peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/build
/lib
/lm_eval
/models
/huggingface.py
import copy | |
import os | |
from datetime import timedelta | |
from pathlib import Path | |
from typing import List, Literal, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import transformers | |
from accelerate import ( | |
Accelerator, | |
DistributedType, | |
InitProcessGroupKwargs, | |
find_executable_batch_size, | |
) | |
from packaging import version | |
from peft import PeftModel | |
from peft import __version__ as PEFT_VERSION | |
from tqdm import tqdm | |
from transformers.models.auto.modeling_auto import ( | |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
) | |
from lm_eval import utils | |
from lm_eval.api.instance import Instance | |
from lm_eval.api.model import TemplateLM | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.utils import ( | |
Collator, | |
clear_torch_cache, | |
get_dtype, | |
pad_and_concat, | |
stop_sequences_criteria, | |
) | |
eval_logger = utils.eval_logger | |
def _get_accelerate_args( | |
device_map_option: Optional[str] = "auto", | |
max_memory_per_gpu: Optional[Union[int, str]] = None, | |
max_cpu_memory: Optional[Union[int, str]] = None, | |
offload_folder: Optional[str] = "./offload", | |
) -> dict: | |
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`.""" | |
max_memory = {} | |
if max_memory_per_gpu is not None: | |
max_memory_per_gpu_map = { | |
device_idx: max_memory_per_gpu | |
for device_idx in range(torch.cuda.device_count()) | |
} | |
max_memory.update(max_memory_per_gpu_map) | |
if max_cpu_memory is not None: | |
max_memory["cpu"] = max_cpu_memory | |
args = {} | |
if max_memory: | |
args["max_memory"] = max_memory | |
args["device_map"] = device_map_option | |
args["offload_folder"] = offload_folder | |
return args | |
class HFLM(TemplateLM): | |
""" | |
An abstracted Huggingface model class. Enables usage with both models of | |
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes. | |
Supports data-parallel multi-GPU with HF Accelerate. | |
""" | |
AUTO_MODEL_CLASS = None | |
_DEFAULT_MAX_LENGTH = 2048 | |
def __init__( | |
self, | |
pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2", | |
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default", | |
# override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq) | |
revision: Optional[str] = "main", | |
subfolder: Optional[str] = None, | |
tokenizer: Optional[ | |
Union[ | |
str, | |
transformers.PreTrainedTokenizer, | |
transformers.PreTrainedTokenizerFast, | |
] | |
] = None, | |
truncation: Optional[bool] = False, | |
logits_cache: bool = True, | |
max_length: Optional[int] = None, | |
device: Optional[str] = "cuda", | |
dtype: Optional[Union[str, torch.dtype]] = "auto", | |
batch_size: Optional[Union[int, str]] = 1, | |
max_batch_size: Optional[int] = 64, | |
trust_remote_code: Optional[bool] = False, | |
use_fast_tokenizer: Optional[bool] = True, | |
add_bos_token: Optional[bool] = False, | |
prefix_token_id: Optional[int] = None, | |
# arguments used for splitting a model across GPUs naively. | |
# only used if `parallelize=True`. | |
parallelize: Optional[bool] = False, | |
device_map_option: Optional[str] = "auto", | |
max_memory_per_gpu: Optional[Union[int, str]] = None, | |
max_cpu_memory: Optional[Union[int, str]] = None, | |
offload_folder: Optional[Union[str, os.PathLike]] = "./offload", | |
# PEFT and quantization options | |
peft: Optional[str] = None, | |
autogptq: Optional[Union[bool, str]] = False, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
# optionally: take in an already-initialized transformers.PreTrainedModel | |
if not isinstance(pretrained, str): | |
eval_logger.warning( | |
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way." | |
) | |
assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`" | |
self._model = pretrained | |
self._device = self._model.device | |
self._config = self._model.config | |
gpus = 0 | |
if tokenizer: | |
assert isinstance( | |
tokenizer, transformers.PreTrainedTokenizer | |
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) | |
self.tokenizer = tokenizer | |
else: | |
# Get tokenizer | |
model_name = self._model.name_or_path | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_name, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
use_fast=use_fast_tokenizer, | |
) | |
else: | |
assert isinstance(device, str) | |
assert isinstance(pretrained, str) | |
assert isinstance(batch_size, (int, str)) | |
gpus = torch.cuda.device_count() | |
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) | |
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) | |
if accelerator.num_processes > 1: | |
self.accelerator = accelerator | |
if not (parallelize or accelerator.num_processes > 1): | |
# use user-passed device | |
device_list = set( | |
["cuda", "cpu"] | |
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())] | |
+ ["mps", "mps:0"] | |
) | |
if device and device in device_list: | |
self._device = torch.device(device) | |
eval_logger.info(f"Using device '{device}'") | |
if device in ("mps", "mps:0") and version.parse( | |
torch.__version__ | |
) < version.parse("2.1"): | |
raise RuntimeError( | |
f"mps requires torch >= 2.1. You have {torch.__version__}" | |
) | |
else: | |
eval_logger.info("Device not specified") | |
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}") | |
self._device = ( | |
torch.device("cuda") | |
if torch.cuda.is_available() | |
else torch.device("cpu") | |
) | |
else: | |
if device != "cuda": | |
eval_logger.info( | |
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model." | |
) | |
# TODO: include in warning that `load_in_8bit` etc. affect this too | |
self._device = torch.device(device) | |
# TODO: update this to be less of a hack once subfolder is fixed in HF | |
revision = revision + ("/" + subfolder if subfolder is not None else "") | |
self._get_config( | |
pretrained, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
) | |
# determine which of 'causal' and 'seq2seq' backends to use | |
self._get_backend( | |
config=self.config, backend=backend, trust_remote_code=trust_remote_code | |
) | |
# if we passed `pretrained` as a string, initialize our model now | |
if isinstance(pretrained, str): | |
self._create_model( | |
pretrained=pretrained, | |
revision=revision, | |
dtype=dtype, | |
trust_remote_code=trust_remote_code, | |
parallelize=parallelize, | |
device_map_option=device_map_option, | |
max_memory_per_gpu=max_memory_per_gpu, | |
max_cpu_memory=max_cpu_memory, | |
offload_folder=offload_folder, | |
peft=peft, | |
autogptq=autogptq, | |
**kwargs, | |
) | |
# access self._model through self.model property outside this method | |
if isinstance(self.model, torch.nn.Module): | |
self.model.eval() | |
self.model.tie_weights() | |
if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"): | |
# TODO: can remove this whole snippet except in the mps case, perhaps? | |
if not (parallelize or autogptq or hasattr(self, "accelerator")): | |
# place model onto device requested manually, | |
# if not using HF Accelerate or device_map | |
# or any other option that preloads model onto device | |
try: | |
self.model.to(self.device) | |
except ValueError: | |
eval_logger.debug( | |
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore." | |
) | |
self._create_tokenizer( | |
pretrained, | |
tokenizer, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
use_fast_tokenizer=use_fast_tokenizer, | |
) | |
self.truncation = truncation | |
self.logits_cache = logits_cache | |
self.vocab_size = self.tokenizer.vocab_size | |
# select (or create) a pad token to use | |
if self.tokenizer.pad_token: | |
pass | |
elif self.tokenizer.unk_token: | |
self.tokenizer.pad_token_id = self.tokenizer.unk_token_id | |
elif self.tokenizer.eos_token: | |
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id | |
else: | |
if getattr(self.config, "model_type", None) == "qwen": | |
# Qwen's trust_remote_code tokenizer does not allow for adding special tokens | |
self.tokenizer.pad_token = "<|endoftext|>" | |
elif ( | |
self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer" | |
or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer" | |
): | |
# The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0) | |
# The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer | |
# --- | |
# Note that the world tokenizer class name, might change in the future for the final huggingface merge | |
# https://github.com/huggingface/transformers/pull/26963 | |
assert self.tokenizer.pad_token_id == 0 | |
else: | |
self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"}) | |
# TODO: override this for Gemma | |
self.add_bos_token = add_bos_token | |
if getattr(self.config, "model_type", None) == "gemma": | |
self.add_bos_token = True | |
eval_logger.info( | |
f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it." | |
) | |
self._max_length = max_length | |
self.batch_schedule = 1 | |
self.batch_sizes = {} | |
self.max_batch_size = max_batch_size | |
if str(batch_size).startswith("auto"): | |
batch_size = batch_size.split(":") | |
self.batch_size_per_gpu = batch_size[0] | |
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1 | |
else: | |
self.batch_size_per_gpu = int(batch_size) | |
if isinstance(pretrained, str): | |
# multigpu data-parallel support when launched with accelerate | |
if gpus > 1: | |
if parallelize: | |
if accelerator.num_processes > 1: | |
raise RuntimeError( | |
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher." | |
) | |
else: | |
pass | |
elif accelerator.num_processes == 1: | |
# if we aren't launching via accelerate, ditch | |
self._rank = 0 | |
self._world_size = 1 | |
else: | |
if gpus > accelerator.num_processes: | |
eval_logger.warning( | |
"WARNING: The number of total system GPUs does not match the number of spawned processes. " | |
"If you would like to use data parallelism, please launch the script " | |
"with 'accelerate launch *script*'. " | |
f"Current run will proceed with {accelerator.num_processes} devices." | |
) | |
assert ( | |
accelerator.distributed_type | |
in [ | |
DistributedType.FSDP, | |
DistributedType.MULTI_GPU, | |
] | |
), "Unsupported distributed type provided. Only DDP and FSDP are supported." | |
if accelerator.distributed_type == DistributedType.FSDP: | |
self._model = accelerator.prepare(self.model) | |
else: | |
self._model = accelerator.prepare_model( | |
self.model, evaluation_mode=True | |
) | |
self._device = torch.device( | |
f"cuda:{accelerator.local_process_index}" | |
) | |
self.accelerator = accelerator | |
if self.accelerator.is_local_main_process: | |
eval_logger.info(f"Using {gpus} devices with data parallelism") | |
self._rank = self.accelerator.local_process_index | |
self._world_size = self.accelerator.num_processes | |
else: | |
# if a PreTrainedModel was passed into HFLM, we forgo distributed setup. | |
eval_logger.warning( | |
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration" | |
) | |
self._rank = 0 | |
self._world_size = 1 | |
self.custom_prefix_token_id = prefix_token_id | |
if prefix_token_id is not None: | |
eval_logger.info( | |
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}" | |
) | |
def config(self): | |
# return the associated transformers.AutoConfig for the given pretrained model. | |
return self._config | |
def model(self): | |
# returns the model, unwrapping it if using Accelerate | |
if hasattr(self, "accelerator"): | |
return self.accelerator.unwrap_model(self._model) | |
else: | |
return self._model | |
def eot_token_id(self): | |
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | |
return self.tokenizer.eos_token_id | |
def prefix_token_id(self): | |
# it is used as prefix for loglikelihood | |
if self.custom_prefix_token_id is not None: | |
return self.custom_prefix_token_id | |
if self.tokenizer.bos_token_id is not None: | |
return self.tokenizer.bos_token_id | |
return self.tokenizer.eos_token_id | |
def max_length(self): | |
if self._max_length: # if max length manually set, return it | |
return self._max_length | |
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx") | |
for attr in seqlen_config_attrs: | |
if hasattr(self.model.config, attr): | |
return getattr(self.model.config, attr) | |
if hasattr(self.tokenizer, "model_max_length"): | |
if self.tokenizer.model_max_length == 1000000000000000019884624838656: | |
return self._DEFAULT_MAX_LENGTH | |
return self.tokenizer.model_max_length | |
return self._DEFAULT_MAX_LENGTH | |
def max_gen_toks(self) -> int: | |
return 256 | |
def batch_size(self): | |
return self.batch_size_per_gpu | |
def device(self): | |
return self._device | |
def rank(self): | |
return self._rank | |
def world_size(self): | |
return self._world_size | |
def _get_backend( | |
self, | |
config: Union[transformers.PretrainedConfig, transformers.AutoConfig], | |
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default", | |
trust_remote_code: Optional[bool] = False, | |
) -> None: | |
""" | |
Helper method during initialization. | |
Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) | |
model type to be used. | |
""" | |
assert backend in ["default", "causal", "seq2seq"] | |
if backend != "default": | |
# if we've settled on non-default backend, use that manually | |
if backend == "causal": | |
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM | |
elif backend == "seq2seq": | |
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM | |
eval_logger.info( | |
f"Overrode HF model backend type, and using type '{backend}'" | |
) | |
else: | |
# determine and use the default HF backend for this model, based on its config + metadata. | |
if ( | |
getattr(config, "model_type") | |
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |
): | |
# first check if model type is listed under seq2seq models, since some | |
# models like MBart are listed in both seq2seq and causal mistakenly in HF transformers. | |
# these special cases should be treated as seq2seq models. | |
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM | |
elif ( | |
getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
): | |
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM | |
else: | |
if not trust_remote_code: | |
eval_logger.warning( | |
"HF model type is neither marked as CausalLM or Seq2SeqLM. \ | |
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise." | |
) | |
# if model type is neither in HF transformers causal or seq2seq model registries | |
# then we default to AutoModelForCausalLM | |
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM | |
assert self.AUTO_MODEL_CLASS in [ | |
transformers.AutoModelForCausalLM, | |
transformers.AutoModelForSeq2SeqLM, | |
] | |
return None | |
def _get_config( | |
self, | |
pretrained: str, | |
revision: str = "main", | |
trust_remote_code: bool = False, | |
) -> None: | |
self._config = transformers.AutoConfig.from_pretrained( | |
pretrained, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
) | |
def _create_model( | |
self, | |
pretrained: str, | |
revision: Optional[str] = "main", | |
dtype: Optional[Union[str, torch.dtype]] = "auto", | |
trust_remote_code: Optional[bool] = False, | |
# arguments used for splitting a model across GPUs naively. | |
# only used if `parallelize=True`. | |
# (accelerate naive PP (device_map) options) | |
parallelize: Optional[bool] = False, | |
device_map_option: Optional[str] = "auto", | |
max_memory_per_gpu: Optional[Union[int, str]] = None, | |
max_cpu_memory: Optional[Union[int, str]] = None, | |
offload_folder: Optional[str] = "./offload", | |
# PEFT and quantization options | |
peft: Optional[str] = None, | |
autogptq: Optional[Union[bool, str]] = False, | |
**kwargs, | |
) -> None: | |
""" | |
Initializes an HF or HF-compatible PreTrainedModel from scratch | |
inside HFLM, using the kwargs passed into self.__init__(). | |
Also handles functionality such as AutoGPTQ usage and PEFT wrapping. | |
For future similar extensions to AutoGPTQ that are not core to HF's ecosystem, | |
(such as PyTorch models that are nearly, but not quite, fully mirroring | |
HF's public interface relied on in this HFLM class) | |
please consider subclassing HFLM and overriding this and other methods as needed. | |
""" | |
model_kwargs = kwargs if kwargs else {} | |
if parallelize: | |
model_kwargs.update( | |
_get_accelerate_args( | |
device_map_option, # TODO: phase out device_map_option? | |
max_memory_per_gpu, | |
max_cpu_memory, | |
offload_folder, | |
) | |
) | |
elif "device_map" not in model_kwargs: | |
# set a device_map to initialize model on the right GPU. | |
# this is needed because it seems that the default behavior | |
# for quantized models now seems to be device_map="auto" | |
# which breaks data-parallel mode. | |
if hasattr(self, "accelerator"): | |
model_kwargs.update( | |
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}} | |
) | |
else: | |
model_kwargs.update({"device_map": {"": str(self.device)}}) | |
if not autogptq: | |
if model_kwargs.get("load_in_4bit", None): | |
assert ( | |
transformers.__version__ >= "4.30.0" | |
), "load_in_4bit requires transformers >= 4.30.0" | |
if transformers.__version__ >= "4.30.0": | |
if model_kwargs.get("load_in_4bit", None): | |
if model_kwargs.get("bnb_4bit_compute_dtype", None): | |
model_kwargs["bnb_4bit_compute_dtype"] = get_dtype( | |
model_kwargs["bnb_4bit_compute_dtype"] | |
) | |
self._model = self.AUTO_MODEL_CLASS.from_pretrained( | |
pretrained, | |
revision=revision, | |
torch_dtype=get_dtype(dtype), | |
trust_remote_code=trust_remote_code, | |
**model_kwargs, | |
) | |
else: | |
try: | |
from auto_gptq import AutoGPTQForCausalLM | |
except ModuleNotFoundError: | |
raise Exception( | |
"Tried to load auto_gptq, but auto-gptq is not installed ", | |
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]", | |
) | |
self._model = AutoGPTQForCausalLM.from_quantized( | |
pretrained, | |
trust_remote_code=trust_remote_code, | |
model_basename=None if autogptq is True else Path(autogptq).stem, | |
use_safetensors=True | |
if autogptq is True | |
else autogptq.endswith(".safetensors"), | |
**model_kwargs, | |
) | |
if peft: | |
if model_kwargs.get("load_in_4bit", None): | |
if version.parse(PEFT_VERSION) < version.parse("0.4.0"): | |
raise AssertionError("load_in_4bit requires peft >= 0.4.0") | |
self._model = PeftModel.from_pretrained( | |
self._model, peft, revision=revision | |
) | |
return None | |
def _create_tokenizer( | |
self, | |
pretrained: Union[str, transformers.PreTrainedModel], | |
tokenizer: Optional[ | |
Union[ | |
str, | |
transformers.PreTrainedTokenizer, | |
transformers.PreTrainedTokenizerFast, | |
] | |
], | |
revision: Optional[str] = "main", | |
trust_remote_code: Optional[bool] = False, | |
use_fast_tokenizer: Optional[bool] = True, | |
) -> None: | |
""" | |
Helper method during initialization. | |
Create a tokenizer object corresponding to the correct | |
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed. | |
""" | |
if tokenizer: | |
if isinstance(tokenizer, str): | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained( | |
tokenizer, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
use_fast=use_fast_tokenizer, | |
) | |
else: | |
assert isinstance( | |
tokenizer, transformers.PreTrainedTokenizer | |
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) | |
self.tokenizer = tokenizer | |
else: | |
# Get tokenizer based on 'pretrained' | |
if isinstance(pretrained, str): | |
model_name = pretrained | |
else: | |
# get the HF hub name via accessor on model | |
model_name = self.model.name_or_path | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_name, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
use_fast=use_fast_tokenizer, | |
) | |
return None | |
def _detect_batch_size(self, requests=None, pos: int = 0): | |
if requests: | |
_, context_enc, continuation_enc = requests[pos] | |
max_length = len( | |
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1] | |
) | |
max_context_enc = len(context_enc[-(self.max_length + 1) :]) | |
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :]) | |
else: | |
max_length = self.max_length | |
# if OOM, then halves batch_size and tries again | |
def forward_batch(batch_size): | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: | |
length = max(max_context_enc, max_cont_enc) | |
batched_conts = torch.ones( | |
(batch_size, length), device=self.device | |
).long() | |
test_batch = torch.ones((batch_size, length), device=self.device).long() | |
call_kwargs = { | |
"attn_mask": test_batch, | |
"labels": batched_conts, | |
} | |
else: | |
call_kwargs = {} | |
test_batch = torch.ones( | |
(batch_size, max_length), device=self.device | |
).long() | |
for _ in range(5): | |
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1) # noqa: F841 | |
return batch_size | |
try: | |
batch_size = forward_batch() | |
except RuntimeError as e: | |
if "No executable batch size found" in str(e): | |
batch_size = 1 | |
else: | |
raise | |
if self.world_size > 1: | |
# if multi-GPU, always take minimum over all selected batch sizes | |
max_rnk_bs = torch.tensor([batch_size], device=self.device) | |
gathered = ( | |
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist() | |
) | |
batch_size = min(gathered) | |
clear_torch_cache() | |
return batch_size | |
clear_torch_cache() | |
return batch_size | |
def tok_encode( | |
self, string: str, left_truncate_len=None, add_special_tokens=None | |
) -> List[int]: | |
""" """ | |
# default for None - empty dict, use predefined tokenizer param | |
# used for all models except for CausalLM or predefined value | |
special_tokens_kwargs = {} | |
# by default for CausalLM - false or self.add_bos_token is set | |
if add_special_tokens is None: | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
special_tokens_kwargs = { | |
"add_special_tokens": False or self.add_bos_token | |
} | |
# otherwise the method explicitly defines the value | |
else: | |
special_tokens_kwargs = {"add_special_tokens": add_special_tokens} | |
encoding = self.tokenizer.encode(string, **special_tokens_kwargs) | |
# left-truncate the encoded context to be at most `left_truncate_len` tokens long | |
if left_truncate_len: | |
encoding = encoding[-left_truncate_len:] | |
return encoding | |
def tok_batch_encode( | |
self, | |
strings: List[str], | |
padding_side: str = "left", | |
left_truncate_len: int = None, | |
truncation: bool = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode. | |
old_padding_side = self.tokenizer.padding_side | |
self.tokenizer.padding_side = padding_side | |
add_special_tokens = {} | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
add_special_tokens = {"add_special_tokens": False or self.add_bos_token} | |
encoding = self.tokenizer( | |
strings, | |
truncation=truncation, | |
padding="longest", | |
return_tensors="pt", | |
**add_special_tokens, | |
) | |
if left_truncate_len: | |
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:] | |
encoding["attention_mask"] = encoding["attention_mask"][ | |
:, -left_truncate_len: | |
] | |
self.tokenizer.padding_side = old_padding_side | |
return encoding["input_ids"], encoding["attention_mask"] | |
def tok_decode(self, tokens, skip_special_tokens=True): | |
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens) | |
def _model_call(self, inps, attn_mask=None, labels=None): | |
""" | |
:param inps: torch.Tensor | |
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape | |
[batch, sequence_ctx]. the size of sequence may vary from call to call | |
:param attn_mask: torch.Tensor, optional | |
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed | |
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM | |
:param labels: torch.Tensor, optional | |
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed | |
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM | |
:return | |
A torch tensor of shape [batch, sequence, vocab] with the | |
logits returned from the model's decoder | |
""" | |
with torch.no_grad(): | |
if attn_mask is not None or labels is not None: | |
assert attn_mask is not None and labels is not None | |
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM | |
return self.model( | |
input_ids=inps, attention_mask=attn_mask, labels=labels | |
).logits | |
else: | |
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM | |
return self.model(inps).logits | |
def _model_generate(self, context, max_length, stop, **generation_kwargs): | |
# temperature = 0.0 if not set | |
# if do_sample is false and temp==0.0: | |
# remove temperature, as do_sample=False takes care of this | |
# and we don't want a warning from HF | |
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0) | |
do_sample = generation_kwargs.get("do_sample", None) | |
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies | |
if generation_kwargs.get("temperature") == 0.0 and do_sample is None: | |
generation_kwargs["do_sample"] = do_sample = False | |
if do_sample is False and generation_kwargs.get("temperature") == 0.0: | |
generation_kwargs.pop("temperature") | |
# build stopping criteria | |
stopping_criteria = stop_sequences_criteria( | |
self.tokenizer, stop, context.shape[1], context.shape[0] | |
) | |
return self.model.generate( | |
input_ids=context, | |
max_length=max_length, | |
stopping_criteria=stopping_criteria, | |
pad_token_id=self.tokenizer.pad_token_id, | |
use_cache=True, | |
**generation_kwargs, | |
) | |
def _select_cont_toks( | |
self, logits: torch.Tensor, contlen: int = None, inplen: int = None | |
) -> torch.Tensor: | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
assert ( | |
contlen and inplen | |
), "Must pass input len and cont. len to select scored logits for causal LM" | |
# discard right-padding. | |
# also discard the input/context tokens. we'll only score continuations. | |
logits = logits[inplen - contlen : inplen] | |
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: | |
assert ( | |
contlen and not inplen | |
), "Selecting scored logits for Seq2SeqLM requires only cont. len" | |
# only discard right-padding. | |
# the logits input to this fn only contain decoder-side tokens. | |
logits = logits[:contlen] | |
return logits | |
def loglikelihood_rolling( | |
self, requests: List[Instance], disable_tqdm: bool = False | |
) -> List[float]: | |
loglikelihoods = [] | |
adaptive_batch_size = None | |
if self.batch_size == "auto": | |
# using rolling window with maximum context | |
print("Passed argument batch_size = auto. Detecting largest batch size") | |
batch_size = self._detect_batch_size() | |
print(f"Determined Largest batch size: {batch_size}") | |
adaptive_batch_size = batch_size | |
for (string,) in tqdm( | |
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0)) | |
): | |
rolling_token_windows = list( | |
map( | |
utils.make_disjoint_window, | |
utils.get_rolling_token_windows( | |
token_list=self.tok_encode(string), | |
prefix_token=self.prefix_token_id, | |
max_seq_len=self.max_length, | |
context_len=1, | |
), | |
) | |
) | |
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case | |
rolling_token_windows = [(None,) + x for x in rolling_token_windows] | |
pad_amnt = 0 | |
if self.world_size > 1: | |
# We pad out the external document-level iterator so the inner iterator doesn't hang | |
mytensor = torch.tensor(len(rolling_token_windows), device=self.device) | |
gathered = ( | |
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist() | |
) | |
pad_amnt = max(gathered) - gathered[self.rank] | |
if pad_amnt > 0: | |
rolling_token_windows += pad_amnt * [rolling_token_windows[0]] | |
string_nll = self._loglikelihood_tokens( | |
requests=rolling_token_windows, | |
disable_tqdm=True, | |
override_bs=adaptive_batch_size, | |
) | |
if (self.world_size > 1) and (pad_amnt > 0): | |
string_nll = [x[0] for x in string_nll[:-pad_amnt]] | |
else: | |
# discard is_greedy | |
string_nll = [x[0] for x in string_nll] | |
string_nll = sum(string_nll) | |
loglikelihoods.append(string_nll) | |
return loglikelihoods | |
def _batch_scheduler(self, pos, n_reordered_requests): | |
sched = pos // int(len(n_reordered_requests) / self.batch_schedule) | |
if sched in self.batch_sizes: | |
return self.batch_sizes[sched] | |
if (len(self.batch_sizes) > 1) and ( | |
self.batch_sizes[sched - 1] == self.max_batch_size | |
): | |
# if previous batch size is already maximal, skip recomputation | |
self.batch_sizes[sched] = self.max_batch_size | |
return self.batch_sizes[sched] | |
print( | |
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size" | |
) | |
self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos) | |
print(f"Determined largest batch size: {self.batch_sizes[sched]}") | |
return self.batch_sizes[sched] | |
def _loglikelihood_tokens( | |
self, | |
requests: List[Tuple[Tuple[str, str], List[int], List[int]]], | |
disable_tqdm: bool = False, | |
override_bs: int = None, | |
) -> List[Tuple[float, bool]]: | |
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context | |
res = [] | |
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]): | |
"""Defines the key for the sorted method""" | |
# the negative sign on len(toks) sorts descending - this has a few advantages: | |
# - time estimates will always be over not underestimates, which is more useful for planning | |
# - to know the size of a batch when going through the list, you know the first one is always the batch | |
# padded context length. this is useful to simplify the batching logic and more importantly to make | |
# automatic adaptive batches much much easier to implement | |
# - any OOMs will happen right away rather than near the end | |
toks = req[1] + req[2] | |
return -len(toks), tuple(toks) | |
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]): | |
"""Defines the key to group and lookup one-token continuations""" | |
# Use with group_by="contexts" (optional)" | |
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations. | |
# speeds up some multiple-choice tasks proportionally to the number of choices. | |
# groups requests by context+continuation[:-1] and infer on one request/group. | |
return req[-2] + req[-1][:-1] | |
re_ord = Collator( | |
requests, | |
sort_fn=_collate, | |
group_by="contexts" | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM | |
and self.logits_cache | |
else None, | |
group_fn=_lookup_one_token_cont, | |
) | |
# automatic (variable) batch size detection for vectorization | |
# pull longest context sample from request | |
n_reordered_requests = len(re_ord) | |
batch_size = ( | |
self.batch_size | |
if self.batch_size != "auto" | |
else override_bs | |
if override_bs is not None | |
else 0 | |
) | |
batch_fn = ( | |
self._batch_scheduler | |
if self.batch_size == "auto" | |
and n_reordered_requests > 0 | |
and not override_bs | |
else None | |
) | |
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn) | |
pbar = tqdm( | |
total=len(requests), | |
disable=(disable_tqdm or (self.rank != 0)), | |
desc="Running loglikelihood requests", | |
) | |
for chunk in chunks: | |
inps = [] | |
cont_toks_list = [] | |
inplens = [] | |
conts = [] | |
encoder_attns = [] | |
padding_len_inp = None | |
padding_len_cont = None | |
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded | |
# tensors, then we pack them together into a batch, call the model, and then pick it all apart | |
# again because vectorizing is annoying | |
for _, context_enc, continuation_enc in chunk: | |
# sanity check | |
assert len(context_enc) > 0 | |
assert len(continuation_enc) > 0 | |
assert len(continuation_enc) <= self.max_length | |
# how this all works (illustrated on a causal decoder-only setup): | |
# CTX CONT | |
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] | |
# model \ \ | |
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the | |
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice | |
# when too long to fit in context, truncate from the left | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
inp = torch.tensor( | |
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1], | |
dtype=torch.long, | |
device=self.device, | |
) | |
(inplen,) = inp.shape | |
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: | |
inp = torch.tensor( | |
(context_enc)[-self.max_length :], | |
dtype=torch.long, | |
device=self.device, | |
) | |
(inplen,) = inp.shape | |
# build encoder attn masks | |
encoder_attns.append(torch.ones_like(inp)) | |
cont = torch.tensor( | |
(continuation_enc)[-self.max_length :], | |
# TODO: left-shift these? | |
# TODO: our code assumes we never end up truncating conts for either model type | |
dtype=torch.long, | |
device=self.device, | |
) | |
(contlen,) = cont.shape | |
conts.append(cont) | |
padding_len_cont = ( | |
max(padding_len_cont, contlen) | |
if padding_len_cont is not None | |
else contlen | |
) | |
padding_len_inp = ( | |
max(padding_len_inp, inplen) | |
if padding_len_inp is not None | |
else inplen | |
) | |
inps.append(inp) # [1, inp_length] | |
cont_toks_list.append(continuation_enc) | |
inplens.append(inplen) | |
# create encoder attn mask and batched conts, if seq2seq | |
call_kwargs = {} | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
batched_inps = pad_and_concat( | |
padding_len_inp, inps, padding_side="right" | |
) # [batch, padding_len_inp] | |
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: | |
# TODO: left-pad encoder inps and mask? | |
batched_inps = pad_and_concat( | |
padding_len_inp, inps | |
) # [batch, padding_len_inp] | |
batched_conts = pad_and_concat( | |
padding_len_cont, conts | |
) # [batch, padding_len_cont] | |
batched_encoder_mask = pad_and_concat( | |
padding_len_inp, encoder_attns | |
) # [batch, padding_len_inp] | |
call_kwargs = { | |
"attn_mask": batched_encoder_mask, | |
"labels": batched_conts, | |
} | |
multi_logits = F.log_softmax( | |
self._model_call(batched_inps, **call_kwargs), dim=-1 | |
) # [batch, padding_length (inp or cont), vocab] | |
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip( | |
chunk, multi_logits, inplens, cont_toks_list | |
): | |
# Slice to original seq length | |
contlen = len(cont_toks) | |
# take only logits in the continuation | |
# (discard context toks if decoder-only ; discard right-padding) | |
# also discards + checks for "virtual tokens" in the causal LM's input window | |
# from prompt/prefix tuning tokens, if applicable | |
ctx_len = ( | |
inplen + (logits.shape[0] - padding_len_inp) | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM | |
else None | |
) | |
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len) | |
logits = logits.unsqueeze(0) # [1, seq, vocab] | |
# Check if per-token argmax is exactly equal to continuation | |
greedy_tokens = logits.argmax(dim=-1) | |
# check for one-token continuation cache hits. | |
# noop in case group_by != "contexts" or no cache hit and returns the | |
# original args. Otherwise, expands the logits batch dimension and yields each | |
# batch along with matching continuation tokens and prompt strings. | |
# logits -> [1, seq, vocab] | |
for request_str, cont_toks, logits in re_ord.get_cache( | |
req_str=request_str, | |
cxt_toks=ctx_tokens, | |
cont_toks=cont_toks, | |
logits=logits, | |
): | |
cont_toks = torch.tensor( | |
cont_toks, dtype=torch.long, device=self.device | |
).unsqueeze(0) # [1, seq] | |
max_equal = (greedy_tokens == cont_toks).all() | |
# Obtain log-probs at the corresponding continuation token indices | |
# last_token_slice = logits[:, -1, :].squeeze(0).tolist() | |
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze( | |
-1 | |
) # [1, seq] | |
# Answer: (log prob, is-exact-match) | |
answer = (float(logits.sum()), bool(max_equal)) | |
res.append(answer) | |
self.cache_hook.add_partial("loglikelihood", request_str, answer) | |
pbar.update(1) | |
pbar.close() | |
return re_ord.get_original(res) | |
def generate_until( | |
self, requests: List[Instance], disable_tqdm: bool = False | |
) -> List[str]: | |
res = [] | |
def _collate(req: Tuple[str, dict]): | |
"""Defines the key for the sorted method""" | |
# the negative sign on len(toks) sorts descending - this has a few advantages: | |
# - time estimates will always be over not underestimates, which is more useful for planning | |
# - to know the size of a batch when going through the list, you know the first one is always the batch | |
# padded context length. this is useful to simplify the batching logic and more importantly to make | |
# automatic adaptive batches much much easier to implement | |
# - any OOMs will happen right away rather than near the end | |
toks = self.tok_encode(req[0]) | |
return -len(toks), req[0] | |
pbar = tqdm( | |
total=len(requests), | |
disable=(disable_tqdm or (self.rank != 0)), | |
desc="Running generate_until requests", | |
) | |
adaptive_batch_size = None | |
if self.batch_size == "auto": | |
# using rolling window with maximum context | |
print("Passed argument batch_size = auto. Detecting largest batch size") | |
batch_size = self._detect_batch_size() | |
print(f"Determined Largest batch size: {batch_size}") | |
adaptive_batch_size = batch_size | |
# for each different set of kwargs, we execute all requests, by batch. | |
batch_size = ( | |
self.batch_size | |
if self.batch_size != "auto" | |
else adaptive_batch_size | |
if adaptive_batch_size is not None | |
else 0 | |
) | |
batch_fn = ( | |
self._batch_scheduler | |
if self.batch_size == "auto" and not adaptive_batch_size | |
else None | |
) | |
# we group requests by their generation_kwargs, | |
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | |
# in the same batch. | |
# group_fn=lambda x: x[1] -> x=(context, gen_kwargs) | |
re_ords = Collator( | |
[reg.args for reg in requests], | |
sort_fn=_collate, | |
group_by="gen_kwargs", | |
group_fn=lambda x: x[1], | |
) | |
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn) | |
for chunk in chunks: | |
contexts, all_gen_kwargs = zip(*chunk) | |
# we assume all gen kwargs in the batch are the same | |
# this is safe to assume because the `grouper` object ensures it. | |
gen_kwargs = all_gen_kwargs[0] | |
# unpack our keyword arguments. | |
until = None | |
if isinstance(gen_kwargs, dict): | |
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1 | |
if "until" in kwargs.keys(): | |
until = kwargs.pop("until") | |
if isinstance(until, str): | |
until = [until] | |
elif not isinstance(until, list): | |
raise ValueError( | |
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}" | |
) | |
else: | |
raise ValueError( | |
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}" | |
) | |
# add EOS token to stop sequences | |
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False) | |
if not until: | |
until = [eos] | |
else: | |
until.append(eos) | |
if "max_gen_toks" in kwargs.keys(): | |
max_gen_toks = kwargs.pop("max_gen_toks") | |
else: | |
max_gen_toks = self.max_gen_toks | |
# set the max length in tokens of inputs ("context_enc") | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
# max len for inputs = max length, minus room to generate the max new tokens | |
max_ctx_len = self.max_length - max_gen_toks | |
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: | |
# max len for inputs = encoder's whole max_length | |
max_ctx_len = self.max_length | |
# encode, pad, and truncate contexts for this batch | |
context_enc, attn_masks = self.tok_batch_encode( | |
contexts, | |
left_truncate_len=max_ctx_len, | |
truncation=self.truncation, | |
) | |
context_enc = context_enc.to(self.device) | |
attn_masks = attn_masks.to(self.device) | |
if "max_length" not in kwargs: | |
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks | |
# perform batched generation | |
cont = self._model_generate( | |
context=context_enc, | |
attention_mask=attn_masks, | |
stop=until, | |
**kwargs, | |
) | |
cont_toks_list = cont.tolist() | |
for cont_toks, context in zip(cont_toks_list, contexts): | |
# discard context + left-padding toks if using causal decoder-only LM | |
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: | |
cont_toks = cont_toks[context_enc.shape[1] :] | |
s = self.tok_decode(cont_toks) | |
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc | |
for term in until: | |
if len(term) > 0: | |
# ignore '' separator, | |
# for seq2seq case where self.tok_decode(self.eot_token_id) = '' | |
s = s.split(term)[0] | |
res.append(s) | |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s) | |
pbar.update(1) | |
# reorder this group of results back to original unsorted form | |
res = re_ords.get_original(res) | |
pbar.close() | |
return res | |