applied-ai-018's picture
Add files using upload-large-folder tool
d94d830 verified
import abc
import ast
import logging
import random
import re
from collections.abc import Callable
from copy import deepcopy
from dataclasses import asdict, dataclass
from inspect import getsource
from typing import (
Any,
Dict,
Iterable,
Iterator,
List,
Literal,
Mapping,
Optional,
Tuple,
Union,
)
import datasets
import numpy as np
from tqdm import tqdm
from lm_eval import utils
from lm_eval.api import samplers
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
from lm_eval.api.registry import (
AGGREGATION_REGISTRY,
DEFAULT_METRIC_REGISTRY,
get_aggregation,
get_metric,
get_metric_aggregation,
is_higher_better,
)
from lm_eval.caching.cache import load_from_cache, save_to_cache
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt
ALL_OUTPUT_TYPES = [
"loglikelihood",
"multiple_choice",
"loglikelihood_rolling",
"generate_until",
]
eval_logger = logging.getLogger("lm-eval")
@dataclass
class TaskConfig(dict):
# task naming/registry
task: Optional[str] = None
task_alias: Optional[str] = None
group: Optional[Union[str, list]] = None
group_alias: Optional[Union[str, list]] = None
# HF dataset options.
# which dataset to use,
# and what splits for what purpose
dataset_path: Optional[str] = None
dataset_name: Optional[str] = None
dataset_kwargs: Optional[dict] = None
training_split: Optional[str] = None
validation_split: Optional[str] = None
test_split: Optional[str] = None
fewshot_split: Optional[
str
] = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
# formatting / prompting options.
# see docs/advanced_task_guide.md for more info
process_docs: Optional[Callable] = None
doc_to_text: Optional[Union[Callable, str]] = None
doc_to_target: Optional[Union[Callable, str]] = None
doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
process_results: Optional[Union[Callable, str]] = None
use_prompt: Optional[str] = None
description: str = ""
target_delimiter: str = " "
fewshot_delimiter: str = "\n\n"
fewshot_config: Optional[dict] = None
# runtime configuration options
num_fewshot: Optional[int] = None
# scoring options
metric_list: Optional[list] = None
output_type: OutputType = "generate_until"
generation_kwargs: Optional[dict] = None
repeats: int = 1
filter_list: Optional[Union[str, list]] = None
should_decontaminate: bool = False
doc_to_decontamination_query: Optional[str] = None
metadata: Optional[
dict
] = None # by default, not used in the code. allows for users to pass arbitrary info to tasks
def __post_init__(self) -> None:
if self.generation_kwargs is not None:
if self.output_type != "generate_until":
raise ValueError(
f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
)
if "temperature" in self.generation_kwargs:
self.generation_kwargs["temperature"] = float(
self.generation_kwargs["temperature"]
)
if "until" not in self.generation_kwargs:
self.generation_kwargs["until"] = [self.fewshot_delimiter]
else:
if self.output_type == "generate_until":
# ensure that we greedily generate in absence of explicit arguments otherwise
self.generation_kwargs = {
"until": (
None
if self.fewshot_delimiter is None
else [self.fewshot_delimiter]
),
"do_sample": False,
}
def __getitem__(self, item):
return getattr(self, item)
def __setitem__(self, item, value):
return setattr(self, item, value)
def to_dict(self, keep_callable: bool = False) -> dict:
"""dumps the current config as a dictionary object, as a printable format.
null fields will not be printed.
Used for dumping results alongside full task configuration
:return: dict
A printable dictionary version of the TaskConfig object.
# TODO: should any default value in the TaskConfig not be printed?
"""
cfg_dict = asdict(self)
# remove values that are `None`
for k, v in list(cfg_dict.items()):
if v is None:
cfg_dict.pop(k)
elif k == "metric_list":
for metric_dict in v:
for metric_key, metric_value in metric_dict.items():
if callable(metric_value):
metric_dict[metric_key] = self.serialize_function(
metric_value, keep_callable=keep_callable
)
cfg_dict[k] = v
elif callable(v):
cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
return cfg_dict
def serialize_function(
self, value: Union[Callable, str], keep_callable=False
) -> Union[Callable, str]:
"""Serializes a given function or string.
If 'keep_callable' is True, the original callable is returned.
Otherwise, attempts to return the source code of the callable using 'getsource'.
"""
if keep_callable:
return value
else:
try:
return getsource(value)
except (TypeError, OSError):
return str(value)
class Task(abc.ABC):
"""A task represents an entire benchmark including its dataset, problems,
answers, and evaluation methods. See BoolQ for a simple example implementation
A `doc` can be any python object which represents one instance of evaluation.
This is usually a dictionary e.g.
{"question": ..., "answer": ...} or
{"question": ..., question, answer)
"""
VERSION: Optional[Union[int, str]] = None
# The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
# or a path to a custom `datasets` loading script.
DATASET_PATH: Optional[str] = None
# The name of a subset within `DATASET_PATH`.
DATASET_NAME: Optional[str] = None
OUTPUT_TYPE: Optional[OutputType] = None
def __init__(
self,
data_dir: Optional[str] = None,
cache_dir: Optional[str] = None,
download_mode: Optional[datasets.DownloadMode] = None,
config: Optional[Mapping] = None, # Union[dict, TaskConfig]
) -> None:
"""
:param data_dir: str
Stores the path to a local folder containing the `Task`'s data files.
Use this to specify the path to manually downloaded data (usually when
the dataset is not publicly accessible).
:param cache_dir: str
The directory to read/write the `Task` dataset. This follows the
HuggingFace `datasets` API with the default cache directory located at:
`~/.cache/huggingface/datasets`
NOTE: You can change the cache location globally for a given process
to another directory:
`export HF_DATASETS_CACHE="/path/to/another/directory"`
:param download_mode: datasets.DownloadMode
How to treat pre-existing `Task` downloads and data.
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
Reuse download and reuse dataset.
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
Reuse download with fresh dataset.
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
Fresh download and fresh dataset.
"""
self.download(data_dir, cache_dir, download_mode)
self._training_docs: Optional[list] = None
self._fewshot_docs: Optional[list] = None
self._instances: Optional[List[Instance]] = None
self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
def download(
self,
data_dir: Optional[str] = None,
cache_dir: Optional[str] = None,
download_mode=None,
) -> None:
"""Downloads and returns the task dataset.
Override this method to download the dataset from a custom API.
:param data_dir: str
Stores the path to a local folder containing the `Task`'s data files.
Use this to specify the path to manually downloaded data (usually when
the dataset is not publicly accessible).
:param cache_dir: str
The directory to read/write the `Task` dataset. This follows the
HuggingFace `datasets` API with the default cache directory located at:
`~/.cache/huggingface/datasets`
NOTE: You can change the cache location globally for a given process
by setting the shell environment variable, `HF_DATASETS_CACHE`,
to another directory:
`export HF_DATASETS_CACHE="/path/to/another/directory"`
:param download_mode: datasets.DownloadMode
How to treat pre-existing `Task` downloads and data.
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
Reuse download and reuse dataset.
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
Reuse download with fresh dataset.
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
Fresh download and fresh dataset.
"""
self.dataset = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
data_dir=data_dir,
cache_dir=cache_dir,
download_mode=download_mode,
)
@property
def config(self) -> TaskConfig:
"""Returns the TaskConfig associated with this class."""
return self._config
@abc.abstractmethod
def has_training_docs(self):
"""Whether the task has a training set"""
pass
@abc.abstractmethod
def has_validation_docs(self):
"""Whether the task has a validation set"""
pass
@abc.abstractmethod
def has_test_docs(self):
"""Whether the task has a test set"""
pass
def training_docs(self) -> Iterable:
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def validation_docs(self) -> Iterable:
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def test_docs(self) -> Iterable:
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def fewshot_docs(self) -> Iterable:
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
if self.has_training_docs():
return self.training_docs()
elif self.has_validation_docs():
return self.validation_docs()
else:
eval_logger.warning(
f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
", using test_docs as fewshot_docs but this is not recommended."
)
return self.test_docs()
def _process_doc(self, doc: dict) -> dict:
"""
Override this to process (detokenize, strip, replace, etc.) individual
documents. This can be used in a map over documents of a data split.
E.g. `map(self._process_doc, self.dataset["validation"])`
:return: dict
The processed version of the specified `doc`.
"""
return doc
@property
def instances(self) -> List[Instance]:
"""After calling `task.build_all_requests()`, tasks
maintain a list of the dataset instances which will be evaluated.
"""
return self._instances
def fewshot_examples(self, k, rnd):
if self._training_docs is None:
self._training_docs = list(self.training_docs())
return rnd.sample(self._training_docs, k)
def doc_to_decontamination_query(self, doc):
raise NotImplementedError(
"Override doc_to_decontamination_query with document specific decontamination query."
)
@abc.abstractmethod
def doc_to_text(self, doc):
pass
@abc.abstractmethod
def doc_to_target(self, doc):
pass
def build_all_requests(
self,
*,
limit=None,
rank=None,
world_size=None,
cache_requests=False,
rewrite_requests_cache=False,
) -> None:
"""Build a set of Instances for a task, and store them in task.instances"""
# used with caching
og_limit = limit
cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
cached_instances = load_from_cache(file_name=cache_key)
if cache_requests and cached_instances and not rewrite_requests_cache:
cached_instances = cached_instances[:limit]
flattened_instances = [
instance
for instance_group in cached_instances
for instance in instance_group
]
self._instances = flattened_instances
return
eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
instances = []
# process all documents when caching is specified for simplicity
if (
cache_requests
and (not cached_instances or rewrite_requests_cache)
and limit is not None
):
limit = None
doc_id_docs = list(
self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
)
num_docs = len(doc_id_docs)
for doc_id, doc in tqdm(
doc_id_docs,
total=num_docs,
):
# sample fewshot context #TODO: need to offset doc_id by rank now!
fewshot_ctx = self.fewshot_context(
doc,
0 if self.config.num_fewshot is None else self.config.num_fewshot,
)
# TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
inst = self.construct_requests(
doc=doc,
ctx=fewshot_ctx,
metadata=(self.config["task"], doc_id, self.config.repeats),
)
if not isinstance(inst, list):
inst = [inst]
instances.append(inst)
# now flatten, this is to allow slicing to work with pickles
sliced_instances = instances[:og_limit]
flattened_instances = [
instance
for instance_group in sliced_instances
for instance in instance_group
]
self._instances = flattened_instances
if len(self._instances) == 0:
raise ValueError("task.build_requests() did not find any docs!")
if cache_requests and (not cached_instances or rewrite_requests_cache):
save_to_cache(file_name=cache_key, obj=instances)
@abc.abstractmethod
def construct_requests(self, doc, ctx, **kwargs):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
:param doc_idx: int
The index of a document within `self.test_docs()` or `self.validation_docs()`,
whichever is the main split used.
:param repeats: int
TODO: update this docstring
The number of times each instance in a dataset is inferred on. Defaults to 1,
can be increased for techniques like majority voting.
"""
pass
@abc.abstractmethod
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
pass
@abc.abstractmethod
def aggregation(self):
"""
:returns: {str: [metric_score] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metric scores
"""
pass
@abc.abstractmethod
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
pass
def get_config(self, key: str) -> Any:
return getattr(self._config, key, None)
@classmethod
def count_bytes(cls, doc):
"""Used for byte-level perplexity metrics in rolling loglikelihood"""
return len(doc.encode("utf-8"))
@classmethod
def count_words(cls, doc):
"""Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
return len(re.split(r"\s+", doc))
@utils.positional_deprecated
def fewshot_context(
self,
doc,
num_fewshot,
rnd=random.Random(1234),
description=None,
):
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc: str
The document as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:param rnd: random.Random
The pseudo-random number generator used to randomly sample examples.
WARNING: This is currently a required arg although it's optionalized with a default `None`.
:param description: str
The task's description that will be prepended to the fewshot examples.
:returns: str
The fewshot context.
"""
if rnd is None:
raise ValueError(
"A `random.Random` generator argument must be provided to `rnd`"
)
description = description if description else ""
if num_fewshot == 0:
labeled_examples = ""
else:
# for sets with no training docs, draw from other set *but ensure no overlap with current doc*
if self.has_training_docs():
fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
else:
if self._fewshot_docs is None:
self._fewshot_docs = list(
self.validation_docs()
if self.has_validation_docs()
else self.test_docs()
)
fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
# get rid of the doc that's the one we're evaluating, if it's in the fewshot
fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
labeled_examples = (
"\n\n".join(
[
self.doc_to_text(doc) + self.doc_to_target(doc)
for doc in fewshotex
]
)
+ "\n\n"
)
example = self.doc_to_text(doc)
return description + labeled_examples + example
def apply_filters(self) -> Optional[List[Instance]]:
"""Iterates over FilterEnsembles and applies them to instances"""
if hasattr(self, "_filters"):
for f in self._filters:
f.apply(self._instances)
else:
eval_logger.warning("No filter defined, passing through instances")
return self._instances
def dump_config(self) -> dict:
"""Returns the config as a dictionary."""
# TODO: this should only return the overrides applied to a non-YAML task's configuration.
# (num_fewshot)
return self.config.to_dict()
def set_config(self, key: str, value: Any, update: bool = False) -> None:
"""Set or update the configuration for a given key."""
if key is None:
raise ValueError("Key must be provided.")
if update:
current_value = getattr(self._config, key, {})
if not isinstance(current_value, dict):
raise TypeError(
f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
)
current_value.update(value)
else:
setattr(self._config, key, value)
def override_metric(self, metric_name: str) -> None:
"""
Override the default metrics used for evaluation with custom metrics.
Parameters:
- metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
"""
(
self._metric_fn_list,
self._aggregation_list,
self._metric_fn_kwargs,
self._higher_is_better,
) = ({}, {}, {}, {})
self._metric_fn_list[metric_name] = get_metric(metric_name)
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
self._metric_fn_kwargs[metric_name] = {}
if not isinstance(self, ConfigurableTask):
self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
self.aggregation = lambda: {
metric_name: get_metric_aggregation(metric_name)
}
setattr(self._config, "metric_list", [{"metric": metric_name}])
setattr(self._config, "process_results", None)
@property
def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
if self.has_test_docs():
return self.test_docs()
elif self.has_validation_docs():
return self.validation_docs()
else:
raise ValueError(
f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
)
def doc_iterator(
self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
) -> Iterator[Tuple[int, Any]]:
limit = int(limit) if limit else None
doc_iterator = utils.create_iterator(
enumerate(self.eval_docs),
rank=int(rank),
limit=limit,
world_size=int(world_size),
)
return doc_iterator
class ConfigurableTask(Task):
VERSION = "Yaml"
OUTPUT_TYPE = None
CONFIG = None
def __init__(
self,
data_dir=None,
cache_dir=None,
download_mode=None,
config: Optional[dict] = None,
) -> None: # TODO no super() call here
# Get pre-configured attributes
self._config = self.CONFIG
# Use new configurations if there was no preconfiguration
if self.config is None:
self._config = TaskConfig(**config)
# Overwrite configs
else:
if config is not None:
self._config.__dict__.update(config)
if self.config is None:
raise ValueError(
"Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
)
if isinstance(self.config.metadata, dict):
if "version" in self.config.metadata:
self.VERSION = self.config.metadata["version"]
if self.config.output_type is not None:
if self.config.output_type not in ALL_OUTPUT_TYPES:
raise ValueError(
f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
)
self.OUTPUT_TYPE = self.config.output_type
if self.config.dataset_path is not None:
self.DATASET_PATH = self.config.dataset_path
if self.config.dataset_name is not None:
self.DATASET_NAME = self.config.dataset_name
self._metric_fn_list = {}
self._metric_fn_kwargs = {}
self._aggregation_list = {}
self._higher_is_better = {}
if self.config.metric_list is None:
# TODO: handle this in TaskConfig.__post_init__ ?
_metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
for metric_name in _metric_list:
self._metric_fn_list[metric_name] = get_metric(metric_name)
self._metric_fn_kwargs[metric_name] = {}
self._aggregation_list[metric_name] = get_metric_aggregation(
metric_name
)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
else:
for metric_config in self.config.metric_list:
if "metric" not in metric_config:
raise ValueError(
"'metric' key not provided for an entry in 'metric_list', must be specified!"
)
metric_name = metric_config["metric"]
kwargs = {
key: metric_config[key]
for key in metric_config
if key
not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
}
hf_evaluate_metric = (
"hf_evaluate" in metric_config
and metric_config["hf_evaluate"] is True
)
if self.config.process_results is not None:
self._metric_fn_list[metric_name] = None
self._metric_fn_kwargs[metric_name] = {}
elif callable(metric_name):
metric_fn = metric_name.__call__
metric_name = metric_name.__name__
self._metric_fn_list[metric_name] = metric_fn
self._metric_fn_kwargs[metric_name] = kwargs
else:
self._metric_fn_list[metric_name] = get_metric(
metric_name, hf_evaluate_metric
)
self._metric_fn_kwargs[metric_name] = kwargs
if "aggregation" in metric_config:
agg_name = metric_config["aggregation"]
if isinstance(agg_name, str):
self._aggregation_list[metric_name] = get_aggregation(agg_name)
elif callable(agg_name): # noqa: E721
self._aggregation_list[metric_name] = metric_config[
"aggregation"
]
else:
INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
metric_agg = get_metric_aggregation(metric_name)
eval_logger.warning(
f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
f"using default "
f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
)
self._aggregation_list[metric_name] = metric_agg
if "higher_is_better" in metric_config:
self._higher_is_better[metric_name] = metric_config[
"higher_is_better"
]
else:
eval_logger.warning(
f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
f"using default "
f"higher_is_better={is_higher_better(metric_name)}"
)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
self.download(self.config.dataset_kwargs)
self._training_docs = None
self._fewshot_docs = None
if self.config.filter_list is not None:
self._filters = []
for filter_config in self.config.filter_list:
filter_name = filter_config["name"]
filter_functions = filter_config["filter"]
components = []
for function in filter_functions:
kwargs = {
key: function[key] for key in function if key != "function"
}
components.append([function["function"], kwargs])
filter_pipeline = build_filter_ensemble(filter_name, components)
self._filters.append(filter_pipeline)
else:
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
if self.config.use_prompt is not None:
eval_logger.info(f"loading prompt {self.config.use_prompt}")
self.prompt = get_prompt(
self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
)
else:
self.prompt = None
if self.fewshot_docs() is not None:
self.sampler = samplers.get_sampler(
self.config.fewshot_config.get("sampler", "default")
if self.config.fewshot_config
else "default"
)(list(self.fewshot_docs()), self, rnd=random.Random(1234))
self.task_docs = self.eval_docs
# Test One Doc
self.features = list(self.task_docs.features.keys())
self.multiple_input = 0
self.multiple_target = 0
test_doc = self.task_docs[0]
test_text = self.doc_to_text(test_doc)
test_target = self.doc_to_target(test_doc)
if self.config.doc_to_choice is not None:
test_choice = self.doc_to_choice(test_doc)
if not isinstance(test_choice, list):
eval_logger.error("doc_to_choice must return list")
else:
num_choice = len(test_choice)
if isinstance(test_text, int):
self.multiple_input = num_choice
else:
test_choice = None
if isinstance(test_target, list):
self.multiple_target = len(test_target)
else:
if (isinstance(test_target, int)) and (test_choice is not None):
test_target = test_choice[test_target]
else:
test_target = str(test_target)
if test_choice is not None:
check_choices = test_choice
else:
check_choices = [test_target]
if self.config.doc_to_choice is not None:
for choice in check_choices:
choice_has_whitespace = True if choice[0].isspace() else False
delimiter_has_whitespace = (
True
if self.config.target_delimiter.rstrip()
!= self.config.target_delimiter
else False
)
if delimiter_has_whitespace and choice_has_whitespace:
eval_logger.debug(
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
)
elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
eval_logger.debug(
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
)
def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
self.dataset = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
**dataset_kwargs if dataset_kwargs is not None else {},
)
def has_training_docs(self) -> bool:
if self.config.training_split is not None:
return True
else:
return False
def has_validation_docs(self) -> bool:
if self.config.validation_split is not None:
return True
else:
return False
def has_test_docs(self) -> bool:
if self.config.test_split is not None:
return True
else:
return False
def training_docs(self) -> datasets.Dataset:
if self.has_training_docs():
if self.config.process_docs is not None:
return self.config.process_docs(
self.dataset[self.config.training_split]
)
return self.dataset[self.config.training_split]
def validation_docs(self) -> datasets.Dataset:
if self.has_validation_docs():
if self.config.process_docs is not None:
return self.config.process_docs(
self.dataset[self.config.validation_split]
)
return self.dataset[self.config.validation_split]
def test_docs(self) -> datasets.Dataset:
if self.has_test_docs():
if self.config.process_docs is not None:
return self.config.process_docs(self.dataset[self.config.test_split])
return self.dataset[self.config.test_split]
def fewshot_docs(self):
if self.config.fewshot_split is not None:
if self.config.process_docs is not None:
return self.config.process_docs(self.dataset[self.config.fewshot_split])
return self.dataset[self.config.fewshot_split]
else:
if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
eval_logger.warning(
f"Task '{self.config.task}': "
"num_fewshot > 0 but fewshot_split is None. "
"using preconfigured rule."
)
return super().fewshot_docs()
@utils.positional_deprecated
def fewshot_context(self, doc: str, num_fewshot: int) -> str:
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc: str
The document as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:returns: str
The fewshot context.
"""
if description := self.config.description:
description = utils.apply_template(self.config.description, doc)
if num_fewshot == 0:
# always prepend the (possibly empty) task description
labeled_examples = description
else:
labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
example = self.doc_to_text(doc)
if self.multiple_input:
return labeled_examples
else:
if isinstance(example, str):
return labeled_examples + example
elif isinstance(example, list):
return [labeled_examples + ex for ex in example]
elif isinstance(example, int):
if self.config.doc_to_choice is not None:
choices = self.doc_to_choice(doc)
return labeled_examples + choices[example]
else:
return labeled_examples + str(example)
def apply_filters(self):
"""Iterates over FilterEnsembles and applies them to instances"""
if hasattr(self, "_filters"):
for f in self._filters:
f.apply(self._instances)
else:
eval_logger.warning("No filter defined, passing through instances")
return self._instances
def should_decontaminate(self):
return self.config.should_decontaminate
def doc_to_decontamination_query(self, doc):
if self.config.should_decontaminate:
if self.config.doc_to_decontamination_query is None:
return self.doc_to_text(doc)
else:
doc_to_decontamination_query = self.config.doc_to_decontamination_query
if doc_to_decontamination_query in self.features:
return doc[doc_to_decontamination_query]
elif callable(doc_to_decontamination_query):
return doc_to_decontamination_query(doc)
else:
return ast.literal_eval(
utils.apply_template(
self.config.doc_to_decontamination_query, doc
)
)
def _process_doc(self, doc: dict) -> dict:
"""
Override this to process (detokenize, strip, replace, etc.) individual
documents. This can be used in a map over documents of a data split.
E.g. `map(self._process_doc, self.dataset["validation"])`
:return: dict
The processed version of the specified `doc`.
"""
return doc
def doc_to_text(self, doc):
if self.prompt is not None:
doc_to_text = self.prompt
else:
doc_to_text = self.config.doc_to_text
if isinstance(doc_to_text, int):
return doc_to_text
elif isinstance(doc_to_text, str):
if doc_to_text in self.features:
# if self.config.doc_to_choice is not None:
# return self.doc_to_choice(doc)[doc[doc_to_text]]
# else:
return doc[doc_to_text]
else:
text_string = utils.apply_template(doc_to_text, doc)
if text_string.isdigit() and self._config.doc_to_choice is not None:
return ast.literal_eval(text_string)
else:
return text_string
elif callable(doc_to_text):
return doc_to_text(doc)
# Used when applying a Promptsource template
elif hasattr(doc_to_text, "apply"):
applied_prompt = doc_to_text.apply(doc)
if len(applied_prompt) == 2:
return applied_prompt[0]
else:
eval_logger.warning("Applied prompt returns empty string")
return self.config.fewshot_delimiter
else:
print(type(doc_to_text))
raise TypeError
def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
if self.prompt is not None:
doc_to_target = self.prompt
else:
doc_to_target = self.config.doc_to_target
if isinstance(doc_to_target, int):
return doc_to_target
elif isinstance(doc_to_target, str):
if doc_to_target in self.features:
# if self.config.doc_to_choice is not None:
# return self.doc_to_choice(doc)[doc[doc_to_target]]
# else:
return doc[doc_to_target]
else:
target_string = utils.apply_template(doc_to_target, doc)
if target_string.isdigit() and self._config.doc_to_choice is not None:
return ast.literal_eval(target_string)
elif (
len(target_string) >= 2
and (target_string[0] == "[")
and (target_string[-1] == "]")
):
try:
return ast.literal_eval(target_string)
except (SyntaxError, ValueError):
return target_string
else:
return target_string
elif isinstance(doc_to_target, list):
return doc_to_target
elif callable(doc_to_target):
return doc_to_target(doc)
# Used when applying a Promptsource template
elif hasattr(doc_to_target, "apply"):
applied_prompt = doc_to_target.apply(doc)
if len(applied_prompt) == 2:
return applied_prompt[1]
else:
eval_logger.warning("Applied prompt returns empty string")
return self.config.fewshot_delimiter
else:
raise TypeError
def doc_to_choice(self, doc: Any) -> List[str]:
if self.prompt is not None:
doc_to_choice = self.prompt
elif self.config.doc_to_choice is None:
eval_logger.error("doc_to_choice was called but not set in config")
else:
doc_to_choice = self.config.doc_to_choice
if isinstance(doc_to_choice, str):
if doc_to_choice in self.features:
return doc[doc_to_choice]
else:
return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
elif isinstance(doc_to_choice, list):
return doc_to_choice
elif isinstance(doc_to_choice, dict):
return list(doc_to_choice.values())
elif callable(doc_to_choice):
return doc_to_choice(doc)
elif hasattr(doc_to_choice, "get_answer_choices_list"):
return doc_to_choice.get_answer_choices_list(doc)
else:
raise TypeError
def construct_requests(
self, doc: dict, ctx: str, **kwargs
) -> Union[List[Instance], Instance]:
if self.OUTPUT_TYPE == "loglikelihood":
arguments = (ctx, self.doc_to_target(doc))
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
arguments = (self.doc_to_target(doc),)
elif self.OUTPUT_TYPE == "multiple_choice":
choices = self.doc_to_choice(doc)
target_delimiter = self.config.target_delimiter
if self.multiple_input:
# If there are multiple inputs, choices are placed in the ctx
cont = self.doc_to_target(doc)
arguments = [
(ctx + choice, f"{target_delimiter}{cont}") for choice in choices
]
else:
# Otherwise they are placed in the continuation
arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
request_list = [
Instance(
request_type="loglikelihood",
doc=doc,
arguments=arg,
idx=i,
**kwargs,
)
for i, arg in enumerate(arguments)
]
# TODO: we should raise a warning telling users this will at most ~2x runtime.
if "acc_mutual_info" in self._metric_fn_list.keys():
# if we are calculating multiple choice accuracy
# using mutual information instead of raw loglikelihood as metric, need unconditional lls.
# here mutual info refers to calculating
# log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
# in other words normalizing by subtracting the unconditional logprob of each choice.
request_list.extend(
[
Instance(
request_type="loglikelihood",
doc=doc,
arguments=("", "{}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(choices)
]
)
return request_list
elif self.OUTPUT_TYPE == "generate_until":
arguments = (ctx, deepcopy(self.config.generation_kwargs))
return Instance(
request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
)
def process_results(self, doc, results):
if callable(self.config.process_results):
return self.config.process_results(doc, results)
result_dict = {}
use_metric = list(self._metric_fn_list.keys())
if self.OUTPUT_TYPE == "loglikelihood":
results = results[0]
ll, is_greedy = results
return {
**({"perplexity": ll} if "perplexity" in use_metric else {}),
**({"acc": int(is_greedy)} if "acc" in use_metric else {}),
}
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
(loglikelihood,) = results
_words = self.count_words(self.doc_to_target(doc))
_bytes = self.count_bytes(self.doc_to_target(doc))
return {
**(
{"word_perplexity": (loglikelihood, _words)}
if "word_perplexity" in use_metric
else {}
),
**(
{"byte_perplexity": (loglikelihood, _bytes)}
if "byte_perplexity" in use_metric
else {}
),
**(
{"bits_per_byte": (loglikelihood, _bytes)}
if "bits_per_byte" in use_metric
else {}
),
}
elif self.OUTPUT_TYPE == "multiple_choice":
lls, is_greedy = zip(*results)
# retrieve choices in List[str] form, to compute choice lengths, etc.
choices = self.doc_to_choice(doc)
completion_len = np.array([float(len(i)) for i in choices])
if (
2 * len(choices) == len(lls)
and "acc_mutual_info" in self._metric_fn_list.keys()
):
# then we are doing mutual info.
# this stores the "dryrun" / unconditional answer loglikelihoods
lls_unconditional = lls[1::2]
if len(lls_unconditional) != len(choices):
raise ValueError
# and this stores our "regular" conditional loglikelihoods
lls = lls[::2]
pred = np.argmax(lls)
pred_norm = np.argmax(lls / completion_len)
if self.multiple_input:
gold = self.doc_to_text(doc)
else:
gold = self.doc_to_target(doc)
gold_index_error = False
if isinstance(gold, list):
gold = [i if i < len(choices) else -100 for i in gold]
if -100 in gold:
gold_index_error = True
else:
if isinstance(gold, int):
gold = gold if gold < len(choices) else -100
elif isinstance(gold, str):
gold = choices.index(gold) if gold in choices else -100
if gold == -100:
gold_index_error = True
if gold_index_error:
eval_logger.warning(
f"Label index was not in within range of available choices,"
f"Sample:\n\n{doc}\n\n"
)
if self.multiple_target:
acc = 1.0 if pred in gold else 0.0
acc_norm = 1.0 if pred_norm in gold else 0.0
exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
else:
acc = 1.0 if pred == gold else 0.0
acc_norm = 1.0 if pred_norm == gold else 0.0
# TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
exact_match = int(is_greedy[gold]) if gold != -100 else 0
prob_norm = utils.softmax(lls)
# TODO use keyword arguments to the metric?
# gold, pred, norm stuff, the original lls,
result_dict = {
**({"acc": acc} if "acc" in use_metric else {}),
**({"f1": (gold, pred)} if "f1" in use_metric else {}),
**({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
**({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
**({"exact_match": exact_match} if "exact_match" in use_metric else {}),
**(
{"brier_score": (gold, prob_norm)}
if "brier_score" in use_metric
else {}
),
}
if "acc_mutual_info" in use_metric:
lls_mutual_info = [
ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
]
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
result_dict["acc_mutual_info"] = acc_mutual_info
elif self.OUTPUT_TYPE == "generate_until":
gold = self.doc_to_target(doc)
result = results[0]
if self.config.doc_to_choice is not None:
# If you set doc_to_choice,
# it assumes that doc_to_target returns a number.
choices = self.doc_to_choice(doc)
gold = choices[gold]
# we expect multiple_targets to be a list.
elif self.multiple_target:
gold = list(gold)
elif type(gold) != type(result):
# cast gold to the same type as result
gold = type(result)(gold)
for metric in self._metric_fn_list.keys():
if self.multiple_target:
# in the case where we have multiple targets,
# return true if any are true
# TODO: this may break for multipLe_target, non zero-or-1 metrics
scores = []
if not isinstance(gold, list):
# sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
# print(gold)
gold = [gold]
if metric == "exact_match":
result = [result for _ in range(len(gold))]
scores = self._metric_fn_list[metric](
references=gold,
predictions=result,
**self._metric_fn_kwargs[metric],
)[metric]
result_score = 1.0 if scores > 0.0 else 0.0
else:
for gold_option in gold:
try:
result_score = self._metric_fn_list[metric](
references=[gold_option],
predictions=[result],
**self._metric_fn_kwargs[metric],
)
except (
TypeError
): # TODO: this is hacky and I don't want to do it
result_score = self._metric_fn_list[metric](
[gold_option, result]
)
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
scores.append(result_score)
if any(scores):
result_score = 1.0
else:
result_score = 0.0
else:
try:
result_score = self._metric_fn_list[metric](
references=[gold],
predictions=[result],
**self._metric_fn_kwargs[metric],
)
except TypeError: # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
result_score = self._metric_fn_list[metric]([gold, result])
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
result_dict[metric] = result_score
else:
raise ValueError(
f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
"'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
)
return result_dict
def aggregation(self) -> dict:
return self._aggregation_list
def higher_is_better(self) -> dict:
return self._higher_is_better
def get_config(self, key: str) -> Any:
return getattr(self._config, key, None)
def __repr__(self):
return (
f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
f"group_name={getattr(self.config, 'group', None)},"
f"output_type={self.OUTPUT_TYPE},"
f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
f"num_samples={len(self.eval_docs)})"
)
class MultipleChoiceTask(Task):
OUTPUT_TYPE = "loglikelihood"
def doc_to_target(self, doc: dict) -> str:
return " " + doc["choices"][doc["gold"]]
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
# TODO: add mutual info here?
return [
Instance(
request_type="loglikelihood",
doc=doc,
arguments=(ctx, " {}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(doc["choices"])
]
def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
results = [
res[0] for res in results
] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
gold = doc["gold"]
acc = 1.0 if np.argmax(results) == gold else 0.0
completion_len = np.array([float(len(i)) for i in doc["choices"]])
acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
return {
"acc": acc,
"acc_norm": acc_norm,
}
def higher_is_better(self) -> dict:
return {
"acc": True,
"acc_norm": True,
}
def aggregation(self) -> dict:
return {
"acc": mean,
"acc_norm": mean,
}
class PerplexityTask(Task):
OUTPUT_TYPE = "loglikelihood_rolling"
def has_training_docs(self) -> bool:
return False
def fewshot_examples(self, k: int, rnd) -> List:
if k != 0:
raise ValueError(
"The number of fewshot examples must be 0 for perplexity tasks."
)
return []
def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
if num_fewshot != 0:
raise ValueError(
"The number of fewshot examples must be 0 for perplexity tasks."
)
return ""
def higher_is_better(self) -> dict:
return {
"word_perplexity": False,
"byte_perplexity": False,
"bits_per_byte": False,
}
def doc_to_decontamination_query(self, doc):
return doc
def doc_to_text(self, doc) -> str:
return ""
def doc_to_target(self, doc):
return doc
def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
if bool(ctx):
raise ValueError
return Instance(
request_type=self.OUTPUT_TYPE,
doc=doc,
arguments=(self.doc_to_target(doc),),
idx=0,
**kwargs,
)
def process_results(self, doc: dict, results: Tuple[float]) -> dict:
(loglikelihood,) = results
words = self.count_words(self.doc_to_target(doc))
bytes_ = self.count_bytes(self.doc_to_target(doc))
return {
"word_perplexity": (loglikelihood, words),
"byte_perplexity": (loglikelihood, bytes_),
"bits_per_byte": (loglikelihood, bytes_),
}
def aggregation(self) -> dict:
return {
"word_perplexity": weighted_perplexity,
"byte_perplexity": weighted_perplexity,
"bits_per_byte": bits_per_byte,
}
@classmethod
def count_bytes(cls, doc) -> int:
return len(doc.encode("utf-8"))
@classmethod
def count_words(cls, doc) -> int:
"""Downstream tasks with custom word boundaries should override this!"""
return len(re.split(r"\s+", doc))