>> tagger0 = nltk.DefaultTagger('n')
428
+ >>> nltk.tag.accuracy(tagger0, test)
429
+ 0.17697228144989338
430
+
431
+ Evidently, about one in every six words is a noun. Let's improve on this by
432
+ training a unigram tagger:
433
+
434
+ >>> tagger1 = nltk.UnigramTagger(train, backoff=tagger0)
435
+ >>> nltk.tag.accuracy(tagger1, test)
436
+ 0.87029140014214645
437
+
438
+ Next a bigram tagger:
439
+
440
+ >>> tagger2 = nltk.BigramTagger(train, backoff=tagger1)
441
+ >>> nltk.tag.accuracy(tagger2, test)
442
+ 0.89019189765458417
443
+
444
+
445
+ Sentence Segmentation
446
+ ---------------------
447
+
448
+ Punkt is a language-neutral sentence segmentation tool. We
449
+
450
+ >>> sent_tokenizer=nltk.data.load('tokenizers/punkt/portuguese.pickle')
451
+ >>> raw_text = machado.raw('romance/marm05.txt')
452
+ >>> sentences = sent_tokenizer.tokenize(raw_text)
453
+ >>> for sent in sentences[1000:1005]:
454
+ ... print("<<", sent, ">>")
455
+ ...
456
+ << Em verdade, parecia ainda mais mulher do que era;
457
+ seria criança nos seus folgares de moça; mas assim quieta, impassível, tinha a
458
+ compostura da mulher casada. >>
459
+ << Talvez essa circunstância lhe diminuía um pouco da
460
+ graça virginal. >>
461
+ << Depressa nos familiarizamos; a mãe fazia-lhe grandes elogios, eu
462
+ escutava-os de boa sombra, e ela sorria com os olhos fúlgidos, como se lá dentro
463
+ do cérebro lhe estivesse a voar uma borboletinha de asas de ouro e olhos de
464
+ diamante... >>
465
+ << Digo lá dentro, porque cá fora o
466
+ que esvoaçou foi uma borboleta preta, que subitamente penetrou na varanda, e
467
+ começou a bater as asas em derredor de D. Eusébia. >>
468
+ << D. Eusébia deu um grito,
469
+ levantou-se, praguejou umas palavras soltas: - T'esconjuro!... >>
470
+
471
+ The sentence tokenizer can be trained and evaluated on other text.
472
+ The source text (from the Floresta Portuguese Treebank) contains one sentence per line.
473
+ We read the text, split it into its lines, and then join these lines together using
474
+ spaces. Now the information about sentence breaks has been discarded. We split this
475
+ material into training and testing data:
476
+
477
+ >>> import os, nltk.test
478
+ >>> testdir = os.path.split(nltk.test.__file__)[0]
479
+ >>> text = open(os.path.join(testdir, 'floresta.txt'), 'rb').read().decode('ISO-8859-1')
480
+ >>> lines = text.split('\n')
481
+ >>> train = ' '.join(lines[10:])
482
+ >>> test = ' '.join(lines[:10])
483
+
484
+ Now we train the sentence segmenter (or sentence tokenizer) and use it on our test sentences:
485
+
486
+ >>> stok = nltk.PunktSentenceTokenizer(train)
487
+ >>> print(stok.tokenize(test))
488
+ ['O 7 e Meio \xe9 um ex-libris da noite algarvia.',
489
+ '\xc9 uma das mais antigas discotecas do Algarve, situada em Albufeira,
490
+ que continua a manter os tra\xe7os decorativos e as clientelas de sempre.',
491
+ '\xc9 um pouco a vers\xe3o de uma esp\xe9cie de \xaboutro lado\xbb da noite,
492
+ a meio caminho entre os devaneios de uma fauna perif\xe9rica, seja de Lisboa,
493
+ Londres, Dublin ou Faro e Portim\xe3o, e a postura circunspecta dos fi\xe9is da casa,
494
+ que dela esperam a m\xfasica \xabgeracionista\xbb dos 60 ou dos 70.',
495
+ 'N\xe3o deixa de ser, nos tempos que correm, um certo \xabvery typical\xbb algarvio,
496
+ cabe\xe7a de cartaz para os que querem fugir a algumas movimenta\xe7\xf5es nocturnas
497
+ j\xe1 a caminho da ritualiza\xe7\xe3o de massas, do g\xe9nero \xabvamos todos ao
498
+ Calypso e encontramo-nos na Locomia\xbb.',
499
+ 'E assim, aos 2,5 milh\xf5es que o Minist\xe9rio do Planeamento e Administra\xe7\xe3o
500
+ do Territ\xf3rio j\xe1 gasta no pagamento do pessoal afecto a estes organismos,
501
+ v\xeam juntar-se os montantes das obras propriamente ditas, que os munic\xedpios,
502
+ j\xe1 com projectos na m\xe3o, v\xeam reivindicar junto do Executivo, como salienta
503
+ aquele membro do Governo.',
504
+ 'E o dinheiro \xabn\xe3o falta s\xf3 \xe0s c\xe2maras\xbb, lembra o secret\xe1rio de Estado,
505
+ que considera que a solu\xe7\xe3o para as autarquias \xe9 \xabespecializarem-se em
506
+ fundos comunit\xe1rios\xbb.',
507
+ 'Mas como, se muitas n\xe3o disp\xf5em, nos seus quadros, dos t\xe9cnicos necess\xe1rios?',
508
+ '\xabEncomendem-nos a projectistas de fora\xbb porque, se as obras vierem a ser financiadas,
509
+ eles at\xe9 saem de gra\xe7a, j\xe1 que, nesse caso, \xabos fundos comunit\xe1rios pagam
510
+ os projectos, o mesmo n\xe3o acontecendo quando eles s\xe3o feitos pelos GAT\xbb,
511
+ dado serem organismos do Estado.',
512
+ 'Essa poder\xe1 vir a ser uma hip\xf3tese, at\xe9 porque, no terreno, a capacidade dos GAT
513
+ est\xe1 cada vez mais enfraquecida.',
514
+ 'Alguns at\xe9 j\xe1 desapareceram, como o de Castro Verde, e outros t\xeam vindo a perder quadros.']
515
+
516
+ NLTK's data collection includes a trained model for Portuguese sentence
517
+ segmentation, which can be loaded as follows. It is faster to load a trained model than
518
+ to retrain it.
519
+
520
+ >>> stok = nltk.data.load('tokenizers/punkt/portuguese.pickle')
521
+
522
+ Stemming
523
+ --------
524
+
525
+ NLTK includes the RSLP Portuguese stemmer. Here we use it to stem some Portuguese text:
526
+
527
+ >>> stemmer = nltk.stem.RSLPStemmer()
528
+ >>> stemmer.stem("copiar")
529
+ 'copi'
530
+ >>> stemmer.stem("paisagem")
531
+ 'pais'
532
+
533
+
534
+ Stopwords
535
+ ---------
536
+
537
+ NLTK includes Portuguese stopwords:
538
+
539
+ >>> stopwords = nltk.corpus.stopwords.words('portuguese')
540
+ >>> stopwords[:10]
541
+ ['a', 'ao', 'aos', 'aquela', 'aquelas', 'aquele', 'aqueles', 'aquilo', 'as', 'at\xe9']
542
+
543
+ Now we can use these to filter text. Let's find the most frequent words (other than stopwords)
544
+ and print them in descending order of frequency:
545
+
546
+ >>> fd = nltk.FreqDist(w.lower() for w in floresta.words() if w not in stopwords)
547
+ >>> for word in list(fd.keys())[:20]:
548
+ ... print(word, fd[word])
549
+ , 13444
550
+ . 7725
551
+ « 2369
552
+ » 2310
553
+ é 1305
554
+ o 1086
555
+ } 1047
556
+ { 1044
557
+ a 897
558
+ ; 633
559
+ em 516
560
+ ser 466
561
+ sobre 349
562
+ os 313
563
+ anos 301
564
+ ontem 292
565
+ ainda 279
566
+ segundo 256
567
+ ter 249
568
+ dois 231
llmeval-env/lib/python3.10/site-packages/nltk/test/semantics.doctest ADDED
@@ -0,0 +1,667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =========
5
+ Semantics
6
+ =========
7
+
8
+ >>> # Setup tests by setting the counter to 0
9
+ >>> from nltk.sem import logic
10
+ >>> logic._counter._value = 0
11
+
12
+ >>> import nltk
13
+ >>> from nltk.sem import Valuation, Model
14
+ >>> v = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),
15
+ ... ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])),
16
+ ... ('dog', set(['d1'])),
17
+ ... ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))]
18
+ >>> val = Valuation(v)
19
+ >>> dom = val.domain
20
+ >>> m = Model(dom, val)
21
+
22
+ Evaluation
23
+ ----------
24
+
25
+ The top-level method of a ``Model`` instance is ``evaluate()``, which
26
+ assigns a semantic value to expressions of the ``logic`` module, under
27
+ an assignment ``g``:
28
+
29
+ >>> dom = val.domain
30
+ >>> g = nltk.sem.Assignment(dom)
31
+ >>> m.evaluate('all x.(boy(x) -> - girl(x))', g)
32
+ True
33
+
34
+
35
+ ``evaluate()`` calls a recursive function ``satisfy()``, which in turn
36
+ calls a function ``i()`` to interpret non-logical constants and
37
+ individual variables. ``i()`` delegates the interpretation of these to
38
+ the the model's ``Valuation`` and the variable assignment ``g``
39
+ respectively. Any atomic expression which cannot be assigned a value
40
+ by ``i`` raises an ``Undefined`` exception; this is caught by
41
+ ``evaluate``, which returns the string ``'Undefined'``.
42
+
43
+ >>> m.evaluate('walk(adam)', g, trace=2)
44
+ <BLANKLINE>
45
+ 'walk(adam)' is undefined under M, g
46
+ 'Undefined'
47
+
48
+ Batch Processing
49
+ ----------------
50
+
51
+ The utility functions ``interpret_sents()`` and ``evaluate_sents()`` are intended to
52
+ help with processing multiple sentences. Here's an example of the first of these:
53
+
54
+ >>> sents = ['Mary walks']
55
+ >>> results = nltk.sem.util.interpret_sents(sents, 'grammars/sample_grammars/sem2.fcfg')
56
+ >>> for result in results:
57
+ ... for (synrep, semrep) in result:
58
+ ... print(synrep)
59
+ (S[SEM=<walk(mary)>]
60
+ (NP[-LOC, NUM='sg', SEM=<\P.P(mary)>]
61
+ (PropN[-LOC, NUM='sg', SEM=<\P.P(mary)>] Mary))
62
+ (VP[NUM='sg', SEM=<\x.walk(x)>]
63
+ (IV[NUM='sg', SEM=<\x.walk(x)>, TNS='pres'] walks)))
64
+
65
+ In order to provide backwards compatibility with 'legacy' grammars where the semantics value
66
+ is specified with a lowercase
67
+ ``sem`` feature, the relevant feature name can be passed to the function using the
68
+ ``semkey`` parameter, as shown here:
69
+
70
+ >>> sents = ['raining']
71
+ >>> g = nltk.grammar.FeatureGrammar.fromstring("""
72
+ ... % start S
73
+ ... S[sem=<raining>] -> 'raining'
74
+ ... """)
75
+ >>> results = nltk.sem.util.interpret_sents(sents, g, semkey='sem')
76
+ >>> for result in results:
77
+ ... for (synrep, semrep) in result:
78
+ ... print(semrep)
79
+ raining
80
+
81
+ The function ``evaluate_sents()`` works in a similar manner, but also needs to be
82
+ passed a ``Model`` against which the semantic representations are evaluated.
83
+
84
+ Unit Tests
85
+ ==========
86
+
87
+
88
+ Unit tests for relations and valuations
89
+ ---------------------------------------
90
+
91
+ >>> from nltk.sem import *
92
+
93
+ Relations are sets of tuples, all of the same length.
94
+
95
+ >>> s1 = set([('d1', 'd2'), ('d1', 'd1'), ('d2', 'd1')])
96
+ >>> is_rel(s1)
97
+ True
98
+ >>> s2 = set([('d1', 'd2'), ('d1', 'd2'), ('d1',)])
99
+ >>> is_rel(s2)
100
+ Traceback (most recent call last):
101
+ . . .
102
+ ValueError: Set set([('d1', 'd2'), ('d1',)]) contains sequences of different lengths
103
+ >>> s3 = set(['d1', 'd2'])
104
+ >>> is_rel(s3)
105
+ Traceback (most recent call last):
106
+ . . .
107
+ ValueError: Set set(['d2', 'd1']) contains sequences of different lengths
108
+ >>> s4 = set2rel(s3)
109
+ >>> is_rel(s4)
110
+ True
111
+ >>> is_rel(set())
112
+ True
113
+ >>> null_binary_rel = set([(None, None)])
114
+ >>> is_rel(null_binary_rel)
115
+ True
116
+
117
+ Sets of entities are converted into sets of singleton tuples
118
+ (containing strings).
119
+
120
+ >>> sorted(set2rel(s3))
121
+ [('d1',), ('d2',)]
122
+ >>> sorted(set2rel(set([1,3,5,])))
123
+ ['1', '3', '5']
124
+ >>> set2rel(set()) == set()
125
+ True
126
+ >>> set2rel(set2rel(s3)) == set2rel(s3)
127
+ True
128
+
129
+ Predication is evaluated by set membership.
130
+
131
+ >>> ('d1', 'd2') in s1
132
+ True
133
+ >>> ('d2', 'd2') in s1
134
+ False
135
+ >>> ('d1',) in s1
136
+ False
137
+ >>> 'd2' in s1
138
+ False
139
+ >>> ('d1',) in s4
140
+ True
141
+ >>> ('d1',) in set()
142
+ False
143
+ >>> 'd1' in null_binary_rel
144
+ False
145
+
146
+
147
+ >>> val = Valuation([('Fido', 'd1'), ('dog', set(['d1', 'd2'])), ('walk', set())])
148
+ >>> sorted(val['dog'])
149
+ [('d1',), ('d2',)]
150
+ >>> val.domain == set(['d1', 'd2'])
151
+ True
152
+ >>> print(val.symbols)
153
+ ['Fido', 'dog', 'walk']
154
+
155
+
156
+ Parse a valuation from a string.
157
+
158
+ >>> v = """
159
+ ... john => b1
160
+ ... mary => g1
161
+ ... suzie => g2
162
+ ... fido => d1
163
+ ... tess => d2
164
+ ... noosa => n
165
+ ... girl => {g1, g2}
166
+ ... boy => {b1, b2}
167
+ ... dog => {d1, d2}
168
+ ... bark => {d1, d2}
169
+ ... walk => {b1, g2, d1}
170
+ ... chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
171
+ ... see => {(b1, g1), (b2, d2), (g1, b1),(d2, b1), (g2, n)}
172
+ ... in => {(b1, n), (b2, n), (d2, n)}
173
+ ... with => {(b1, g1), (g1, b1), (d1, b1), (b1, d1)}
174
+ ... """
175
+ >>> val = Valuation.fromstring(v)
176
+
177
+ >>> print(val) # doctest: +SKIP
178
+ {'bark': set([('d1',), ('d2',)]),
179
+ 'boy': set([('b1',), ('b2',)]),
180
+ 'chase': set([('b1', 'g1'), ('g2', 'd2'), ('g1', 'd1'), ('b2', 'g1')]),
181
+ 'dog': set([('d1',), ('d2',)]),
182
+ 'fido': 'd1',
183
+ 'girl': set([('g2',), ('g1',)]),
184
+ 'in': set([('d2', 'n'), ('b1', 'n'), ('b2', 'n')]),
185
+ 'john': 'b1',
186
+ 'mary': 'g1',
187
+ 'noosa': 'n',
188
+ 'see': set([('b1', 'g1'), ('b2', 'd2'), ('d2', 'b1'), ('g2', 'n'), ('g1', 'b1')]),
189
+ 'suzie': 'g2',
190
+ 'tess': 'd2',
191
+ 'walk': set([('d1',), ('b1',), ('g2',)]),
192
+ 'with': set([('b1', 'g1'), ('d1', 'b1'), ('b1', 'd1'), ('g1', 'b1')])}
193
+
194
+
195
+ Unit tests for function argument application in a Model
196
+ -------------------------------------------------------
197
+
198
+ >>> v = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),\
199
+ ... ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])), ('dog', set(['d1'])),
200
+ ... ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')])),
201
+ ... ('kiss', null_binary_rel)]
202
+ >>> val = Valuation(v)
203
+ >>> dom = val.domain
204
+ >>> m = Model(dom, val)
205
+ >>> g = Assignment(dom)
206
+ >>> sorted(val['boy'])
207
+ [('b1',), ('b2',)]
208
+ >>> ('b1',) in val['boy']
209
+ True
210
+ >>> ('g1',) in val['boy']
211
+ False
212
+ >>> ('foo',) in val['boy']
213
+ False
214
+ >>> ('b1', 'g1') in val['love']
215
+ True
216
+ >>> ('b1', 'b1') in val['kiss']
217
+ False
218
+ >>> sorted(val.domain)
219
+ ['b1', 'b2', 'd1', 'g1', 'g2']
220
+
221
+
222
+ Model Tests
223
+ ===========
224
+
225
+ Extension of Lambda expressions
226
+
227
+ >>> v0 = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),\
228
+ ... ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])),
229
+ ... ('dog', set(['d1'])),
230
+ ... ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))]
231
+
232
+ >>> val0 = Valuation(v0)
233
+ >>> dom0 = val0.domain
234
+ >>> m0 = Model(dom0, val0)
235
+ >>> g0 = Assignment(dom0)
236
+
237
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)', g0) == {'g2': {'g2': False, 'b2': False, 'b1': True, 'g1': False, 'd1': False}, 'b2': {'g2': True, 'b2': False, 'b1': False, 'g1': False, 'd1': False}, 'b1': {'g2': False, 'b2': False, 'b1': False, 'g1': True, 'd1': False}, 'g1': {'g2': False, 'b2': False, 'b1': True, 'g1': False, 'd1': False}, 'd1': {'g2': False, 'b2': False, 'b1': False, 'g1': False, 'd1': False}})
238
+ True
239
+ >>> print(m0.evaluate(r'\x. dog(x) (adam)', g0))
240
+ False
241
+ >>> print(m0.evaluate(r'\x. (dog(x) | boy(x)) (adam)', g0))
242
+ True
243
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)(fido)', g0) == {'g2': False, 'b2': False, 'b1': False, 'g1': False, 'd1': False})
244
+ True
245
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)(adam)', g0) == {'g2': False, 'b2': False, 'b1': False, 'g1': True, 'd1': False})
246
+ True
247
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)(betty)', g0) == {'g2': False, 'b2': False, 'b1': True, 'g1': False, 'd1': False})
248
+ True
249
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)(betty)(adam)', g0))
250
+ True
251
+ >>> print(m0.evaluate(r'\x. \y. love(x, y)(betty, adam)', g0))
252
+ True
253
+ >>> print(m0.evaluate(r'\y. \x. love(x, y)(fido)(adam)', g0))
254
+ False
255
+ >>> print(m0.evaluate(r'\y. \x. love(x, y)(betty, adam)', g0))
256
+ True
257
+ >>> print(m0.evaluate(r'\x. exists y. love(x, y)', g0) == {'g2': True, 'b2': True, 'b1': True, 'g1': True, 'd1': False})
258
+ True
259
+ >>> print(m0.evaluate(r'\z. adam', g0) == {'g2': 'b1', 'b2': 'b1', 'b1': 'b1', 'g1': 'b1', 'd1': 'b1'})
260
+ True
261
+ >>> print(m0.evaluate(r'\z. love(x, y)', g0) == {'g2': False, 'b2': False, 'b1': False, 'g1': False, 'd1': False})
262
+ True
263
+
264
+
265
+ Propositional Model Test
266
+ ------------------------
267
+
268
+ >>> tests = [
269
+ ... ('P & Q', True),
270
+ ... ('P & R', False),
271
+ ... ('- P', False),
272
+ ... ('- R', True),
273
+ ... ('- - P', True),
274
+ ... ('- (P & R)', True),
275
+ ... ('P | R', True),
276
+ ... ('R | P', True),
277
+ ... ('R | R', False),
278
+ ... ('- P | R', False),
279
+ ... ('P | - P', True),
280
+ ... ('P -> Q', True),
281
+ ... ('P -> R', False),
282
+ ... ('R -> P', True),
283
+ ... ('P <-> P', True),
284
+ ... ('R <-> R', True),
285
+ ... ('P <-> R', False),
286
+ ... ]
287
+ >>> val1 = Valuation([('P', True), ('Q', True), ('R', False)])
288
+ >>> dom = set([])
289
+ >>> m = Model(dom, val1)
290
+ >>> g = Assignment(dom)
291
+ >>> for (sent, testvalue) in tests:
292
+ ... semvalue = m.evaluate(sent, g)
293
+ ... if semvalue == testvalue:
294
+ ... print('*', end=' ')
295
+ * * * * * * * * * * * * * * * * *
296
+
297
+
298
+ Test of i Function
299
+ ------------------
300
+
301
+ >>> from nltk.sem import Expression
302
+ >>> v = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),
303
+ ... ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])), ('dog', set(['d1'])),
304
+ ... ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))]
305
+ >>> val = Valuation(v)
306
+ >>> dom = val.domain
307
+ >>> m = Model(dom, val)
308
+ >>> g = Assignment(dom, [('x', 'b1'), ('y', 'g2')])
309
+ >>> exprs = ['adam', 'girl', 'love', 'walks', 'x', 'y', 'z']
310
+ >>> parsed_exprs = [Expression.fromstring(e) for e in exprs]
311
+ >>> sorted_set = lambda x: sorted(x) if isinstance(x, set) else x
312
+ >>> for parsed in parsed_exprs:
313
+ ... try:
314
+ ... print("'%s' gets value %s" % (parsed, sorted_set(m.i(parsed, g))))
315
+ ... except Undefined:
316
+ ... print("'%s' is Undefined" % parsed)
317
+ 'adam' gets value b1
318
+ 'girl' gets value [('g1',), ('g2',)]
319
+ 'love' gets value [('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]
320
+ 'walks' is Undefined
321
+ 'x' gets value b1
322
+ 'y' gets value g2
323
+ 'z' is Undefined
324
+
325
+ Test for formulas in Model
326
+ --------------------------
327
+
328
+ >>> tests = [
329
+ ... ('love(adam, betty)', True),
330
+ ... ('love(adam, sue)', 'Undefined'),
331
+ ... ('dog(fido)', True),
332
+ ... ('- dog(fido)', False),
333
+ ... ('- - dog(fido)', True),
334
+ ... ('- dog(sue)', 'Undefined'),
335
+ ... ('dog(fido) & boy(adam)', True),
336
+ ... ('- (dog(fido) & boy(adam))', False),
337
+ ... ('- dog(fido) & boy(adam)', False),
338
+ ... ('dog(fido) | boy(adam)', True),
339
+ ... ('- (dog(fido) | boy(adam))', False),
340
+ ... ('- dog(fido) | boy(adam)', True),
341
+ ... ('- dog(fido) | - boy(adam)', False),
342
+ ... ('dog(fido) -> boy(adam)', True),
343
+ ... ('- (dog(fido) -> boy(adam))', False),
344
+ ... ('- dog(fido) -> boy(adam)', True),
345
+ ... ('exists x . love(adam, x)', True),
346
+ ... ('all x . love(adam, x)', False),
347
+ ... ('fido = fido', True),
348
+ ... ('exists x . all y. love(x, y)', False),
349
+ ... ('exists x . (x = fido)', True),
350
+ ... ('all x . (dog(x) | - dog(x))', True),
351
+ ... ('adam = mia', 'Undefined'),
352
+ ... ('\\x. (boy(x) | girl(x))', {'g2': True, 'b2': True, 'b1': True, 'g1': True, 'd1': False}),
353
+ ... ('\\x. exists y. (boy(x) & love(x, y))', {'g2': False, 'b2': True, 'b1': True, 'g1': False, 'd1': False}),
354
+ ... ('exists z1. boy(z1)', True),
355
+ ... ('exists x. (boy(x) & - (x = adam))', True),
356
+ ... ('exists x. (boy(x) & all y. love(y, x))', False),
357
+ ... ('all x. (boy(x) | girl(x))', False),
358
+ ... ('all x. (girl(x) -> exists y. boy(y) & love(x, y))', False),
359
+ ... ('exists x. (boy(x) & all y. (girl(y) -> love(y, x)))', True),
360
+ ... ('exists x. (boy(x) & all y. (girl(y) -> love(x, y)))', False),
361
+ ... ('all x. (dog(x) -> - girl(x))', True),
362
+ ... ('exists x. exists y. (love(x, y) & love(x, y))', True),
363
+ ... ]
364
+ >>> for (sent, testvalue) in tests:
365
+ ... semvalue = m.evaluate(sent, g)
366
+ ... if semvalue == testvalue:
367
+ ... print('*', end=' ')
368
+ ... else:
369
+ ... print(sent, semvalue)
370
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
371
+
372
+
373
+
374
+ Satisfier Tests
375
+ ---------------
376
+
377
+ >>> formulas = [
378
+ ... 'boy(x)',
379
+ ... '(x = x)',
380
+ ... '(boy(x) | girl(x))',
381
+ ... '(boy(x) & girl(x))',
382
+ ... 'love(adam, x)',
383
+ ... 'love(x, adam)',
384
+ ... '- (x = adam)',
385
+ ... 'exists z22. love(x, z22)',
386
+ ... 'exists y. love(y, x)',
387
+ ... 'all y. (girl(y) -> love(x, y))',
388
+ ... 'all y. (girl(y) -> love(y, x))',
389
+ ... 'all y. (girl(y) -> (boy(x) & love(y, x)))',
390
+ ... 'boy(x) & all y. (girl(y) -> love(x, y))',
391
+ ... 'boy(x) & all y. (girl(y) -> love(y, x))',
392
+ ... 'boy(x) & exists y. (girl(y) & love(y, x))',
393
+ ... 'girl(x) -> dog(x)',
394
+ ... 'all y. (dog(y) -> (x = y))',
395
+ ... '- exists y. love(y, x)',
396
+ ... 'exists y. (love(adam, y) & love(y, x))'
397
+ ... ]
398
+ >>> g.purge()
399
+ >>> g.add('x', 'b1')
400
+ {'x': 'b1'}
401
+ >>> for f in formulas:
402
+ ... try:
403
+ ... print("'%s' gets value: %s" % (f, m.evaluate(f, g)))
404
+ ... except Undefined:
405
+ ... print("'%s' is Undefined" % f)
406
+ 'boy(x)' gets value: True
407
+ '(x = x)' gets value: True
408
+ '(boy(x) | girl(x))' gets value: True
409
+ '(boy(x) & girl(x))' gets value: False
410
+ 'love(adam, x)' gets value: False
411
+ 'love(x, adam)' gets value: False
412
+ '- (x = adam)' gets value: False
413
+ 'exists z22. love(x, z22)' gets value: True
414
+ 'exists y. love(y, x)' gets value: True
415
+ 'all y. (girl(y) -> love(x, y))' gets value: False
416
+ 'all y. (girl(y) -> love(y, x))' gets value: True
417
+ 'all y. (girl(y) -> (boy(x) & love(y, x)))' gets value: True
418
+ 'boy(x) & all y. (girl(y) -> love(x, y))' gets value: False
419
+ 'boy(x) & all y. (girl(y) -> love(y, x))' gets value: True
420
+ 'boy(x) & exists y. (girl(y) & love(y, x))' gets value: True
421
+ 'girl(x) -> dog(x)' gets value: True
422
+ 'all y. (dog(y) -> (x = y))' gets value: False
423
+ '- exists y. love(y, x)' gets value: False
424
+ 'exists y. (love(adam, y) & love(y, x))' gets value: True
425
+
426
+ >>> from nltk.sem import Expression
427
+ >>> for fmla in formulas:
428
+ ... p = Expression.fromstring(fmla)
429
+ ... g.purge()
430
+ ... print("Satisfiers of '%s':\n\t%s" % (p, sorted(m.satisfiers(p, 'x', g))))
431
+ Satisfiers of 'boy(x)':
432
+ ['b1', 'b2']
433
+ Satisfiers of '(x = x)':
434
+ ['b1', 'b2', 'd1', 'g1', 'g2']
435
+ Satisfiers of '(boy(x) | girl(x))':
436
+ ['b1', 'b2', 'g1', 'g2']
437
+ Satisfiers of '(boy(x) & girl(x))':
438
+ []
439
+ Satisfiers of 'love(adam,x)':
440
+ ['g1']
441
+ Satisfiers of 'love(x,adam)':
442
+ ['g1', 'g2']
443
+ Satisfiers of '-(x = adam)':
444
+ ['b2', 'd1', 'g1', 'g2']
445
+ Satisfiers of 'exists z22.love(x,z22)':
446
+ ['b1', 'b2', 'g1', 'g2']
447
+ Satisfiers of 'exists y.love(y,x)':
448
+ ['b1', 'g1', 'g2']
449
+ Satisfiers of 'all y.(girl(y) -> love(x,y))':
450
+ []
451
+ Satisfiers of 'all y.(girl(y) -> love(y,x))':
452
+ ['b1']
453
+ Satisfiers of 'all y.(girl(y) -> (boy(x) & love(y,x)))':
454
+ ['b1']
455
+ Satisfiers of '(boy(x) & all y.(girl(y) -> love(x,y)))':
456
+ []
457
+ Satisfiers of '(boy(x) & all y.(girl(y) -> love(y,x)))':
458
+ ['b1']
459
+ Satisfiers of '(boy(x) & exists y.(girl(y) & love(y,x)))':
460
+ ['b1']
461
+ Satisfiers of '(girl(x) -> dog(x))':
462
+ ['b1', 'b2', 'd1']
463
+ Satisfiers of 'all y.(dog(y) -> (x = y))':
464
+ ['d1']
465
+ Satisfiers of '-exists y.love(y,x)':
466
+ ['b2', 'd1']
467
+ Satisfiers of 'exists y.(love(adam,y) & love(y,x))':
468
+ ['b1']
469
+
470
+
471
+ Tests based on the Blackburn & Bos testsuite
472
+ --------------------------------------------
473
+
474
+ >>> v1 = [('jules', 'd1'), ('vincent', 'd2'), ('pumpkin', 'd3'),
475
+ ... ('honey_bunny', 'd4'), ('yolanda', 'd5'),
476
+ ... ('customer', set(['d1', 'd2'])),
477
+ ... ('robber', set(['d3', 'd4'])),
478
+ ... ('love', set([('d3', 'd4')]))]
479
+ >>> val1 = Valuation(v1)
480
+ >>> dom1 = val1.domain
481
+ >>> m1 = Model(dom1, val1)
482
+ >>> g1 = Assignment(dom1)
483
+
484
+ >>> v2 = [('jules', 'd1'), ('vincent', 'd2'), ('pumpkin', 'd3'),
485
+ ... ('honey_bunny', 'd4'), ('yolanda', 'd4'),
486
+ ... ('customer', set(['d1', 'd2', 'd5', 'd6'])),
487
+ ... ('robber', set(['d3', 'd4'])),
488
+ ... ('love', set([(None, None)]))]
489
+ >>> val2 = Valuation(v2)
490
+ >>> dom2 = set(['d1', 'd2', 'd3', 'd4', 'd5', 'd6'])
491
+ >>> m2 = Model(dom2, val2)
492
+ >>> g2 = Assignment(dom2)
493
+ >>> g21 = Assignment(dom2)
494
+ >>> g21.add('y', 'd3')
495
+ {'y': 'd3'}
496
+
497
+ >>> v3 = [('mia', 'd1'), ('jody', 'd2'), ('jules', 'd3'),
498
+ ... ('vincent', 'd4'),
499
+ ... ('woman', set(['d1', 'd2'])), ('man', set(['d3', 'd4'])),
500
+ ... ('joke', set(['d5', 'd6'])), ('episode', set(['d7', 'd8'])),
501
+ ... ('in', set([('d5', 'd7'), ('d5', 'd8')])),
502
+ ... ('tell', set([('d1', 'd5'), ('d2', 'd6')]))]
503
+ >>> val3 = Valuation(v3)
504
+ >>> dom3 = set(['d1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8'])
505
+ >>> m3 = Model(dom3, val3)
506
+ >>> g3 = Assignment(dom3)
507
+
508
+ >>> tests = [
509
+ ... ('exists x. robber(x)', m1, g1, True),
510
+ ... ('exists x. exists y. love(y, x)', m1, g1, True),
511
+ ... ('exists x0. exists x1. love(x1, x0)', m2, g2, False),
512
+ ... ('all x. all y. love(y, x)', m2, g2, False),
513
+ ... ('- (all x. all y. love(y, x))', m2, g2, True),
514
+ ... ('all x. all y. - love(y, x)', m2, g2, True),
515
+ ... ('yolanda = honey_bunny', m2, g2, True),
516
+ ... ('mia = honey_bunny', m2, g2, 'Undefined'),
517
+ ... ('- (yolanda = honey_bunny)', m2, g2, False),
518
+ ... ('- (mia = honey_bunny)', m2, g2, 'Undefined'),
519
+ ... ('all x. (robber(x) | customer(x))', m2, g2, True),
520
+ ... ('- (all x. (robber(x) | customer(x)))', m2, g2, False),
521
+ ... ('(robber(x) | customer(x))', m2, g2, 'Undefined'),
522
+ ... ('(robber(y) | customer(y))', m2, g21, True),
523
+ ... ('exists x. (man(x) & exists x. woman(x))', m3, g3, True),
524
+ ... ('exists x. (man(x) & exists x. woman(x))', m3, g3, True),
525
+ ... ('- exists x. woman(x)', m3, g3, False),
526
+ ... ('exists x. (tasty(x) & burger(x))', m3, g3, 'Undefined'),
527
+ ... ('- exists x. (tasty(x) & burger(x))', m3, g3, 'Undefined'),
528
+ ... ('exists x. (man(x) & - exists y. woman(y))', m3, g3, False),
529
+ ... ('exists x. (man(x) & - exists x. woman(x))', m3, g3, False),
530
+ ... ('exists x. (woman(x) & - exists x. customer(x))', m2, g2, 'Undefined'),
531
+ ... ]
532
+
533
+ >>> for item in tests:
534
+ ... sentence, model, g, testvalue = item
535
+ ... semvalue = model.evaluate(sentence, g)
536
+ ... if semvalue == testvalue:
537
+ ... print('*', end=' ')
538
+ ... g.purge()
539
+ * * * * * * * * * * * * * * * * * * * * * *
540
+
541
+
542
+ Tests for mapping from syntax to semantics
543
+ ------------------------------------------
544
+
545
+ Load a valuation from a file.
546
+
547
+ >>> import nltk.data
548
+ >>> from nltk.sem.util import parse_sents
549
+ >>> val = nltk.data.load('grammars/sample_grammars/valuation1.val')
550
+ >>> dom = val.domain
551
+ >>> m = Model(dom, val)
552
+ >>> g = Assignment(dom)
553
+ >>> gramfile = 'grammars/sample_grammars/sem2.fcfg'
554
+ >>> inputs = ['John sees a girl', 'every dog barks']
555
+ >>> parses = parse_sents(inputs, gramfile)
556
+ >>> for sent, trees in zip(inputs, parses):
557
+ ... print()
558
+ ... print("Sentence: %s" % sent)
559
+ ... for tree in trees:
560
+ ... print("Parse:\n %s" %tree)
561
+ ... print("Semantics: %s" % root_semrep(tree))
562
+ <BLANKLINE>
563
+ Sentence: John sees a girl
564
+ Parse:
565
+ (S[SEM=<exists x.(girl(x) & see(john,x))>]
566
+ (NP[-LOC, NUM='sg', SEM=<\P.P(john)>]
567
+ (PropN[-LOC, NUM='sg', SEM=<\P.P(john)>] John))
568
+ (VP[NUM='sg', SEM=<\y.exists x.(girl(x) & see(y,x))>]
569
+ (TV[NUM='sg', SEM=<\X y.X(\x.see(y,x))>, TNS='pres'] sees)
570
+ (NP[NUM='sg', SEM=<\Q.exists x.(girl(x) & Q(x))>]
571
+ (Det[NUM='sg', SEM=<\P Q.exists x.(P(x) & Q(x))>] a)
572
+ (Nom[NUM='sg', SEM=<\x.girl(x)>]
573
+ (N[NUM='sg', SEM=<\x.girl(x)>] girl)))))
574
+ Semantics: exists x.(girl(x) & see(john,x))
575
+ <BLANKLINE>
576
+ Sentence: every dog barks
577
+ Parse:
578
+ (S[SEM=<all x.(dog(x) -> bark(x))>]
579
+ (NP[NUM='sg', SEM=<\Q.all x.(dog(x) -> Q(x))>]
580
+ (Det[NUM='sg', SEM=<\P Q.all x.(P(x) -> Q(x))>] every)
581
+ (Nom[NUM='sg', SEM=<\x.dog(x)>]
582
+ (N[NUM='sg', SEM=<\x.dog(x)>] dog)))
583
+ (VP[NUM='sg', SEM=<\x.bark(x)>]
584
+ (IV[NUM='sg', SEM=<\x.bark(x)>, TNS='pres'] barks)))
585
+ Semantics: all x.(dog(x) -> bark(x))
586
+
587
+ >>> sent = "every dog barks"
588
+ >>> result = nltk.sem.util.interpret_sents([sent], gramfile)[0]
589
+ >>> for (syntree, semrep) in result:
590
+ ... print(syntree)
591
+ ... print()
592
+ ... print(semrep)
593
+ (S[SEM=<all x.(dog(x) -> bark(x))>]
594
+ (NP[NUM='sg', SEM=<\Q.all x.(dog(x) -> Q(x))>]
595
+ (Det[NUM='sg', SEM=<\P Q.all x.(P(x) -> Q(x))>] every)
596
+ (Nom[NUM='sg', SEM=<\x.dog(x)>]
597
+ (N[NUM='sg', SEM=<\x.dog(x)>] dog)))
598
+ (VP[NUM='sg', SEM=<\x.bark(x)>]
599
+ (IV[NUM='sg', SEM=<\x.bark(x)>, TNS='pres'] barks)))
600
+ <BLANKLINE>
601
+ all x.(dog(x) -> bark(x))
602
+
603
+ >>> result = nltk.sem.util.evaluate_sents([sent], gramfile, m, g)[0]
604
+ >>> for (syntree, semrel, value) in result:
605
+ ... print(syntree)
606
+ ... print()
607
+ ... print(semrep)
608
+ ... print()
609
+ ... print(value)
610
+ (S[SEM=<all x.(dog(x) -> bark(x))>]
611
+ (NP[NUM='sg', SEM=<\Q.all x.(dog(x) -> Q(x))>]
612
+ (Det[NUM='sg', SEM=<\P Q.all x.(P(x) -> Q(x))>] every)
613
+ (Nom[NUM='sg', SEM=<\x.dog(x)>]
614
+ (N[NUM='sg', SEM=<\x.dog(x)>] dog)))
615
+ (VP[NUM='sg', SEM=<\x.bark(x)>]
616
+ (IV[NUM='sg', SEM=<\x.bark(x)>, TNS='pres'] barks)))
617
+ <BLANKLINE>
618
+ all x.(dog(x) -> bark(x))
619
+ <BLANKLINE>
620
+ True
621
+
622
+ >>> sents = ['Mary walks', 'John sees a dog']
623
+ >>> results = nltk.sem.util.interpret_sents(sents, 'grammars/sample_grammars/sem2.fcfg')
624
+ >>> for result in results:
625
+ ... for (synrep, semrep) in result:
626
+ ... print(synrep)
627
+ (S[SEM=<walk(mary)>]
628
+ (NP[-LOC, NUM='sg', SEM=<\P.P(mary)>]
629
+ (PropN[-LOC, NUM='sg', SEM=<\P.P(mary)>] Mary))
630
+ (VP[NUM='sg', SEM=<\x.walk(x)>]
631
+ (IV[NUM='sg', SEM=<\x.walk(x)>, TNS='pres'] walks)))
632
+ (S[SEM=<exists x.(dog(x) & see(john,x))>]
633
+ (NP[-LOC, NUM='sg', SEM=<\P.P(john)>]
634
+ (PropN[-LOC, NUM='sg', SEM=<\P.P(john)>] John))
635
+ (VP[NUM='sg', SEM=<\y.exists x.(dog(x) & see(y,x))>]
636
+ (TV[NUM='sg', SEM=<\X y.X(\x.see(y,x))>, TNS='pres'] sees)
637
+ (NP[NUM='sg', SEM=<\Q.exists x.(dog(x) & Q(x))>]
638
+ (Det[NUM='sg', SEM=<\P Q.exists x.(P(x) & Q(x))>] a)
639
+ (Nom[NUM='sg', SEM=<\x.dog(x)>]
640
+ (N[NUM='sg', SEM=<\x.dog(x)>] dog)))))
641
+
642
+ Cooper Storage
643
+ --------------
644
+
645
+ >>> from nltk.sem import cooper_storage as cs
646
+ >>> sentence = 'every girl chases a dog'
647
+ >>> trees = cs.parse_with_bindops(sentence, grammar='grammars/book_grammars/storage.fcfg')
648
+ >>> semrep = trees[0].label()['SEM']
649
+ >>> cs_semrep = cs.CooperStore(semrep)
650
+ >>> print(cs_semrep.core)
651
+ chase(z2,z4)
652
+ >>> for bo in cs_semrep.store:
653
+ ... print(bo)
654
+ bo(\P.all x.(girl(x) -> P(x)),z2)
655
+ bo(\P.exists x.(dog(x) & P(x)),z4)
656
+ >>> cs_semrep.s_retrieve(trace=True)
657
+ Permutation 1
658
+ (\P.all x.(girl(x) -> P(x)))(\z2.chase(z2,z4))
659
+ (\P.exists x.(dog(x) & P(x)))(\z4.all x.(girl(x) -> chase(x,z4)))
660
+ Permutation 2
661
+ (\P.exists x.(dog(x) & P(x)))(\z4.chase(z2,z4))
662
+ (\P.all x.(girl(x) -> P(x)))(\z2.exists x.(dog(x) & chase(z2,x)))
663
+
664
+ >>> for reading in cs_semrep.readings:
665
+ ... print(reading)
666
+ exists x.(dog(x) & all z3.(girl(z3) -> chase(z3,x)))
667
+ all x.(girl(x) -> exists z4.(dog(z4) & chase(x,z4)))
llmeval-env/lib/python3.10/site-packages/nltk/test/treetransforms.doctest ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ -------------------------------------------
5
+ Unit tests for the TreeTransformation class
6
+ -------------------------------------------
7
+
8
+ >>> from copy import deepcopy
9
+ >>> from nltk.tree import Tree, collapse_unary, chomsky_normal_form, un_chomsky_normal_form
10
+
11
+ >>> tree_string = "(TOP (S (S (VP (VBN Turned) (ADVP (RB loose)) (PP (IN in) (NP (NP (NNP Shane) (NNP Longman) (POS 's)) (NN trading) (NN room))))) (, ,) (NP (DT the) (NN yuppie) (NNS dealers)) (VP (AUX do) (NP (NP (RB little)) (ADJP (RB right)))) (. .)))"
12
+
13
+ >>> tree = Tree.fromstring(tree_string)
14
+ >>> print(tree)
15
+ (TOP
16
+ (S
17
+ (S
18
+ (VP
19
+ (VBN Turned)
20
+ (ADVP (RB loose))
21
+ (PP
22
+ (IN in)
23
+ (NP
24
+ (NP (NNP Shane) (NNP Longman) (POS 's))
25
+ (NN trading)
26
+ (NN room)))))
27
+ (, ,)
28
+ (NP (DT the) (NN yuppie) (NNS dealers))
29
+ (VP (AUX do) (NP (NP (RB little)) (ADJP (RB right))))
30
+ (. .)))
31
+
32
+ Make a copy of the original tree and collapse the subtrees with only one child
33
+
34
+ >>> collapsedTree = deepcopy(tree)
35
+ >>> collapse_unary(collapsedTree)
36
+ >>> print(collapsedTree)
37
+ (TOP
38
+ (S
39
+ (S+VP
40
+ (VBN Turned)
41
+ (ADVP (RB loose))
42
+ (PP
43
+ (IN in)
44
+ (NP
45
+ (NP (NNP Shane) (NNP Longman) (POS 's))
46
+ (NN trading)
47
+ (NN room))))
48
+ (, ,)
49
+ (NP (DT the) (NN yuppie) (NNS dealers))
50
+ (VP (AUX do) (NP (NP (RB little)) (ADJP (RB right))))
51
+ (. .)))
52
+
53
+ >>> collapsedTree2 = deepcopy(tree)
54
+ >>> collapse_unary(collapsedTree2, collapsePOS=True, collapseRoot=True)
55
+ >>> print(collapsedTree2)
56
+ (TOP+S
57
+ (S+VP
58
+ (VBN Turned)
59
+ (ADVP+RB loose)
60
+ (PP
61
+ (IN in)
62
+ (NP
63
+ (NP (NNP Shane) (NNP Longman) (POS 's))
64
+ (NN trading)
65
+ (NN room))))
66
+ (, ,)
67
+ (NP (DT the) (NN yuppie) (NNS dealers))
68
+ (VP (AUX do) (NP (NP+RB little) (ADJP+RB right)))
69
+ (. .))
70
+
71
+ Convert the tree to Chomsky Normal Form i.e. each subtree has either two
72
+ subtree children or a single leaf value. This conversion can be performed
73
+ using either left- or right-factoring.
74
+
75
+ >>> cnfTree = deepcopy(collapsedTree)
76
+ >>> chomsky_normal_form(cnfTree, factor='left')
77
+ >>> print(cnfTree)
78
+ (TOP
79
+ (S
80
+ (S|<S+VP-,-NP-VP>
81
+ (S|<S+VP-,-NP>
82
+ (S|<S+VP-,>
83
+ (S+VP
84
+ (S+VP|<VBN-ADVP> (VBN Turned) (ADVP (RB loose)))
85
+ (PP
86
+ (IN in)
87
+ (NP
88
+ (NP|<NP-NN>
89
+ (NP
90
+ (NP|<NNP-NNP> (NNP Shane) (NNP Longman))
91
+ (POS 's))
92
+ (NN trading))
93
+ (NN room))))
94
+ (, ,))
95
+ (NP (NP|<DT-NN> (DT the) (NN yuppie)) (NNS dealers)))
96
+ (VP (AUX do) (NP (NP (RB little)) (ADJP (RB right)))))
97
+ (. .)))
98
+
99
+ >>> cnfTree = deepcopy(collapsedTree)
100
+ >>> chomsky_normal_form(cnfTree, factor='right')
101
+ >>> print(cnfTree)
102
+ (TOP
103
+ (S
104
+ (S+VP
105
+ (VBN Turned)
106
+ (S+VP|<ADVP-PP>
107
+ (ADVP (RB loose))
108
+ (PP
109
+ (IN in)
110
+ (NP
111
+ (NP (NNP Shane) (NP|<NNP-POS> (NNP Longman) (POS 's)))
112
+ (NP|<NN-NN> (NN trading) (NN room))))))
113
+ (S|<,-NP-VP-.>
114
+ (, ,)
115
+ (S|<NP-VP-.>
116
+ (NP (DT the) (NP|<NN-NNS> (NN yuppie) (NNS dealers)))
117
+ (S|<VP-.>
118
+ (VP (AUX do) (NP (NP (RB little)) (ADJP (RB right))))
119
+ (. .))))))
120
+
121
+ Employ some Markov smoothing to make the artificial node labels a bit more
122
+ readable. See the treetransforms.py documentation for more details.
123
+
124
+ >>> markovTree = deepcopy(collapsedTree)
125
+ >>> chomsky_normal_form(markovTree, horzMarkov=2, vertMarkov=1)
126
+ >>> print(markovTree)
127
+ (TOP
128
+ (S^<TOP>
129
+ (S+VP^<S>
130
+ (VBN Turned)
131
+ (S+VP|<ADVP-PP>^<S>
132
+ (ADVP^<S+VP> (RB loose))
133
+ (PP^<S+VP>
134
+ (IN in)
135
+ (NP^<PP>
136
+ (NP^<NP>
137
+ (NNP Shane)
138
+ (NP|<NNP-POS>^<NP> (NNP Longman) (POS 's)))
139
+ (NP|<NN-NN>^<PP> (NN trading) (NN room))))))
140
+ (S|<,-NP>^<TOP>
141
+ (, ,)
142
+ (S|<NP-VP>^<TOP>
143
+ (NP^<S> (DT the) (NP|<NN-NNS>^<S> (NN yuppie) (NNS dealers)))
144
+ (S|<VP-.>^<TOP>
145
+ (VP^<S>
146
+ (AUX do)
147
+ (NP^<VP> (NP^<NP> (RB little)) (ADJP^<NP> (RB right))))
148
+ (. .))))))
149
+
150
+ Convert the transformed tree back to its original form
151
+
152
+ >>> un_chomsky_normal_form(markovTree)
153
+ >>> tree == markovTree
154
+ True
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_bllip.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from nltk.data import find
4
+ from nltk.parse.bllip import BllipParser
5
+ from nltk.tree import Tree
6
+
7
+
8
+ @pytest.fixture(scope="module")
9
+ def parser():
10
+ model_dir = find("models/bllip_wsj_no_aux").path
11
+ return BllipParser.from_unified_model_dir(model_dir)
12
+
13
+
14
+ def setup_module():
15
+ pytest.importorskip("bllipparser")
16
+
17
+
18
+ class TestBllipParser:
19
+ def test_parser_loads_a_valid_tree(self, parser):
20
+ parsed = parser.parse("I saw the man with the telescope")
21
+ tree = next(parsed)
22
+
23
+ assert isinstance(tree, Tree)
24
+ assert (
25
+ tree.pformat()
26
+ == """
27
+ (S1
28
+ (S
29
+ (NP (PRP I))
30
+ (VP
31
+ (VBD saw)
32
+ (NP (DT the) (NN man))
33
+ (PP (IN with) (NP (DT the) (NN telescope))))))
34
+ """.strip()
35
+ )
36
+
37
+ def test_tagged_parse_finds_matching_element(self, parser):
38
+ parsed = parser.parse("I saw the man with the telescope")
39
+ tagged_tree = next(parser.tagged_parse([("telescope", "NN")]))
40
+
41
+ assert isinstance(tagged_tree, Tree)
42
+ assert tagged_tree.pformat() == "(S1 (NP (NN telescope)))"
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_collocations.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from nltk.collocations import BigramCollocationFinder
2
+ from nltk.metrics import BigramAssocMeasures
3
+
4
+ ## Test bigram counters with discontinuous bigrams and repeated words
5
+
6
+ _EPSILON = 1e-8
7
+ SENT = "this this is is a a test test".split()
8
+
9
+
10
+ def close_enough(x, y):
11
+ """Verify that two sequences of n-gram association values are within
12
+ _EPSILON of each other.
13
+ """
14
+
15
+ return all(abs(x1[1] - y1[1]) <= _EPSILON for x1, y1 in zip(x, y))
16
+
17
+
18
+ def test_bigram2():
19
+ b = BigramCollocationFinder.from_words(SENT)
20
+
21
+ assert sorted(b.ngram_fd.items()) == [
22
+ (("a", "a"), 1),
23
+ (("a", "test"), 1),
24
+ (("is", "a"), 1),
25
+ (("is", "is"), 1),
26
+ (("test", "test"), 1),
27
+ (("this", "is"), 1),
28
+ (("this", "this"), 1),
29
+ ]
30
+ assert sorted(b.word_fd.items()) == [("a", 2), ("is", 2), ("test", 2), ("this", 2)]
31
+
32
+ assert len(SENT) == sum(b.word_fd.values()) == sum(b.ngram_fd.values()) + 1
33
+ assert close_enough(
34
+ sorted(b.score_ngrams(BigramAssocMeasures.pmi)),
35
+ [
36
+ (("a", "a"), 1.0),
37
+ (("a", "test"), 1.0),
38
+ (("is", "a"), 1.0),
39
+ (("is", "is"), 1.0),
40
+ (("test", "test"), 1.0),
41
+ (("this", "is"), 1.0),
42
+ (("this", "this"), 1.0),
43
+ ],
44
+ )
45
+
46
+
47
+ def test_bigram3():
48
+ b = BigramCollocationFinder.from_words(SENT, window_size=3)
49
+ assert sorted(b.ngram_fd.items()) == sorted(
50
+ [
51
+ (("a", "test"), 3),
52
+ (("is", "a"), 3),
53
+ (("this", "is"), 3),
54
+ (("a", "a"), 1),
55
+ (("is", "is"), 1),
56
+ (("test", "test"), 1),
57
+ (("this", "this"), 1),
58
+ ]
59
+ )
60
+
61
+ assert sorted(b.word_fd.items()) == sorted(
62
+ [("a", 2), ("is", 2), ("test", 2), ("this", 2)]
63
+ )
64
+
65
+ assert (
66
+ len(SENT) == sum(b.word_fd.values()) == (sum(b.ngram_fd.values()) + 2 + 1) / 2.0
67
+ )
68
+ assert close_enough(
69
+ sorted(b.score_ngrams(BigramAssocMeasures.pmi)),
70
+ sorted(
71
+ [
72
+ (("a", "test"), 1.584962500721156),
73
+ (("is", "a"), 1.584962500721156),
74
+ (("this", "is"), 1.584962500721156),
75
+ (("a", "a"), 0.0),
76
+ (("is", "is"), 0.0),
77
+ (("test", "test"), 0.0),
78
+ (("this", "this"), 0.0),
79
+ ]
80
+ ),
81
+ )
82
+
83
+
84
+ def test_bigram5():
85
+ b = BigramCollocationFinder.from_words(SENT, window_size=5)
86
+ assert sorted(b.ngram_fd.items()) == sorted(
87
+ [
88
+ (("a", "test"), 4),
89
+ (("is", "a"), 4),
90
+ (("this", "is"), 4),
91
+ (("is", "test"), 3),
92
+ (("this", "a"), 3),
93
+ (("a", "a"), 1),
94
+ (("is", "is"), 1),
95
+ (("test", "test"), 1),
96
+ (("this", "this"), 1),
97
+ ]
98
+ )
99
+ assert sorted(b.word_fd.items()) == sorted(
100
+ [("a", 2), ("is", 2), ("test", 2), ("this", 2)]
101
+ )
102
+ n_word_fd = sum(b.word_fd.values())
103
+ n_ngram_fd = (sum(b.ngram_fd.values()) + 4 + 3 + 2 + 1) / 4.0
104
+ assert len(SENT) == n_word_fd == n_ngram_fd
105
+ assert close_enough(
106
+ sorted(b.score_ngrams(BigramAssocMeasures.pmi)),
107
+ sorted(
108
+ [
109
+ (("a", "test"), 1.0),
110
+ (("is", "a"), 1.0),
111
+ (("this", "is"), 1.0),
112
+ (("is", "test"), 0.5849625007211562),
113
+ (("this", "a"), 0.5849625007211562),
114
+ (("a", "a"), -1.0),
115
+ (("is", "is"), -1.0),
116
+ (("test", "test"), -1.0),
117
+ (("this", "this"), -1.0),
118
+ ]
119
+ ),
120
+ )
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_corpus_views.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Corpus View Regression Tests
3
+ """
4
+ import unittest
5
+
6
+ import nltk.data
7
+ from nltk.corpus.reader.util import (
8
+ StreamBackedCorpusView,
9
+ read_line_block,
10
+ read_whitespace_block,
11
+ )
12
+
13
+
14
+ class TestCorpusViews(unittest.TestCase):
15
+
16
+ linetok = nltk.LineTokenizer(blanklines="keep")
17
+ names = [
18
+ "corpora/inaugural/README", # A very short file (160 chars)
19
+ "corpora/inaugural/1793-Washington.txt", # A relatively short file (791 chars)
20
+ "corpora/inaugural/1909-Taft.txt", # A longer file (32k chars)
21
+ ]
22
+
23
+ def data(self):
24
+ for name in self.names:
25
+ f = nltk.data.find(name)
26
+ with f.open() as fp:
27
+ file_data = fp.read().decode("utf8")
28
+ yield f, file_data
29
+
30
+ def test_correct_values(self):
31
+ # Check that corpus views produce the correct sequence of values.
32
+
33
+ for f, file_data in self.data():
34
+ v = StreamBackedCorpusView(f, read_whitespace_block)
35
+ self.assertEqual(list(v), file_data.split())
36
+
37
+ v = StreamBackedCorpusView(f, read_line_block)
38
+ self.assertEqual(list(v), self.linetok.tokenize(file_data))
39
+
40
+ def test_correct_length(self):
41
+ # Check that the corpus views report the correct lengths:
42
+
43
+ for f, file_data in self.data():
44
+ v = StreamBackedCorpusView(f, read_whitespace_block)
45
+ self.assertEqual(len(v), len(file_data.split()))
46
+
47
+ v = StreamBackedCorpusView(f, read_line_block)
48
+ self.assertEqual(len(v), len(self.linetok.tokenize(file_data)))
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_freqdist.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import nltk
2
+
3
+
4
+ def test_iterating_returns_an_iterator_ordered_by_frequency():
5
+ samples = ["one", "two", "two"]
6
+ distribution = nltk.FreqDist(samples)
7
+ assert list(distribution) == ["two", "one"]
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_json2csv_corpus.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Twitter client
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Lorenzo Rubio <lrnzcig@gmail.com>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ Regression tests for `json2csv()` and `json2csv_entities()` in Twitter
10
+ package.
11
+ """
12
+ from pathlib import Path
13
+
14
+ import pytest
15
+
16
+ from nltk.corpus import twitter_samples
17
+ from nltk.twitter.common import json2csv, json2csv_entities
18
+
19
+
20
+ def files_are_identical(pathA, pathB):
21
+ """
22
+ Compare two files, ignoring carriage returns,
23
+ leading whitespace, and trailing whitespace
24
+ """
25
+ f1 = [l.strip() for l in pathA.read_bytes().splitlines()]
26
+ f2 = [l.strip() for l in pathB.read_bytes().splitlines()]
27
+ return f1 == f2
28
+
29
+
30
+ subdir = Path(__file__).parent / "files"
31
+
32
+
33
+ @pytest.fixture
34
+ def infile():
35
+ with open(twitter_samples.abspath("tweets.20150430-223406.json")) as infile:
36
+ return [next(infile) for x in range(100)]
37
+
38
+
39
+ def test_textoutput(tmp_path, infile):
40
+ ref_fn = subdir / "tweets.20150430-223406.text.csv.ref"
41
+ outfn = tmp_path / "tweets.20150430-223406.text.csv"
42
+ json2csv(infile, outfn, ["text"], gzip_compress=False)
43
+ assert files_are_identical(outfn, ref_fn)
44
+
45
+
46
+ def test_tweet_metadata(tmp_path, infile):
47
+ ref_fn = subdir / "tweets.20150430-223406.tweet.csv.ref"
48
+ fields = [
49
+ "created_at",
50
+ "favorite_count",
51
+ "id",
52
+ "in_reply_to_status_id",
53
+ "in_reply_to_user_id",
54
+ "retweet_count",
55
+ "retweeted",
56
+ "text",
57
+ "truncated",
58
+ "user.id",
59
+ ]
60
+
61
+ outfn = tmp_path / "tweets.20150430-223406.tweet.csv"
62
+ json2csv(infile, outfn, fields, gzip_compress=False)
63
+ assert files_are_identical(outfn, ref_fn)
64
+
65
+
66
+ def test_user_metadata(tmp_path, infile):
67
+ ref_fn = subdir / "tweets.20150430-223406.user.csv.ref"
68
+ fields = ["id", "text", "user.id", "user.followers_count", "user.friends_count"]
69
+
70
+ outfn = tmp_path / "tweets.20150430-223406.user.csv"
71
+ json2csv(infile, outfn, fields, gzip_compress=False)
72
+ assert files_are_identical(outfn, ref_fn)
73
+
74
+
75
+ def test_tweet_hashtag(tmp_path, infile):
76
+ ref_fn = subdir / "tweets.20150430-223406.hashtag.csv.ref"
77
+ outfn = tmp_path / "tweets.20150430-223406.hashtag.csv"
78
+ json2csv_entities(
79
+ infile,
80
+ outfn,
81
+ ["id", "text"],
82
+ "hashtags",
83
+ ["text"],
84
+ gzip_compress=False,
85
+ )
86
+ assert files_are_identical(outfn, ref_fn)
87
+
88
+
89
+ def test_tweet_usermention(tmp_path, infile):
90
+ ref_fn = subdir / "tweets.20150430-223406.usermention.csv.ref"
91
+ outfn = tmp_path / "tweets.20150430-223406.usermention.csv"
92
+ json2csv_entities(
93
+ infile,
94
+ outfn,
95
+ ["id", "text"],
96
+ "user_mentions",
97
+ ["id", "screen_name"],
98
+ gzip_compress=False,
99
+ )
100
+ assert files_are_identical(outfn, ref_fn)
101
+
102
+
103
+ def test_tweet_media(tmp_path, infile):
104
+ ref_fn = subdir / "tweets.20150430-223406.media.csv.ref"
105
+ outfn = tmp_path / "tweets.20150430-223406.media.csv"
106
+ json2csv_entities(
107
+ infile,
108
+ outfn,
109
+ ["id"],
110
+ "media",
111
+ ["media_url", "url"],
112
+ gzip_compress=False,
113
+ )
114
+
115
+ assert files_are_identical(outfn, ref_fn)
116
+
117
+
118
+ def test_tweet_url(tmp_path, infile):
119
+ ref_fn = subdir / "tweets.20150430-223406.url.csv.ref"
120
+ outfn = tmp_path / "tweets.20150430-223406.url.csv"
121
+ json2csv_entities(
122
+ infile,
123
+ outfn,
124
+ ["id"],
125
+ "urls",
126
+ ["url", "expanded_url"],
127
+ gzip_compress=False,
128
+ )
129
+
130
+ assert files_are_identical(outfn, ref_fn)
131
+
132
+
133
+ def test_userurl(tmp_path, infile):
134
+ ref_fn = subdir / "tweets.20150430-223406.userurl.csv.ref"
135
+ outfn = tmp_path / "tweets.20150430-223406.userurl.csv"
136
+ json2csv_entities(
137
+ infile,
138
+ outfn,
139
+ ["id", "screen_name"],
140
+ "user.urls",
141
+ ["url", "expanded_url"],
142
+ gzip_compress=False,
143
+ )
144
+
145
+ assert files_are_identical(outfn, ref_fn)
146
+
147
+
148
+ def test_tweet_place(tmp_path, infile):
149
+ ref_fn = subdir / "tweets.20150430-223406.place.csv.ref"
150
+ outfn = tmp_path / "tweets.20150430-223406.place.csv"
151
+ json2csv_entities(
152
+ infile,
153
+ outfn,
154
+ ["id", "text"],
155
+ "place",
156
+ ["name", "country"],
157
+ gzip_compress=False,
158
+ )
159
+
160
+ assert files_are_identical(outfn, ref_fn)
161
+
162
+
163
+ def test_tweet_place_boundingbox(tmp_path, infile):
164
+ ref_fn = subdir / "tweets.20150430-223406.placeboundingbox.csv.ref"
165
+ outfn = tmp_path / "tweets.20150430-223406.placeboundingbox.csv"
166
+ json2csv_entities(
167
+ infile,
168
+ outfn,
169
+ ["id", "name"],
170
+ "place.bounding_box",
171
+ ["coordinates"],
172
+ gzip_compress=False,
173
+ )
174
+
175
+ assert files_are_identical(outfn, ref_fn)
176
+
177
+
178
+ def test_retweet_original_tweet(tmp_path, infile):
179
+ ref_fn = subdir / "tweets.20150430-223406.retweet.csv.ref"
180
+ outfn = tmp_path / "tweets.20150430-223406.retweet.csv"
181
+ json2csv_entities(
182
+ infile,
183
+ outfn,
184
+ ["id"],
185
+ "retweeted_status",
186
+ [
187
+ "created_at",
188
+ "favorite_count",
189
+ "id",
190
+ "in_reply_to_status_id",
191
+ "in_reply_to_user_id",
192
+ "retweet_count",
193
+ "text",
194
+ "truncated",
195
+ "user.id",
196
+ ],
197
+ gzip_compress=False,
198
+ )
199
+
200
+ assert files_are_identical(outfn, ref_fn)
201
+
202
+
203
+ def test_file_is_wrong(tmp_path, infile):
204
+ """
205
+ Sanity check that file comparison is not giving false positives.
206
+ """
207
+ ref_fn = subdir / "tweets.20150430-223406.retweet.csv.ref"
208
+ outfn = tmp_path / "tweets.20150430-223406.text.csv"
209
+ json2csv(infile, outfn, ["text"], gzip_compress=False)
210
+ assert not files_are_identical(outfn, ref_fn)
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_json_serialization.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ from nltk.corpus import brown
4
+ from nltk.jsontags import JSONTaggedDecoder, JSONTaggedEncoder
5
+ from nltk.tag import (
6
+ AffixTagger,
7
+ BigramTagger,
8
+ BrillTagger,
9
+ BrillTaggerTrainer,
10
+ DefaultTagger,
11
+ NgramTagger,
12
+ PerceptronTagger,
13
+ RegexpTagger,
14
+ TrigramTagger,
15
+ UnigramTagger,
16
+ )
17
+ from nltk.tag.brill import nltkdemo18
18
+
19
+
20
+ class TestJSONSerialization(unittest.TestCase):
21
+ def setUp(self):
22
+ self.corpus = brown.tagged_sents()[:35]
23
+ self.decoder = JSONTaggedDecoder()
24
+ self.encoder = JSONTaggedEncoder()
25
+ self.default_tagger = DefaultTagger("NN")
26
+
27
+ def test_default_tagger(self):
28
+ encoded = self.encoder.encode(self.default_tagger)
29
+ decoded = self.decoder.decode(encoded)
30
+
31
+ self.assertEqual(repr(self.default_tagger), repr(decoded))
32
+ self.assertEqual(self.default_tagger._tag, decoded._tag)
33
+
34
+ def test_regexp_tagger(self):
35
+ tagger = RegexpTagger([(r".*", "NN")], backoff=self.default_tagger)
36
+
37
+ encoded = self.encoder.encode(tagger)
38
+ decoded = self.decoder.decode(encoded)
39
+
40
+ self.assertEqual(repr(tagger), repr(decoded))
41
+ self.assertEqual(repr(tagger.backoff), repr(decoded.backoff))
42
+ self.assertEqual(tagger._regexps, decoded._regexps)
43
+
44
+ def test_affix_tagger(self):
45
+ tagger = AffixTagger(self.corpus, backoff=self.default_tagger)
46
+
47
+ encoded = self.encoder.encode(tagger)
48
+ decoded = self.decoder.decode(encoded)
49
+
50
+ self.assertEqual(repr(tagger), repr(decoded))
51
+ self.assertEqual(repr(tagger.backoff), repr(decoded.backoff))
52
+ self.assertEqual(tagger._affix_length, decoded._affix_length)
53
+ self.assertEqual(tagger._min_word_length, decoded._min_word_length)
54
+ self.assertEqual(tagger._context_to_tag, decoded._context_to_tag)
55
+
56
+ def test_ngram_taggers(self):
57
+ unitagger = UnigramTagger(self.corpus, backoff=self.default_tagger)
58
+ bitagger = BigramTagger(self.corpus, backoff=unitagger)
59
+ tritagger = TrigramTagger(self.corpus, backoff=bitagger)
60
+ ntagger = NgramTagger(4, self.corpus, backoff=tritagger)
61
+
62
+ encoded = self.encoder.encode(ntagger)
63
+ decoded = self.decoder.decode(encoded)
64
+
65
+ self.assertEqual(repr(ntagger), repr(decoded))
66
+ self.assertEqual(repr(tritagger), repr(decoded.backoff))
67
+ self.assertEqual(repr(bitagger), repr(decoded.backoff.backoff))
68
+ self.assertEqual(repr(unitagger), repr(decoded.backoff.backoff.backoff))
69
+ self.assertEqual(
70
+ repr(self.default_tagger), repr(decoded.backoff.backoff.backoff.backoff)
71
+ )
72
+
73
+ def test_perceptron_tagger(self):
74
+ tagger = PerceptronTagger(load=False)
75
+ tagger.train(self.corpus)
76
+
77
+ encoded = self.encoder.encode(tagger)
78
+ decoded = self.decoder.decode(encoded)
79
+
80
+ self.assertEqual(tagger.model.weights, decoded.model.weights)
81
+ self.assertEqual(tagger.tagdict, decoded.tagdict)
82
+ self.assertEqual(tagger.classes, decoded.classes)
83
+
84
+ def test_brill_tagger(self):
85
+ trainer = BrillTaggerTrainer(
86
+ self.default_tagger, nltkdemo18(), deterministic=True
87
+ )
88
+ tagger = trainer.train(self.corpus, max_rules=30)
89
+
90
+ encoded = self.encoder.encode(tagger)
91
+ decoded = self.decoder.decode(encoded)
92
+
93
+ self.assertEqual(repr(tagger._initial_tagger), repr(decoded._initial_tagger))
94
+ self.assertEqual(tagger._rules, decoded._rules)
95
+ self.assertEqual(tagger._training_stats, decoded._training_stats)
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_rte_classify.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from nltk import config_megam
4
+ from nltk.classify.rte_classify import RTEFeatureExtractor, rte_classifier, rte_features
5
+ from nltk.corpus import rte as rte_corpus
6
+
7
+ expected_from_rte_feature_extration = """
8
+ alwayson => True
9
+ ne_hyp_extra => 0
10
+ ne_overlap => 1
11
+ neg_hyp => 0
12
+ neg_txt => 0
13
+ word_hyp_extra => 3
14
+ word_overlap => 3
15
+
16
+ alwayson => True
17
+ ne_hyp_extra => 0
18
+ ne_overlap => 1
19
+ neg_hyp => 0
20
+ neg_txt => 0
21
+ word_hyp_extra => 2
22
+ word_overlap => 1
23
+
24
+ alwayson => True
25
+ ne_hyp_extra => 1
26
+ ne_overlap => 1
27
+ neg_hyp => 0
28
+ neg_txt => 0
29
+ word_hyp_extra => 1
30
+ word_overlap => 2
31
+
32
+ alwayson => True
33
+ ne_hyp_extra => 1
34
+ ne_overlap => 0
35
+ neg_hyp => 0
36
+ neg_txt => 0
37
+ word_hyp_extra => 6
38
+ word_overlap => 2
39
+
40
+ alwayson => True
41
+ ne_hyp_extra => 1
42
+ ne_overlap => 0
43
+ neg_hyp => 0
44
+ neg_txt => 0
45
+ word_hyp_extra => 4
46
+ word_overlap => 0
47
+
48
+ alwayson => True
49
+ ne_hyp_extra => 1
50
+ ne_overlap => 0
51
+ neg_hyp => 0
52
+ neg_txt => 0
53
+ word_hyp_extra => 3
54
+ word_overlap => 1
55
+ """
56
+
57
+
58
+ class TestRTEClassifier:
59
+ # Test the feature extraction method.
60
+ def test_rte_feature_extraction(self):
61
+ pairs = rte_corpus.pairs(["rte1_dev.xml"])[:6]
62
+ test_output = [
63
+ f"{key:<15} => {rte_features(pair)[key]}"
64
+ for pair in pairs
65
+ for key in sorted(rte_features(pair))
66
+ ]
67
+ expected_output = expected_from_rte_feature_extration.strip().split("\n")
68
+ # Remove null strings.
69
+ expected_output = list(filter(None, expected_output))
70
+ assert test_output == expected_output
71
+
72
+ # Test the RTEFeatureExtractor object.
73
+ def test_feature_extractor_object(self):
74
+ rtepair = rte_corpus.pairs(["rte3_dev.xml"])[33]
75
+ extractor = RTEFeatureExtractor(rtepair)
76
+
77
+ assert extractor.hyp_words == {"member", "China", "SCO."}
78
+ assert extractor.overlap("word") == set()
79
+ assert extractor.overlap("ne") == {"China"}
80
+ assert extractor.hyp_extra("word") == {"member"}
81
+
82
+ # Test the RTE classifier training.
83
+ def test_rte_classification_without_megam(self):
84
+ # Use a sample size for unit testing, since we
85
+ # don't need to fully train these classifiers
86
+ clf = rte_classifier("IIS", sample_N=100)
87
+ clf = rte_classifier("GIS", sample_N=100)
88
+
89
+ def test_rte_classification_with_megam(self):
90
+ try:
91
+ config_megam()
92
+ except (LookupError, AttributeError) as e:
93
+ pytest.skip("Skipping tests with dependencies on MEGAM")
94
+ clf = rte_classifier("megam", sample_N=100)
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_seekable_unicode_stream_reader.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from io import BytesIO
3
+
4
+ import pytest
5
+
6
+ from nltk.corpus.reader import SeekableUnicodeStreamReader
7
+
8
+
9
+ def check_reader(unicode_string, encoding):
10
+ bytestr = unicode_string.encode(encoding)
11
+ stream = BytesIO(bytestr)
12
+ reader = SeekableUnicodeStreamReader(stream, encoding)
13
+
14
+ # Should open at the start of the file
15
+ assert reader.tell() == 0
16
+
17
+ # Compare original string to contents from `.readlines()`
18
+ assert unicode_string == "".join(reader.readlines())
19
+
20
+ # Should be at the end of the file now
21
+ stream.seek(0, os.SEEK_END)
22
+ assert reader.tell() == stream.tell()
23
+
24
+ reader.seek(0) # go back to start
25
+
26
+ # Compare original string to contents from `.read()`
27
+ contents = ""
28
+ char = None
29
+ while char != "":
30
+ char = reader.read(1)
31
+ contents += char
32
+ assert unicode_string == contents
33
+
34
+
35
+ # Call `check_reader` with a variety of input strings and encodings.
36
+ ENCODINGS = ["ascii", "latin1", "greek", "hebrew", "utf-16", "utf-8"]
37
+
38
+ STRINGS = [
39
+ """
40
+ This is a test file.
41
+ It is fairly short.
42
+ """,
43
+ "This file can be encoded with latin1. \x83",
44
+ """\
45
+ This is a test file.
46
+ Here's a blank line:
47
+
48
+ And here's some unicode: \xee \u0123 \uffe3
49
+ """,
50
+ """\
51
+ This is a test file.
52
+ Unicode characters: \xf3 \u2222 \u3333\u4444 \u5555
53
+ """,
54
+ """\
55
+ This is a larger file. It has some lines that are longer \
56
+ than 72 characters. It's got lots of repetition. Here's \
57
+ some unicode chars: \xee \u0123 \uffe3 \ueeee \u2345
58
+
59
+ How fun! Let's repeat it twenty times.
60
+ """
61
+ * 20,
62
+ ]
63
+
64
+
65
+ @pytest.mark.parametrize("string", STRINGS)
66
+ def test_reader(string):
67
+ for encoding in ENCODINGS:
68
+ # skip strings that can't be encoded with the current encoding
69
+ try:
70
+ string.encode(encoding)
71
+ except UnicodeEncodeError:
72
+ continue
73
+ check_reader(string, encoding)
74
+
75
+
76
+ def test_reader_stream_closes_when_deleted():
77
+ reader = SeekableUnicodeStreamReader(BytesIO(b""), "ascii")
78
+ assert not reader.stream.closed
79
+ reader.__del__()
80
+ assert reader.stream.closed
81
+
82
+
83
+ def teardown_module(module=None):
84
+ import gc
85
+
86
+ gc.collect()
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_tokenize.py ADDED
@@ -0,0 +1,867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Unit tests for nltk.tokenize.
3
+ See also nltk/test/tokenize.doctest
4
+ """
5
+ from typing import List, Tuple
6
+
7
+ import pytest
8
+
9
+ from nltk.tokenize import (
10
+ LegalitySyllableTokenizer,
11
+ StanfordSegmenter,
12
+ SyllableTokenizer,
13
+ TreebankWordTokenizer,
14
+ TweetTokenizer,
15
+ punkt,
16
+ sent_tokenize,
17
+ word_tokenize,
18
+ )
19
+
20
+
21
+ def load_stanford_segmenter():
22
+ try:
23
+ seg = StanfordSegmenter()
24
+ seg.default_config("ar")
25
+ seg.default_config("zh")
26
+ return True
27
+ except LookupError:
28
+ return False
29
+
30
+
31
+ check_stanford_segmenter = pytest.mark.skipif(
32
+ not load_stanford_segmenter(),
33
+ reason="NLTK was unable to find stanford-segmenter.jar.",
34
+ )
35
+
36
+
37
+ class TestTokenize:
38
+ def test_tweet_tokenizer(self):
39
+ """
40
+ Test TweetTokenizer using words with special and accented characters.
41
+ """
42
+
43
+ tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True)
44
+ s9 = "@myke: Let's test these words: resumé España München français"
45
+ tokens = tokenizer.tokenize(s9)
46
+ expected = [
47
+ ":",
48
+ "Let's",
49
+ "test",
50
+ "these",
51
+ "words",
52
+ ":",
53
+ "resumé",
54
+ "España",
55
+ "München",
56
+ "français",
57
+ ]
58
+ assert tokens == expected
59
+
60
+ @pytest.mark.parametrize(
61
+ "test_input, expecteds",
62
+ [
63
+ (
64
+ "My text 0106404243030 is great text",
65
+ (
66
+ ["My", "text", "01064042430", "30", "is", "great", "text"],
67
+ ["My", "text", "0106404243030", "is", "great", "text"],
68
+ ),
69
+ ),
70
+ (
71
+ "My ticket id is 1234543124123",
72
+ (
73
+ ["My", "ticket", "id", "is", "12345431241", "23"],
74
+ ["My", "ticket", "id", "is", "1234543124123"],
75
+ ),
76
+ ),
77
+ (
78
+ "@remy: This is waaaaayyyy too much for you!!!!!! 01064042430",
79
+ (
80
+ [
81
+ ":",
82
+ "This",
83
+ "is",
84
+ "waaayyy",
85
+ "too",
86
+ "much",
87
+ "for",
88
+ "you",
89
+ "!",
90
+ "!",
91
+ "!",
92
+ "01064042430",
93
+ ],
94
+ [
95
+ ":",
96
+ "This",
97
+ "is",
98
+ "waaayyy",
99
+ "too",
100
+ "much",
101
+ "for",
102
+ "you",
103
+ "!",
104
+ "!",
105
+ "!",
106
+ "01064042430",
107
+ ],
108
+ ),
109
+ ),
110
+ # Further tests from https://github.com/nltk/nltk/pull/2798#issuecomment-922533085,
111
+ # showing the TweetTokenizer performance for `match_phone_numbers=True` and
112
+ # `match_phone_numbers=False`.
113
+ (
114
+ # Some phone numbers are always tokenized, even with `match_phone_numbers=`False`
115
+ "My number is 06-46124080, except it's not.",
116
+ (
117
+ [
118
+ "My",
119
+ "number",
120
+ "is",
121
+ "06-46124080",
122
+ ",",
123
+ "except",
124
+ "it's",
125
+ "not",
126
+ ".",
127
+ ],
128
+ [
129
+ "My",
130
+ "number",
131
+ "is",
132
+ "06-46124080",
133
+ ",",
134
+ "except",
135
+ "it's",
136
+ "not",
137
+ ".",
138
+ ],
139
+ ),
140
+ ),
141
+ (
142
+ # Phone number here is only tokenized correctly if `match_phone_numbers=True`
143
+ "My number is 601-984-4813, except it's not.",
144
+ (
145
+ [
146
+ "My",
147
+ "number",
148
+ "is",
149
+ "601-984-4813",
150
+ ",",
151
+ "except",
152
+ "it's",
153
+ "not",
154
+ ".",
155
+ ],
156
+ [
157
+ "My",
158
+ "number",
159
+ "is",
160
+ "601-984-",
161
+ "4813",
162
+ ",",
163
+ "except",
164
+ "it's",
165
+ "not",
166
+ ".",
167
+ ],
168
+ ),
169
+ ),
170
+ (
171
+ # Phone number here is only tokenized correctly if `match_phone_numbers=True`
172
+ "My number is (393) 928 -3010, except it's not.",
173
+ (
174
+ [
175
+ "My",
176
+ "number",
177
+ "is",
178
+ "(393) 928 -3010",
179
+ ",",
180
+ "except",
181
+ "it's",
182
+ "not",
183
+ ".",
184
+ ],
185
+ [
186
+ "My",
187
+ "number",
188
+ "is",
189
+ "(",
190
+ "393",
191
+ ")",
192
+ "928",
193
+ "-",
194
+ "3010",
195
+ ",",
196
+ "except",
197
+ "it's",
198
+ "not",
199
+ ".",
200
+ ],
201
+ ),
202
+ ),
203
+ (
204
+ # A long number is tokenized correctly only if `match_phone_numbers=False`
205
+ "The product identification number is 48103284512.",
206
+ (
207
+ [
208
+ "The",
209
+ "product",
210
+ "identification",
211
+ "number",
212
+ "is",
213
+ "4810328451",
214
+ "2",
215
+ ".",
216
+ ],
217
+ [
218
+ "The",
219
+ "product",
220
+ "identification",
221
+ "number",
222
+ "is",
223
+ "48103284512",
224
+ ".",
225
+ ],
226
+ ),
227
+ ),
228
+ (
229
+ # `match_phone_numbers=True` can have some unforeseen
230
+ "My favourite substraction is 240 - 1353.",
231
+ (
232
+ ["My", "favourite", "substraction", "is", "240 - 1353", "."],
233
+ ["My", "favourite", "substraction", "is", "240", "-", "1353", "."],
234
+ ),
235
+ ),
236
+ ],
237
+ )
238
+ def test_tweet_tokenizer_expanded(
239
+ self, test_input: str, expecteds: Tuple[List[str], List[str]]
240
+ ):
241
+ """
242
+ Test `match_phone_numbers` in TweetTokenizer.
243
+
244
+ Note that TweetTokenizer is also passed the following for these tests:
245
+ * strip_handles=True
246
+ * reduce_len=True
247
+
248
+ :param test_input: The input string to tokenize using TweetTokenizer.
249
+ :type test_input: str
250
+ :param expecteds: A 2-tuple of tokenized sentences. The first of the two
251
+ tokenized is the expected output of tokenization with `match_phone_numbers=True`.
252
+ The second of the two tokenized lists is the expected output of tokenization
253
+ with `match_phone_numbers=False`.
254
+ :type expecteds: Tuple[List[str], List[str]]
255
+ """
256
+ for match_phone_numbers, expected in zip([True, False], expecteds):
257
+ tokenizer = TweetTokenizer(
258
+ strip_handles=True,
259
+ reduce_len=True,
260
+ match_phone_numbers=match_phone_numbers,
261
+ )
262
+ predicted = tokenizer.tokenize(test_input)
263
+ assert predicted == expected
264
+
265
+ def test_sonority_sequencing_syllable_tokenizer(self):
266
+ """
267
+ Test SyllableTokenizer tokenizer.
268
+ """
269
+ tokenizer = SyllableTokenizer()
270
+ tokens = tokenizer.tokenize("justification")
271
+ assert tokens == ["jus", "ti", "fi", "ca", "tion"]
272
+
273
+ def test_syllable_tokenizer_numbers(self):
274
+ """
275
+ Test SyllableTokenizer tokenizer.
276
+ """
277
+ tokenizer = SyllableTokenizer()
278
+ text = "9" * 10000
279
+ tokens = tokenizer.tokenize(text)
280
+ assert tokens == [text]
281
+
282
+ def test_legality_principle_syllable_tokenizer(self):
283
+ """
284
+ Test LegalitySyllableTokenizer tokenizer.
285
+ """
286
+ from nltk.corpus import words
287
+
288
+ test_word = "wonderful"
289
+ tokenizer = LegalitySyllableTokenizer(words.words())
290
+ tokens = tokenizer.tokenize(test_word)
291
+ assert tokens == ["won", "der", "ful"]
292
+
293
+ @check_stanford_segmenter
294
+ def test_stanford_segmenter_arabic(self):
295
+ """
296
+ Test the Stanford Word Segmenter for Arabic (default config)
297
+ """
298
+ seg = StanfordSegmenter()
299
+ seg.default_config("ar")
300
+ sent = "يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات"
301
+ segmented_sent = seg.segment(sent.split())
302
+ assert segmented_sent.split() == [
303
+ "يبحث",
304
+ "علم",
305
+ "الحاسوب",
306
+ "استخدام",
307
+ "الحوسبة",
308
+ "ب",
309
+ "جميع",
310
+ "اشكال",
311
+ "ها",
312
+ "ل",
313
+ "حل",
314
+ "المشكلات",
315
+ ]
316
+
317
+ @check_stanford_segmenter
318
+ def test_stanford_segmenter_chinese(self):
319
+ """
320
+ Test the Stanford Word Segmenter for Chinese (default config)
321
+ """
322
+ seg = StanfordSegmenter()
323
+ seg.default_config("zh")
324
+ sent = "这是斯坦福中文分词器测试"
325
+ segmented_sent = seg.segment(sent.split())
326
+ assert segmented_sent.split() == ["这", "是", "斯坦福", "中文", "分词器", "测试"]
327
+
328
+ def test_phone_tokenizer(self):
329
+ """
330
+ Test a string that resembles a phone number but contains a newline
331
+ """
332
+
333
+ # Should be recognized as a phone number, albeit one with multiple spaces
334
+ tokenizer = TweetTokenizer()
335
+ test1 = "(393) 928 -3010"
336
+ expected = ["(393) 928 -3010"]
337
+ result = tokenizer.tokenize(test1)
338
+ assert result == expected
339
+
340
+ # Due to newline, first three elements aren't part of a phone number;
341
+ # fourth is
342
+ test2 = "(393)\n928 -3010"
343
+ expected = ["(", "393", ")", "928 -3010"]
344
+ result = tokenizer.tokenize(test2)
345
+ assert result == expected
346
+
347
+ def test_emoji_tokenizer(self):
348
+ """
349
+ Test a string that contains Emoji ZWJ Sequences and skin tone modifier
350
+ """
351
+ tokenizer = TweetTokenizer()
352
+
353
+ # A Emoji ZWJ Sequences, they together build as a single emoji, should not be split.
354
+ test1 = "👨‍👩‍👧‍👧"
355
+ expected = ["👨‍👩‍👧‍👧"]
356
+ result = tokenizer.tokenize(test1)
357
+ assert result == expected
358
+
359
+ # A Emoji with skin tone modifier, the two characters build a single emoji, should not be split.
360
+ test2 = "👨🏿"
361
+ expected = ["👨🏿"]
362
+ result = tokenizer.tokenize(test2)
363
+ assert result == expected
364
+
365
+ # A string containing both skin tone modifier and ZWJ Sequences
366
+ test3 = "🤔 🙈 me así, se😌 ds 💕👭👙 hello 👩🏾‍🎓 emoji hello 👨‍👩‍👦‍👦 how are 😊 you today🙅🏽🙅🏽"
367
+ expected = [
368
+ "🤔",
369
+ "🙈",
370
+ "me",
371
+ "así",
372
+ ",",
373
+ "se",
374
+ "😌",
375
+ "ds",
376
+ "💕",
377
+ "👭",
378
+ "👙",
379
+ "hello",
380
+ "👩🏾\u200d🎓",
381
+ "emoji",
382
+ "hello",
383
+ "👨\u200d👩\u200d👦\u200d👦",
384
+ "how",
385
+ "are",
386
+ "😊",
387
+ "you",
388
+ "today",
389
+ "🙅🏽",
390
+ "🙅🏽",
391
+ ]
392
+ result = tokenizer.tokenize(test3)
393
+ assert result == expected
394
+
395
+ # emoji flag sequences, including enclosed letter pairs
396
+ # Expected behavior from #3034
397
+ test4 = "🇦🇵🇵🇱🇪"
398
+ expected = ["🇦🇵", "🇵🇱", "🇪"]
399
+ result = tokenizer.tokenize(test4)
400
+ assert result == expected
401
+
402
+ test5 = "Hi 🇨🇦, 😍!!"
403
+ expected = ["Hi", "🇨🇦", ",", "😍", "!", "!"]
404
+ result = tokenizer.tokenize(test5)
405
+ assert result == expected
406
+
407
+ test6 = "<3 🇨🇦 🤝 🇵🇱 <3"
408
+ expected = ["<3", "🇨🇦", "🤝", "🇵🇱", "<3"]
409
+ result = tokenizer.tokenize(test6)
410
+ assert result == expected
411
+
412
+ def test_pad_asterisk(self):
413
+ """
414
+ Test padding of asterisk for word tokenization.
415
+ """
416
+ text = "This is a, *weird sentence with *asterisks in it."
417
+ expected = [
418
+ "This",
419
+ "is",
420
+ "a",
421
+ ",",
422
+ "*",
423
+ "weird",
424
+ "sentence",
425
+ "with",
426
+ "*",
427
+ "asterisks",
428
+ "in",
429
+ "it",
430
+ ".",
431
+ ]
432
+ assert word_tokenize(text) == expected
433
+
434
+ def test_pad_dotdot(self):
435
+ """
436
+ Test padding of dotdot* for word tokenization.
437
+ """
438
+ text = "Why did dotdot.. not get tokenized but dotdotdot... did? How about manydots....."
439
+ expected = [
440
+ "Why",
441
+ "did",
442
+ "dotdot",
443
+ "..",
444
+ "not",
445
+ "get",
446
+ "tokenized",
447
+ "but",
448
+ "dotdotdot",
449
+ "...",
450
+ "did",
451
+ "?",
452
+ "How",
453
+ "about",
454
+ "manydots",
455
+ ".....",
456
+ ]
457
+ assert word_tokenize(text) == expected
458
+
459
+ def test_remove_handle(self):
460
+ """
461
+ Test remove_handle() from casual.py with specially crafted edge cases
462
+ """
463
+
464
+ tokenizer = TweetTokenizer(strip_handles=True)
465
+
466
+ # Simple example. Handles with just numbers should be allowed
467
+ test1 = "@twitter hello @twi_tter_. hi @12345 @123news"
468
+ expected = ["hello", ".", "hi"]
469
+ result = tokenizer.tokenize(test1)
470
+ assert result == expected
471
+
472
+ # Handles are allowed to follow any of the following characters
473
+ test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n."
474
+ expected = [
475
+ "`",
476
+ "~",
477
+ "(",
478
+ ")",
479
+ "-",
480
+ "=",
481
+ "+",
482
+ "\\",
483
+ "|",
484
+ "[",
485
+ "]",
486
+ "{",
487
+ "}",
488
+ ";",
489
+ ":",
490
+ "'",
491
+ '"',
492
+ "/",
493
+ "?",
494
+ ".",
495
+ ",",
496
+ "<",
497
+ ">",
498
+ "ñ",
499
+ ".",
500
+ "ü",
501
+ ".",
502
+ "ç",
503
+ ".",
504
+ ]
505
+ result = tokenizer.tokenize(test2)
506
+ assert result == expected
507
+
508
+ # Handles are NOT allowed to follow any of the following characters
509
+ test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n"
510
+ expected = [
511
+ "a",
512
+ "@n",
513
+ "j",
514
+ "@n",
515
+ "z",
516
+ "@n",
517
+ "A",
518
+ "@n",
519
+ "L",
520
+ "@n",
521
+ "Z",
522
+ "@n",
523
+ "1",
524
+ "@n",
525
+ "4",
526
+ "@n",
527
+ "7",
528
+ "@n",
529
+ "9",
530
+ "@n",
531
+ "0",
532
+ "@n",
533
+ "_",
534
+ "@n",
535
+ "!",
536
+ "@n",
537
+ "@",
538
+ "@n",
539
+ "#",
540
+ "@n",
541
+ "$",
542
+ "@n",
543
+ "%",
544
+ "@n",
545
+ "&",
546
+ "@n",
547
+ "*",
548
+ "@n",
549
+ ]
550
+ result = tokenizer.tokenize(test3)
551
+ assert result == expected
552
+
553
+ # Handles are allowed to precede the following characters
554
+ test4 = "@n!a @n#a @n$a @n%a @n&a @n*a"
555
+ expected = ["!", "a", "#", "a", "$", "a", "%", "a", "&", "a", "*", "a"]
556
+ result = tokenizer.tokenize(test4)
557
+ assert result == expected
558
+
559
+ # Tests interactions with special symbols and multiple @
560
+ test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n"
561
+ expected = [
562
+ "!",
563
+ "@n",
564
+ "#",
565
+ "@n",
566
+ "$",
567
+ "@n",
568
+ "%",
569
+ "@n",
570
+ "&",
571
+ "@n",
572
+ "*",
573
+ "@n",
574
+ "@n",
575
+ "@n",
576
+ "@",
577
+ "@n",
578
+ "@n",
579
+ "@",
580
+ "@n",
581
+ "@n_",
582
+ "@n",
583
+ "@n7",
584
+ "@n",
585
+ "@nj",
586
+ "@n",
587
+ ]
588
+ result = tokenizer.tokenize(test5)
589
+ assert result == expected
590
+
591
+ # Tests that handles can have a max length of 15
592
+ test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmno1234 @abcdefghijklmno_ @abcdefghijklmnoendofhandle"
593
+ expected = ["pqrstuvwxyz", "1234", "_", "endofhandle"]
594
+ result = tokenizer.tokenize(test6)
595
+ assert result == expected
596
+
597
+ # Edge case where an @ comes directly after a long handle
598
+ test7 = "@abcdefghijklmnop@abcde @abcdefghijklmno@abcde @abcdefghijklmno_@abcde @abcdefghijklmno5@abcde"
599
+ expected = [
600
+ "p",
601
+ "@abcde",
602
+ "@abcdefghijklmno",
603
+ "@abcde",
604
+ "_",
605
+ "@abcde",
606
+ "5",
607
+ "@abcde",
608
+ ]
609
+ result = tokenizer.tokenize(test7)
610
+ assert result == expected
611
+
612
+ def test_treebank_span_tokenizer(self):
613
+ """
614
+ Test TreebankWordTokenizer.span_tokenize function
615
+ """
616
+
617
+ tokenizer = TreebankWordTokenizer()
618
+
619
+ # Test case in the docstring
620
+ test1 = "Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks)."
621
+ expected = [
622
+ (0, 4),
623
+ (5, 12),
624
+ (13, 17),
625
+ (18, 19),
626
+ (19, 23),
627
+ (24, 26),
628
+ (27, 30),
629
+ (31, 32),
630
+ (32, 36),
631
+ (36, 37),
632
+ (37, 38),
633
+ (40, 46),
634
+ (47, 48),
635
+ (48, 51),
636
+ (51, 52),
637
+ (53, 55),
638
+ (56, 59),
639
+ (60, 62),
640
+ (63, 68),
641
+ (69, 70),
642
+ (70, 76),
643
+ (76, 77),
644
+ (77, 78),
645
+ ]
646
+ result = list(tokenizer.span_tokenize(test1))
647
+ assert result == expected
648
+
649
+ # Test case with double quotation
650
+ test2 = 'The DUP is similar to the "religious right" in the United States and takes a hardline stance on social issues'
651
+ expected = [
652
+ (0, 3),
653
+ (4, 7),
654
+ (8, 10),
655
+ (11, 18),
656
+ (19, 21),
657
+ (22, 25),
658
+ (26, 27),
659
+ (27, 36),
660
+ (37, 42),
661
+ (42, 43),
662
+ (44, 46),
663
+ (47, 50),
664
+ (51, 57),
665
+ (58, 64),
666
+ (65, 68),
667
+ (69, 74),
668
+ (75, 76),
669
+ (77, 85),
670
+ (86, 92),
671
+ (93, 95),
672
+ (96, 102),
673
+ (103, 109),
674
+ ]
675
+ result = list(tokenizer.span_tokenize(test2))
676
+ assert result == expected
677
+
678
+ # Test case with double qoutation as well as converted quotations
679
+ test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues"
680
+ expected = [
681
+ (0, 3),
682
+ (4, 7),
683
+ (8, 10),
684
+ (11, 18),
685
+ (19, 21),
686
+ (22, 25),
687
+ (26, 27),
688
+ (27, 36),
689
+ (37, 42),
690
+ (42, 43),
691
+ (44, 46),
692
+ (47, 50),
693
+ (51, 57),
694
+ (58, 64),
695
+ (65, 68),
696
+ (69, 74),
697
+ (75, 76),
698
+ (77, 79),
699
+ (79, 87),
700
+ (87, 89),
701
+ (90, 96),
702
+ (97, 99),
703
+ (100, 106),
704
+ (107, 113),
705
+ ]
706
+ result = list(tokenizer.span_tokenize(test3))
707
+ assert result == expected
708
+
709
+ def test_word_tokenize(self):
710
+ """
711
+ Test word_tokenize function
712
+ """
713
+
714
+ sentence = "The 'v', I've been fooled but I'll seek revenge."
715
+ expected = [
716
+ "The",
717
+ "'",
718
+ "v",
719
+ "'",
720
+ ",",
721
+ "I",
722
+ "'ve",
723
+ "been",
724
+ "fooled",
725
+ "but",
726
+ "I",
727
+ "'ll",
728
+ "seek",
729
+ "revenge",
730
+ ".",
731
+ ]
732
+ assert word_tokenize(sentence) == expected
733
+
734
+ sentence = "'v' 're'"
735
+ expected = ["'", "v", "'", "'re", "'"]
736
+ assert word_tokenize(sentence) == expected
737
+
738
+ def test_punkt_pair_iter(self):
739
+
740
+ test_cases = [
741
+ ("12", [("1", "2"), ("2", None)]),
742
+ ("123", [("1", "2"), ("2", "3"), ("3", None)]),
743
+ ("1234", [("1", "2"), ("2", "3"), ("3", "4"), ("4", None)]),
744
+ ]
745
+
746
+ for (test_input, expected_output) in test_cases:
747
+ actual_output = [x for x in punkt._pair_iter(test_input)]
748
+
749
+ assert actual_output == expected_output
750
+
751
+ def test_punkt_pair_iter_handles_stop_iteration_exception(self):
752
+ # test input to trigger StopIteration from next()
753
+ it = iter([])
754
+ # call method under test and produce a generator
755
+ gen = punkt._pair_iter(it)
756
+ # unpack generator, ensure that no error is raised
757
+ list(gen)
758
+
759
+ def test_punkt_tokenize_words_handles_stop_iteration_exception(self):
760
+ obj = punkt.PunktBaseClass()
761
+
762
+ class TestPunktTokenizeWordsMock:
763
+ def word_tokenize(self, s):
764
+ return iter([])
765
+
766
+ obj._lang_vars = TestPunktTokenizeWordsMock()
767
+ # unpack generator, ensure that no error is raised
768
+ list(obj._tokenize_words("test"))
769
+
770
+ def test_punkt_tokenize_custom_lang_vars(self):
771
+
772
+ # Create LangVars including a full stop end character as used in Bengali
773
+ class BengaliLanguageVars(punkt.PunktLanguageVars):
774
+ sent_end_chars = (".", "?", "!", "\u0964")
775
+
776
+ obj = punkt.PunktSentenceTokenizer(lang_vars=BengaliLanguageVars())
777
+
778
+ # We now expect these sentences to be split up into the individual sentences
779
+ sentences = "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
780
+ expected = [
781
+ "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন।",
782
+ "অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন।",
783
+ "এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।",
784
+ ]
785
+
786
+ assert obj.tokenize(sentences) == expected
787
+
788
+ def test_punkt_tokenize_no_custom_lang_vars(self):
789
+
790
+ obj = punkt.PunktSentenceTokenizer()
791
+
792
+ # We expect these sentences to not be split properly, as the Bengali full stop '।' is not included in the default language vars
793
+ sentences = "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
794
+ expected = [
795
+ "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
796
+ ]
797
+
798
+ assert obj.tokenize(sentences) == expected
799
+
800
+ @pytest.mark.parametrize(
801
+ "input_text,n_sents,n_splits,lang_vars",
802
+ [
803
+ # Test debug_decisions on a text with two sentences, split by a dot.
804
+ ("Subject: Some subject. Attachments: Some attachments", 2, 1),
805
+ # The sentence should be split into two sections,
806
+ # with one split and hence one decision.
807
+ # Test debug_decisions on a text with two sentences, split by an exclamation mark.
808
+ ("Subject: Some subject! Attachments: Some attachments", 2, 1),
809
+ # The sentence should be split into two sections,
810
+ # with one split and hence one decision.
811
+ # Test debug_decisions on a text with one sentences,
812
+ # which is not split.
813
+ ("This is just a normal sentence, just like any other.", 1, 0)
814
+ # Hence just 1
815
+ ],
816
+ )
817
+ def punkt_debug_decisions(self, input_text, n_sents, n_splits, lang_vars=None):
818
+ tokenizer = punkt.PunktSentenceTokenizer()
819
+ if lang_vars != None:
820
+ tokenizer._lang_vars = lang_vars
821
+
822
+ assert len(tokenizer.tokenize(input_text)) == n_sents
823
+ assert len(list(tokenizer.debug_decisions(input_text))) == n_splits
824
+
825
+ def test_punkt_debug_decisions_custom_end(self):
826
+ # Test debug_decisions on a text with two sentences,
827
+ # split by a custom end character, based on Issue #2519
828
+ class ExtLangVars(punkt.PunktLanguageVars):
829
+ sent_end_chars = (".", "?", "!", "^")
830
+
831
+ self.punkt_debug_decisions(
832
+ "Subject: Some subject^ Attachments: Some attachments",
833
+ n_sents=2,
834
+ n_splits=1,
835
+ lang_vars=ExtLangVars(),
836
+ )
837
+ # The sentence should be split into two sections,
838
+ # with one split and hence one decision.
839
+
840
+ @pytest.mark.parametrize(
841
+ "sentences, expected",
842
+ [
843
+ (
844
+ "this is a test. . new sentence.",
845
+ ["this is a test.", ".", "new sentence."],
846
+ ),
847
+ ("This. . . That", ["This.", ".", ".", "That"]),
848
+ ("This..... That", ["This..... That"]),
849
+ ("This... That", ["This... That"]),
850
+ ("This.. . That", ["This.. .", "That"]),
851
+ ("This. .. That", ["This.", ".. That"]),
852
+ ("This. ,. That", ["This.", ",.", "That"]),
853
+ ("This!!! That", ["This!!!", "That"]),
854
+ ("This! That", ["This!", "That"]),
855
+ (
856
+ "1. This is R .\n2. This is A .\n3. That's all",
857
+ ["1.", "This is R .", "2.", "This is A .", "3.", "That's all"],
858
+ ),
859
+ (
860
+ "1. This is R .\t2. This is A .\t3. That's all",
861
+ ["1.", "This is R .", "2.", "This is A .", "3.", "That's all"],
862
+ ),
863
+ ("Hello.\tThere", ["Hello.", "There"]),
864
+ ],
865
+ )
866
+ def test_sent_tokenize(self, sentences: str, expected: List[str]):
867
+ assert sent_tokenize(sentences) == expected
llmeval-env/lib/python3.10/site-packages/nltk/test/unit/test_wordnet.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Unit tests for nltk.corpus.wordnet
3
+ See also nltk/test/wordnet.doctest
4
+ """
5
+ import unittest
6
+
7
+ from nltk.corpus import wordnet as wn
8
+ from nltk.corpus import wordnet_ic as wnic
9
+
10
+ wn.ensure_loaded()
11
+ S = wn.synset
12
+ L = wn.lemma
13
+
14
+
15
+ class WordnNetDemo(unittest.TestCase):
16
+ def test_retrieve_synset(self):
17
+ move_synset = S("go.v.21")
18
+ self.assertEqual(move_synset.name(), "move.v.15")
19
+ self.assertEqual(move_synset.lemma_names(), ["move", "go"])
20
+ self.assertEqual(
21
+ move_synset.definition(), "have a turn; make one's move in a game"
22
+ )
23
+ self.assertEqual(move_synset.examples(), ["Can I go now?"])
24
+
25
+ def test_retrieve_synsets(self):
26
+ self.assertEqual(sorted(wn.synsets("zap", pos="n")), [S("zap.n.01")])
27
+ self.assertEqual(
28
+ sorted(wn.synsets("zap", pos="v")),
29
+ [S("microwave.v.01"), S("nuke.v.01"), S("zap.v.01"), S("zap.v.02")],
30
+ )
31
+
32
+ def test_hyperhyponyms(self):
33
+ # Not every synset as hypernyms()
34
+ self.assertEqual(S("travel.v.01").hypernyms(), [])
35
+ self.assertEqual(S("travel.v.02").hypernyms(), [S("travel.v.03")])
36
+ self.assertEqual(S("travel.v.03").hypernyms(), [])
37
+
38
+ # Test hyper-/hyponyms.
39
+ self.assertEqual(S("breakfast.n.1").hypernyms(), [S("meal.n.01")])
40
+ first_five_meal_hypo = [
41
+ S("banquet.n.02"),
42
+ S("bite.n.04"),
43
+ S("breakfast.n.01"),
44
+ S("brunch.n.01"),
45
+ S("buffet.n.02"),
46
+ ]
47
+ self.assertEqual(sorted(S("meal.n.1").hyponyms()[:5]), first_five_meal_hypo)
48
+ self.assertEqual(S("Austen.n.1").instance_hypernyms(), [S("writer.n.01")])
49
+ first_five_composer_hypo = [
50
+ S("ambrose.n.01"),
51
+ S("bach.n.01"),
52
+ S("barber.n.01"),
53
+ S("bartok.n.01"),
54
+ S("beethoven.n.01"),
55
+ ]
56
+ self.assertEqual(
57
+ S("composer.n.1").instance_hyponyms()[:5], first_five_composer_hypo
58
+ )
59
+
60
+ # Test root hyper-/hyponyms
61
+ self.assertEqual(S("person.n.01").root_hypernyms(), [S("entity.n.01")])
62
+ self.assertEqual(S("sail.v.01").root_hypernyms(), [S("travel.v.01")])
63
+ self.assertEqual(
64
+ S("fall.v.12").root_hypernyms(), [S("act.v.01"), S("fall.v.17")]
65
+ )
66
+
67
+ def test_derivationally_related_forms(self):
68
+ # Test `derivationally_related_forms()`
69
+ self.assertEqual(
70
+ L("zap.v.03.nuke").derivationally_related_forms(),
71
+ [L("atomic_warhead.n.01.nuke")],
72
+ )
73
+ self.assertEqual(
74
+ L("zap.v.03.atomize").derivationally_related_forms(),
75
+ [L("atomization.n.02.atomization")],
76
+ )
77
+ self.assertEqual(
78
+ L("zap.v.03.atomise").derivationally_related_forms(),
79
+ [L("atomization.n.02.atomisation")],
80
+ )
81
+ self.assertEqual(L("zap.v.03.zap").derivationally_related_forms(), [])
82
+
83
+ def test_meronyms_holonyms(self):
84
+ # Test meronyms, holonyms.
85
+ self.assertEqual(
86
+ S("dog.n.01").member_holonyms(), [S("canis.n.01"), S("pack.n.06")]
87
+ )
88
+ self.assertEqual(S("dog.n.01").part_meronyms(), [S("flag.n.07")])
89
+
90
+ self.assertEqual(S("faculty.n.2").member_meronyms(), [S("professor.n.01")])
91
+ self.assertEqual(S("copilot.n.1").member_holonyms(), [S("crew.n.01")])
92
+
93
+ self.assertEqual(
94
+ S("table.n.2").part_meronyms(),
95
+ [S("leg.n.03"), S("tabletop.n.01"), S("tableware.n.01")],
96
+ )
97
+ self.assertEqual(S("course.n.7").part_holonyms(), [S("meal.n.01")])
98
+
99
+ self.assertEqual(
100
+ S("water.n.1").substance_meronyms(), [S("hydrogen.n.01"), S("oxygen.n.01")]
101
+ )
102
+ self.assertEqual(
103
+ S("gin.n.1").substance_holonyms(),
104
+ [
105
+ S("gin_and_it.n.01"),
106
+ S("gin_and_tonic.n.01"),
107
+ S("martini.n.01"),
108
+ S("pink_lady.n.01"),
109
+ ],
110
+ )
111
+
112
+ def test_antonyms(self):
113
+ # Test antonyms.
114
+ self.assertEqual(
115
+ L("leader.n.1.leader").antonyms(), [L("follower.n.01.follower")]
116
+ )
117
+ self.assertEqual(
118
+ L("increase.v.1.increase").antonyms(), [L("decrease.v.01.decrease")]
119
+ )
120
+
121
+ def test_misc_relations(self):
122
+ # Test misc relations.
123
+ self.assertEqual(S("snore.v.1").entailments(), [S("sleep.v.01")])
124
+ self.assertEqual(
125
+ S("heavy.a.1").similar_tos(),
126
+ [
127
+ S("dense.s.03"),
128
+ S("doughy.s.01"),
129
+ S("heavier-than-air.s.01"),
130
+ S("hefty.s.02"),
131
+ S("massive.s.04"),
132
+ S("non-buoyant.s.01"),
133
+ S("ponderous.s.02"),
134
+ ],
135
+ )
136
+ self.assertEqual(S("light.a.1").attributes(), [S("weight.n.01")])
137
+ self.assertEqual(S("heavy.a.1").attributes(), [S("weight.n.01")])
138
+
139
+ # Test pertainyms.
140
+ self.assertEqual(
141
+ L("English.a.1.English").pertainyms(), [L("england.n.01.England")]
142
+ )
143
+
144
+ def test_lch(self):
145
+ # Test LCH.
146
+ self.assertEqual(
147
+ S("person.n.01").lowest_common_hypernyms(S("dog.n.01")),
148
+ [S("organism.n.01")],
149
+ )
150
+ self.assertEqual(
151
+ S("woman.n.01").lowest_common_hypernyms(S("girlfriend.n.02")),
152
+ [S("woman.n.01")],
153
+ )
154
+
155
+ def test_domains(self):
156
+ # Test domains.
157
+ self.assertEqual(S("code.n.03").topic_domains(), [S("computer_science.n.01")])
158
+ self.assertEqual(S("pukka.a.01").region_domains(), [S("india.n.01")])
159
+ self.assertEqual(S("freaky.a.01").usage_domains(), [S("slang.n.02")])
160
+
161
+ def test_in_topic_domains(self):
162
+ # Test in domains.
163
+ self.assertEqual(
164
+ S("computer_science.n.01").in_topic_domains()[0], S("access.n.05")
165
+ )
166
+ self.assertEqual(S("germany.n.01").in_region_domains()[23], S("trillion.n.02"))
167
+ self.assertEqual(S("slang.n.02").in_usage_domains()[1], S("airhead.n.01"))
168
+
169
+ def test_wordnet_similarities(self):
170
+ # Path based similarities.
171
+ self.assertAlmostEqual(S("cat.n.01").path_similarity(S("cat.n.01")), 1.0)
172
+ self.assertAlmostEqual(S("dog.n.01").path_similarity(S("cat.n.01")), 0.2)
173
+ self.assertAlmostEqual(
174
+ S("car.n.01").path_similarity(S("automobile.v.01")),
175
+ S("automobile.v.01").path_similarity(S("car.n.01")),
176
+ )
177
+ self.assertAlmostEqual(
178
+ S("big.a.01").path_similarity(S("dog.n.01")),
179
+ S("dog.n.01").path_similarity(S("big.a.01")),
180
+ )
181
+ self.assertAlmostEqual(
182
+ S("big.a.01").path_similarity(S("long.a.01")),
183
+ S("long.a.01").path_similarity(S("big.a.01")),
184
+ )
185
+ self.assertAlmostEqual(
186
+ S("dog.n.01").lch_similarity(S("cat.n.01")), 2.028, places=3
187
+ )
188
+ self.assertAlmostEqual(
189
+ S("dog.n.01").wup_similarity(S("cat.n.01")), 0.8571, places=3
190
+ )
191
+ self.assertAlmostEqual(
192
+ S("car.n.01").wup_similarity(S("automobile.v.01")),
193
+ S("automobile.v.01").wup_similarity(S("car.n.01")),
194
+ )
195
+ self.assertAlmostEqual(
196
+ S("big.a.01").wup_similarity(S("dog.n.01")),
197
+ S("dog.n.01").wup_similarity(S("big.a.01")),
198
+ )
199
+ self.assertAlmostEqual(
200
+ S("big.a.01").wup_similarity(S("long.a.01")),
201
+ S("long.a.01").wup_similarity(S("big.a.01")),
202
+ )
203
+ self.assertAlmostEqual(
204
+ S("big.a.01").lch_similarity(S("long.a.01")),
205
+ S("long.a.01").lch_similarity(S("big.a.01")),
206
+ )
207
+ # Information Content similarities.
208
+ brown_ic = wnic.ic("ic-brown.dat")
209
+ self.assertAlmostEqual(
210
+ S("dog.n.01").jcn_similarity(S("cat.n.01"), brown_ic), 0.4497, places=3
211
+ )
212
+ semcor_ic = wnic.ic("ic-semcor.dat")
213
+ self.assertAlmostEqual(
214
+ S("dog.n.01").lin_similarity(S("cat.n.01"), semcor_ic), 0.8863, places=3
215
+ )
216
+
217
+ def test_omw_lemma_no_trailing_underscore(self):
218
+ expected = sorted(
219
+ [
220
+ "popolna_sprememba_v_mišljenju",
221
+ "popoln_obrat",
222
+ "preobrat",
223
+ "preobrat_v_mišljenju",
224
+ ]
225
+ )
226
+ self.assertEqual(sorted(S("about-face.n.02").lemma_names(lang="slv")), expected)
227
+
228
+ def test_iterable_type_for_all_lemma_names(self):
229
+ # Duck-test for iterables.
230
+ # See https://stackoverflow.com/a/36230057/610569
231
+ cat_lemmas = wn.all_lemma_names(lang="cat")
232
+ eng_lemmas = wn.all_lemma_names(lang="eng")
233
+
234
+ self.assertTrue(hasattr(eng_lemmas, "__iter__"))
235
+ self.assertTrue(hasattr(eng_lemmas, "__next__") or hasattr(eng_lemmas, "next"))
236
+ self.assertTrue(eng_lemmas.__iter__() is eng_lemmas)
237
+
238
+ self.assertTrue(hasattr(cat_lemmas, "__iter__"))
239
+ self.assertTrue(hasattr(cat_lemmas, "__next__") or hasattr(eng_lemmas, "next"))
240
+ self.assertTrue(cat_lemmas.__iter__() is cat_lemmas)
llmeval-env/lib/python3.10/site-packages/nltk/twitter/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (793 Bytes). View file