peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/array_api
/linalg.py
from __future__ import annotations | |
from ._dtypes import ( | |
_floating_dtypes, | |
_numeric_dtypes, | |
float32, | |
float64, | |
complex64, | |
complex128 | |
) | |
from ._manipulation_functions import reshape | |
from ._elementwise_functions import conj | |
from ._array_object import Array | |
from ..core.numeric import normalize_axis_tuple | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype | |
from typing import NamedTuple | |
import numpy.linalg | |
import numpy as np | |
class EighResult(NamedTuple): | |
eigenvalues: Array | |
eigenvectors: Array | |
class QRResult(NamedTuple): | |
Q: Array | |
R: Array | |
class SlogdetResult(NamedTuple): | |
sign: Array | |
logabsdet: Array | |
class SVDResult(NamedTuple): | |
U: Array | |
S: Array | |
Vh: Array | |
# Note: the inclusion of the upper keyword is different from | |
# np.linalg.cholesky, which does not have it. | |
def cholesky(x: Array, /, *, upper: bool = False) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.cholesky. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in cholesky') | |
L = np.linalg.cholesky(x._array) | |
if upper: | |
U = Array._new(L).mT | |
if U.dtype in [complex64, complex128]: | |
U = conj(U) | |
return U | |
return Array._new(L) | |
# Note: cross is the numpy top-level namespace, not np.linalg | |
def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`. | |
See its docstring for more information. | |
""" | |
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in cross') | |
# Note: this is different from np.cross(), which broadcasts | |
if x1.shape != x2.shape: | |
raise ValueError('x1 and x2 must have the same shape') | |
if x1.ndim == 0: | |
raise ValueError('cross() requires arrays of dimension at least 1') | |
# Note: this is different from np.cross(), which allows dimension 2 | |
if x1.shape[axis] != 3: | |
raise ValueError('cross() dimension must equal 3') | |
return Array._new(np.cross(x1._array, x2._array, axis=axis)) | |
def det(x: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.det. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in det') | |
return Array._new(np.linalg.det(x._array)) | |
# Note: diagonal is the numpy top-level namespace, not np.linalg | |
def diagonal(x: Array, /, *, offset: int = 0) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`. | |
See its docstring for more information. | |
""" | |
# Note: diagonal always operates on the last two axes, whereas np.diagonal | |
# operates on the first two axes by default | |
return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1)) | |
def eigh(x: Array, /) -> EighResult: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.eigh. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in eigh') | |
# Note: the return type here is a namedtuple, which is different from | |
# np.eigh, which only returns a tuple. | |
return EighResult(*map(Array._new, np.linalg.eigh(x._array))) | |
def eigvalsh(x: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.eigvalsh. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in eigvalsh') | |
return Array._new(np.linalg.eigvalsh(x._array)) | |
def inv(x: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.inv. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in inv') | |
return Array._new(np.linalg.inv(x._array)) | |
# Note: matmul is the numpy top-level namespace but not in np.linalg | |
def matmul(x1: Array, x2: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to numeric dtypes only is different from | |
# np.matmul. | |
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in matmul') | |
return Array._new(np.matmul(x1._array, x2._array)) | |
# Note: the name here is different from norm(). The array API norm is split | |
# into matrix_norm and vector_norm(). | |
# The type for ord should be Optional[Union[int, float, Literal[np.inf, | |
# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point | |
# literals. | |
def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.norm. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in matrix_norm') | |
return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord)) | |
def matrix_power(x: Array, n: int, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.matrix_power. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power') | |
# np.matrix_power already checks if n is an integer | |
return Array._new(np.linalg.matrix_power(x._array, n)) | |
# Note: the keyword argument name rtol is different from np.linalg.matrix_rank | |
def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`. | |
See its docstring for more information. | |
""" | |
# Note: this is different from np.linalg.matrix_rank, which supports 1 | |
# dimensional arrays. | |
if x.ndim < 2: | |
raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional") | |
S = np.linalg.svd(x._array, compute_uv=False) | |
if rtol is None: | |
tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps | |
else: | |
if isinstance(rtol, Array): | |
rtol = rtol._array | |
# Note: this is different from np.linalg.matrix_rank, which does not multiply | |
# the tolerance by the largest singular value. | |
tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis] | |
return Array._new(np.count_nonzero(S > tol, axis=-1)) | |
# Note: this function is new in the array API spec. Unlike transpose, it only | |
# transposes the last two axes. | |
def matrix_transpose(x: Array, /) -> Array: | |
if x.ndim < 2: | |
raise ValueError("x must be at least 2-dimensional for matrix_transpose") | |
return Array._new(np.swapaxes(x._array, -1, -2)) | |
# Note: outer is the numpy top-level namespace, not np.linalg | |
def outer(x1: Array, x2: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to numeric dtypes only is different from | |
# np.outer. | |
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in outer') | |
# Note: the restriction to only 1-dim arrays is different from np.outer | |
if x1.ndim != 1 or x2.ndim != 1: | |
raise ValueError('The input arrays to outer must be 1-dimensional') | |
return Array._new(np.outer(x1._array, x2._array)) | |
# Note: the keyword argument name rtol is different from np.linalg.pinv | |
def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.pinv. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in pinv') | |
# Note: this is different from np.linalg.pinv, which does not multiply the | |
# default tolerance by max(M, N). | |
if rtol is None: | |
rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps | |
return Array._new(np.linalg.pinv(x._array, rcond=rtol)) | |
def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.qr. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in qr') | |
# Note: the return type here is a namedtuple, which is different from | |
# np.linalg.qr, which only returns a tuple. | |
return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode))) | |
def slogdet(x: Array, /) -> SlogdetResult: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.slogdet. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in slogdet') | |
# Note: the return type here is a namedtuple, which is different from | |
# np.linalg.slogdet, which only returns a tuple. | |
return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array))) | |
# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a | |
# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack | |
# of matrices. The np.linalg.solve behavior of allowing stacks of both | |
# matrices and vectors is ambiguous c.f. | |
# https://github.com/numpy/numpy/issues/15349 and | |
# https://github.com/data-apis/array-api/issues/285. | |
# To workaround this, the below is the code from np.linalg.solve except | |
# only calling solve1 in the exactly 1D case. | |
def _solve(a, b): | |
from ..linalg.linalg import (_makearray, _assert_stacked_2d, | |
_assert_stacked_square, _commonType, | |
isComplexType, get_linalg_error_extobj, | |
_raise_linalgerror_singular) | |
from ..linalg import _umath_linalg | |
a, _ = _makearray(a) | |
_assert_stacked_2d(a) | |
_assert_stacked_square(a) | |
b, wrap = _makearray(b) | |
t, result_t = _commonType(a, b) | |
# This part is different from np.linalg.solve | |
if b.ndim == 1: | |
gufunc = _umath_linalg.solve1 | |
else: | |
gufunc = _umath_linalg.solve | |
# This does nothing currently but is left in because it will be relevant | |
# when complex dtype support is added to the spec in 2022. | |
signature = 'DD->D' if isComplexType(t) else 'dd->d' | |
with np.errstate(call=_raise_linalgerror_singular, invalid='call', | |
over='ignore', divide='ignore', under='ignore'): | |
r = gufunc(a, b, signature=signature) | |
return wrap(r.astype(result_t, copy=False)) | |
def solve(x1: Array, x2: Array, /) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.solve. | |
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in solve') | |
return Array._new(_solve(x1._array, x2._array)) | |
def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.svd. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in svd') | |
# Note: the return type here is a namedtuple, which is different from | |
# np.svd, which only returns a tuple. | |
return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices))) | |
# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to | |
# np.linalg.svd(compute_uv=False). | |
def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]: | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in svdvals') | |
return Array._new(np.linalg.svd(x._array, compute_uv=False)) | |
# Note: tensordot is the numpy top-level namespace but not in np.linalg | |
# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like. | |
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array: | |
# Note: the restriction to numeric dtypes only is different from | |
# np.tensordot. | |
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in tensordot') | |
return Array._new(np.tensordot(x1._array, x2._array, axes=axes)) | |
# Note: trace is the numpy top-level namespace, not np.linalg | |
def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`. | |
See its docstring for more information. | |
""" | |
if x.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in trace') | |
# Note: trace() works the same as sum() and prod() (see | |
# _statistical_functions.py) | |
if dtype is None: | |
if x.dtype == float32: | |
dtype = float64 | |
elif x.dtype == complex64: | |
dtype = complex128 | |
# Note: trace always operates on the last two axes, whereas np.trace | |
# operates on the first two axes by default | |
return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype))) | |
# Note: vecdot is not in NumPy | |
def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array: | |
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: | |
raise TypeError('Only numeric dtypes are allowed in vecdot') | |
ndim = max(x1.ndim, x2.ndim) | |
x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape) | |
x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape) | |
if x1_shape[axis] != x2_shape[axis]: | |
raise ValueError("x1 and x2 must have the same size along the given axis") | |
x1_, x2_ = np.broadcast_arrays(x1._array, x2._array) | |
x1_ = np.moveaxis(x1_, axis, -1) | |
x2_ = np.moveaxis(x2_, axis, -1) | |
res = x1_[..., None, :] @ x2_[..., None] | |
return Array._new(res[..., 0, 0]) | |
# Note: the name here is different from norm(). The array API norm is split | |
# into matrix_norm and vector_norm(). | |
# The type for ord should be Optional[Union[int, float, Literal[np.inf, | |
# -np.inf]]] but Literal does not support floating-point literals. | |
def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array: | |
""" | |
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`. | |
See its docstring for more information. | |
""" | |
# Note: the restriction to floating-point dtypes only is different from | |
# np.linalg.norm. | |
if x.dtype not in _floating_dtypes: | |
raise TypeError('Only floating-point dtypes are allowed in norm') | |
# np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or | |
# when axis=None and the input is 2-D, so to force a vector norm, we make | |
# it so the input is 1-D (for axis=None), or reshape so that norm is done | |
# on a single dimension. | |
a = x._array | |
if axis is None: | |
# Note: np.linalg.norm() doesn't handle 0-D arrays | |
a = a.ravel() | |
_axis = 0 | |
elif isinstance(axis, tuple): | |
# Note: The axis argument supports any number of axes, whereas | |
# np.linalg.norm() only supports a single axis for vector norm. | |
normalized_axis = normalize_axis_tuple(axis, x.ndim) | |
rest = tuple(i for i in range(a.ndim) if i not in normalized_axis) | |
newshape = axis + rest | |
a = np.transpose(a, newshape).reshape( | |
(np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest])) | |
_axis = 0 | |
else: | |
_axis = axis | |
res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord)) | |
if keepdims: | |
# We can't reuse np.linalg.norm(keepdims) because of the reshape hacks | |
# above to avoid matrix norm logic. | |
shape = list(x.shape) | |
_axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim) | |
for i in _axis: | |
shape[i] = 1 | |
res = reshape(res, tuple(shape)) | |
return res | |
__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm'] | |