applied-ai-018's picture
Add files using upload-large-folder tool
19a3898 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from torch import nn
from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference
from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference
from deepspeed.model_implementations.transformers.ds_opt import DeepSpeedOPTInference
from deepspeed.model_implementations.transformers.ds_llama2 import DeepSpeedLlama2Inference
import deepspeed.ops.transformer as transformer_inference
from .layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding, RMSNormalize
import torch
import gc
from deepspeed.accelerator import get_accelerator
import re
def load_model_with_checkpoint(r_module,
sd,
mp_replace,
ckpt_type,
ckpt_mp_size,
weight_quantizer=None,
rank=0,
container=None):
error_msgs = []
def prefix_check():
# if keys start with 'model.' or 'transformer.', don't skip level 0 prefix
for key in sd[0].keys():
# OPT models
if re.match("^model[.]", key):
return False
# BLOOM models
if re.match("^transformer[.]", key):
return False
return True
skip_level_0_prefix = prefix_check() and container.policy.use_load_prefix
def transpose(data):
with torch.no_grad():
data = data.contiguous()
data1 = data.transpose(-1, -2).reshape(-1)
data.reshape(-1).copy_(data1)
data1 = None
return data.reshape(data.shape[-1], data.shape[-2])
def load(module, prefix):
args = (sd[0], prefix, {}, True, [], [], error_msgs)
if hasattr(module, 'weight'):
module.weight = mp_replace.copy(module.weight.data, sd[0][prefix + 'weight'])
if prefix + 'bias' in sd[0].keys():
if module.bias.data.is_meta:
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"),
requires_grad=module.bias.data.requires_grad)
module.bias = mp_replace.copy(module.bias.data, sd[0][prefix + 'bias'])
args = None
gc.collect()
def load_transformer_layer(module, prefix):
if ckpt_type == "tp":
def load_parameters(module, prefix):
for n, p in module.named_parameters():
if prefix + n in sd[0] and len(n.split('.')) == 1:
if type(sd[0][prefix + n]) is list:
tmp_data, scale = sd[0][prefix + n]
tmp_data = tmp_data
scale = scale.to(get_accelerator().current_device_name())
# set the quantizer number of groups using the checkpoint scale shape
weight_quantizer.num_groups = scale.shape[0]
else:
tmp_data = sd[0][prefix + n].to(get_accelerator().current_device_name())
scale = None
src_shape = tmp_data.shape
dst_shape = p.shape
inner_dim = 1 if tmp_data.dtype == torch.int8 else 0
outer_dim = 0 if tmp_data.dtype == torch.int8 else 1
if (len(src_shape) == 2 and len(dst_shape) == 2):
if (src_shape[inner_dim] == dst_shape[0] and src_shape[outer_dim] == dst_shape[1]):
if tmp_data.dtype != torch.int8:
p = weight_quantizer.quantize(
transpose(tmp_data) if weight_quantizer.q_int8 else tmp_data)
else:
p = torch.nn.parameter.Parameter(tmp_data, requires_grad=False)
p.scale = scale
setattr(module, n, p)
else:
dim = inner_dim if src_shape[inner_dim] != dst_shape[0] else outer_dim
dim1 = 0 if src_shape[inner_dim] != dst_shape[0] else 1
if src_shape[dim] > dst_shape[dim1]:
weight_partition = torch.split(tmp_data, dst_shape[dim1], dim=dim)[rank].to(
get_accelerator().current_device_name())
assert tmp_data.dtype != torch.int8 or scale.numel() > weight_quantizer.num_groups * (rank+1), \
'''ERROR: We require the quantization scales for larger TP-size when loading INT8 checkpoint!\
Please use the FP16 checkpoint to generate INT8 checkpoint with the sharding parameters!'''
scale = scale.view(-1)[weight_quantizer.num_groups * (rank + 1):].reshape(
weight_quantizer.num_groups, -1).contiguous()
else:
assert tmp_data.dtype != torch.int8, \
'''Merging of the checkpoints are not supported when using INT8 checkpoint! \
Please use a as many GPUs as TP-size for the checkpoint'''
all_data = [
sd[j][prefix + n] if type(sd[j][prefix + n]) is list else sd[j][prefix + n].to(
get_accelerator().current_device_name()) for j in range(len(sd))
]
# Check if the weight tensor is for the QKV parameter
if src_shape[1] == (3 * src_shape[0]) // ckpt_mp_size:
qkv_size = src_shape[outer_dim] // 3
src_split = [
torch.split(src[0].data, qkv_size, dim=outer_dim) for src in all_data
]
weight_partition = torch.cat([
torch.cat([qkv_s[i] for qkv_s in src_split], axis=outer_dim)
for i in range(len(src_split[0]))
],
dim=dim)
else:
weight_partition = torch.cat([
ad[0].to(get_accelerator().current_device_name())
if type(ad) is list else ad for ad in all_data
],
dim=dim)
if tmp_data.dtype == torch.int8:
scale = torch.cat(
[ad[1].to(get_accelerator().current_device_name()) for ad in all_data],
dim=dim)
if tmp_data.dtype != torch.int8:
weight_partition = weight_quantizer.quantize(
transpose(weight_partition), \
parallel_dim=(0 if dim == 1 else 1)) if weight_quantizer.q_int8 else \
weight_quantizer.quantize(weight_partition)
else:
weight_partition = torch.nn.parameter.Parameter(weight_partition,
requires_grad=False)
weight_partition.scale = scale
setattr(module, n, weight_partition)
else:
if src_shape[0] == dst_shape[0]:
p.data.copy_(tmp_data)
else:
if src_shape[0] > dst_shape[0]:
bias_split = torch.split(tmp_data, dst_shape[-1])[rank].to(
get_accelerator().current_device_name()).contiguous()
p.data.copy_(bias_split)
else:
# Check if the weight tensor is for the QKV parameter
if src_shape[0] == (3 * r_module.config.hidden_size) // ckpt_mp_size:
qkv_size = src_shape[0] // 3
src_split = [
torch.split(sd[j][prefix + n], qkv_size, dim=0) for j in range(len(sd))
]
p.data.copy_(
torch.cat([
torch.cat([qkv_s[i] for qkv_s in src_split], axis=0)
for i in range(len(src_split[0]))
],
dim=0).to(get_accelerator().current_device_name()).contiguous())
else:
p.data.copy_(
torch.cat([sd[j][prefix + n] for j in range(len(sd))],
dim=0).to(get_accelerator().current_device_name()).contiguous())
load_parameters(module, prefix)
for n, child in module.named_children():
load_parameters(child, prefix + n + '.')
else:
container.load_params(module, sd[0], weight_quantizer, mp_replace, prefix)
try:
import transformers
OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding
if hasattr(transformers.models, "llama"):
LlamaRMSNorm = transformers.models.llama.modeling_llama.LlamaRMSNorm
else:
LlamaRMSNorm = None
except:
OPTLearnedPositionalEmbedding = None
try:
from fairscale.nn.model_parallel.layers import (
ColumnParallelLinear,
ParallelEmbedding,
RowParallelLinear,
)
except:
ColumnParallelLinear = None
ParallelEmbedding = None
RowParallelLinear = None
try:
from llama.model import RMSNorm
except:
RMSNorm = None
layer_policies = {
nn.Linear: load,
nn.Embedding: load,
nn.LayerNorm: load,
EmbeddingLayer: load,
LinearLayer: load,
Normalize: load,
transformer_inference.DeepSpeedTransformerInference: load_transformer_layer,
DeepSpeedBloomInference: load_transformer_layer,
DeepSpeedGPTInference: load_transformer_layer,
DeepSpeedBERTInference: load_transformer_layer,
DeepSpeedMegatronGPTInference: load_transformer_layer,
DeepSpeedOPTInference: load_transformer_layer,
DeepSpeedLlama2Inference: load_transformer_layer,
OPTLearnedPositionalEmbedding: load,
OPTEmbedding: load,
LlamaRMSNorm: load,
RMSNormalize: load,
ColumnParallelLinear: load,
ParallelEmbedding: load,
RowParallelLinear: load,
RMSNorm: load
}
all_ds_ids = {}
def load_module_recursive(module, prefix='', level=0):
for name, child in module.named_children():
if child.__class__ in layer_policies:
checking_key = prefix + name + '.'
if not any(checking_key in item for item in sd[0].keys()):
if hasattr(child, 'weight') and \
(hasattr(child.weight, 'ds_id') and \
child.weight.ds_id in all_ds_ids):
prefix1 = all_ds_ids[child.weight.ds_id]
if child.__class__ is nn.Linear:
child = LinearLayer(weight=all_ds_ids[child.weight.ds_id])
setattr(module, name, child)
continue
child_params = list(child.parameters())
if len(child_params) > 0 and (child_params[0].numel() == 0 or child_params[0].is_meta):
if child.weight.is_meta:
ds_shape = child.weight.shape
else:
ds_shape = child.weight.ds_shape
if child.__class__ is nn.LayerNorm:
child = Normalize(dim=ds_shape[-1], dtype=child.weight.dtype, eps=child.eps)
setattr(module, name, child)
elif child.__class__ in [nn.Linear, ColumnParallelLinear, RowParallelLinear]:
child = LinearLayer(weight_shape=child.weight.shape, dtype=child.weight.dtype, bias=child.bias)
setattr(module, name, child)
elif child.__class__ is OPTLearnedPositionalEmbedding:
child = OPTEmbedding(weight_shape=ds_shape)
setattr(module, name, child)
elif child.__class__ in [LlamaRMSNorm, RMSNorm]:
child = RMSNormalize(dim=ds_shape[-1],
dtype=child.weight.dtype,
eps=child.eps if hasattr(child, 'eps') else child.variance_epsilon)
setattr(module, name, child)
else:
ds_id = None
if hasattr(child.weight, 'ds_id'):
ds_id = child.weight.ds_id
child = EmbeddingLayer(weight_shape=ds_shape, dtype=child.weight.dtype)
if ds_id is not None:
all_ds_ids[ds_id] = child.weight
setattr(module, name, child)
layer_policies[child.__class__](child, prefix + name + '.')
else:
load_module_recursive(
child,
prefix if (level == 0 and ckpt_type == 'pp') and skip_level_0_prefix else \
prefix + name + '.',
level + 1)
load_module_recursive(r_module)
for sd_ in sd:
del sd_
sd = None
gc.collect()