peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/plotting
/_matplotlib
/boxplot.py
from __future__ import annotations | |
from typing import ( | |
TYPE_CHECKING, | |
Literal, | |
NamedTuple, | |
) | |
import warnings | |
from matplotlib.artist import setp | |
import numpy as np | |
from pandas._libs import lib | |
from pandas.util._decorators import cache_readonly | |
from pandas.util._exceptions import find_stack_level | |
from pandas.core.dtypes.common import is_dict_like | |
from pandas.core.dtypes.generic import ABCSeries | |
from pandas.core.dtypes.missing import remove_na_arraylike | |
import pandas as pd | |
import pandas.core.common as com | |
from pandas.io.formats.printing import pprint_thing | |
from pandas.plotting._matplotlib.core import ( | |
LinePlot, | |
MPLPlot, | |
) | |
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by | |
from pandas.plotting._matplotlib.style import get_standard_colors | |
from pandas.plotting._matplotlib.tools import ( | |
create_subplots, | |
flatten_axes, | |
maybe_adjust_figure, | |
) | |
if TYPE_CHECKING: | |
from collections.abc import Collection | |
from matplotlib.axes import Axes | |
from matplotlib.figure import Figure | |
from matplotlib.lines import Line2D | |
from pandas._typing import MatplotlibColor | |
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None: | |
"""Set the tick labels of a given axis. | |
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the | |
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of | |
labels. | |
""" | |
ticks = ax.get_xticks() if is_vertical else ax.get_yticks() | |
if len(ticks) != len(labels): | |
i, remainder = divmod(len(ticks), len(labels)) | |
assert remainder == 0, remainder | |
labels *= i | |
if is_vertical: | |
ax.set_xticklabels(labels, **kwargs) | |
else: | |
ax.set_yticklabels(labels, **kwargs) | |
class BoxPlot(LinePlot): | |
def _kind(self) -> Literal["box"]: | |
return "box" | |
_layout_type = "horizontal" | |
_valid_return_types = (None, "axes", "dict", "both") | |
class BP(NamedTuple): | |
# namedtuple to hold results | |
ax: Axes | |
lines: dict[str, list[Line2D]] | |
def __init__(self, data, return_type: str = "axes", **kwargs) -> None: | |
if return_type not in self._valid_return_types: | |
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}") | |
self.return_type = return_type | |
# Do not call LinePlot.__init__ which may fill nan | |
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called | |
if self.subplots: | |
# Disable label ax sharing. Otherwise, all subplots shows last | |
# column label | |
if self.orientation == "vertical": | |
self.sharex = False | |
else: | |
self.sharey = False | |
# error: Signature of "_plot" incompatible with supertype "MPLPlot" | |
def _plot( # type: ignore[override] | |
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds | |
): | |
ys: np.ndarray | list[np.ndarray] | |
if y.ndim == 2: | |
ys = [remove_na_arraylike(v) for v in y] | |
# Boxplot fails with empty arrays, so need to add a NaN | |
# if any cols are empty | |
# GH 8181 | |
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys] | |
else: | |
ys = remove_na_arraylike(y) | |
bp = ax.boxplot(ys, **kwds) | |
if return_type == "dict": | |
return bp, bp | |
elif return_type == "both": | |
return cls.BP(ax=ax, lines=bp), bp | |
else: | |
return ax, bp | |
def _validate_color_args(self, color, colormap): | |
if color is lib.no_default: | |
return None | |
if colormap is not None: | |
warnings.warn( | |
"'color' and 'colormap' cannot be used " | |
"simultaneously. Using 'color'", | |
stacklevel=find_stack_level(), | |
) | |
if isinstance(color, dict): | |
valid_keys = ["boxes", "whiskers", "medians", "caps"] | |
for key in color: | |
if key not in valid_keys: | |
raise ValueError( | |
f"color dict contains invalid key '{key}'. " | |
f"The key must be either {valid_keys}" | |
) | |
return color | |
def _color_attrs(self): | |
# get standard colors for default | |
# use 2 colors by default, for box/whisker and median | |
# flier colors isn't needed here | |
# because it can be specified by ``sym`` kw | |
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None) | |
def _boxes_c(self): | |
return self._color_attrs[0] | |
def _whiskers_c(self): | |
return self._color_attrs[0] | |
def _medians_c(self): | |
return self._color_attrs[2] | |
def _caps_c(self): | |
return self._color_attrs[0] | |
def _get_colors( | |
self, | |
num_colors=None, | |
color_kwds: dict[str, MatplotlibColor] | |
| MatplotlibColor | |
| Collection[MatplotlibColor] | |
| None = "color", | |
) -> None: | |
pass | |
def maybe_color_bp(self, bp) -> None: | |
if isinstance(self.color, dict): | |
boxes = self.color.get("boxes", self._boxes_c) | |
whiskers = self.color.get("whiskers", self._whiskers_c) | |
medians = self.color.get("medians", self._medians_c) | |
caps = self.color.get("caps", self._caps_c) | |
else: | |
# Other types are forwarded to matplotlib | |
# If None, use default colors | |
boxes = self.color or self._boxes_c | |
whiskers = self.color or self._whiskers_c | |
medians = self.color or self._medians_c | |
caps = self.color or self._caps_c | |
color_tup = (boxes, whiskers, medians, caps) | |
maybe_color_bp(bp, color_tup=color_tup, **self.kwds) | |
def _make_plot(self, fig: Figure) -> None: | |
if self.subplots: | |
self._return_obj = pd.Series(dtype=object) | |
# Re-create iterated data if `by` is assigned by users | |
data = ( | |
create_iter_data_given_by(self.data, self._kind) | |
if self.by is not None | |
else self.data | |
) | |
# error: Argument "data" to "_iter_data" of "MPLPlot" has | |
# incompatible type "object"; expected "DataFrame | | |
# dict[Hashable, Series | DataFrame]" | |
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type] | |
ax = self._get_ax(i) | |
kwds = self.kwds.copy() | |
# When by is applied, show title for subplots to know which group it is | |
# just like df.boxplot, and need to apply T on y to provide right input | |
if self.by is not None: | |
y = y.T | |
ax.set_title(pprint_thing(label)) | |
# When `by` is assigned, the ticklabels will become unique grouped | |
# values, instead of label which is used as subtitle in this case. | |
# error: "Index" has no attribute "levels"; maybe "nlevels"? | |
levels = self.data.columns.levels # type: ignore[attr-defined] | |
ticklabels = [pprint_thing(col) for col in levels[0]] | |
else: | |
ticklabels = [pprint_thing(label)] | |
ret, bp = self._plot( | |
ax, y, column_num=i, return_type=self.return_type, **kwds | |
) | |
self.maybe_color_bp(bp) | |
self._return_obj[label] = ret | |
_set_ticklabels( | |
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical" | |
) | |
else: | |
y = self.data.values.T | |
ax = self._get_ax(0) | |
kwds = self.kwds.copy() | |
ret, bp = self._plot( | |
ax, y, column_num=0, return_type=self.return_type, **kwds | |
) | |
self.maybe_color_bp(bp) | |
self._return_obj = ret | |
labels = [pprint_thing(left) for left in self.data.columns] | |
if not self.use_index: | |
labels = [pprint_thing(key) for key in range(len(labels))] | |
_set_ticklabels( | |
ax=ax, labels=labels, is_vertical=self.orientation == "vertical" | |
) | |
def _make_legend(self) -> None: | |
pass | |
def _post_plot_logic(self, ax: Axes, data) -> None: | |
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel | |
if self.xlabel: | |
ax.set_xlabel(pprint_thing(self.xlabel)) | |
if self.ylabel: | |
ax.set_ylabel(pprint_thing(self.ylabel)) | |
def orientation(self) -> Literal["horizontal", "vertical"]: | |
if self.kwds.get("vert", True): | |
return "vertical" | |
else: | |
return "horizontal" | |
def result(self): | |
if self.return_type is None: | |
return super().result | |
else: | |
return self._return_obj | |
def maybe_color_bp(bp, color_tup, **kwds) -> None: | |
# GH#30346, when users specifying those arguments explicitly, our defaults | |
# for these four kwargs should be overridden; if not, use Pandas settings | |
if not kwds.get("boxprops"): | |
setp(bp["boxes"], color=color_tup[0], alpha=1) | |
if not kwds.get("whiskerprops"): | |
setp(bp["whiskers"], color=color_tup[1], alpha=1) | |
if not kwds.get("medianprops"): | |
setp(bp["medians"], color=color_tup[2], alpha=1) | |
if not kwds.get("capprops"): | |
setp(bp["caps"], color=color_tup[3], alpha=1) | |
def _grouped_plot_by_column( | |
plotf, | |
data, | |
columns=None, | |
by=None, | |
numeric_only: bool = True, | |
grid: bool = False, | |
figsize: tuple[float, float] | None = None, | |
ax=None, | |
layout=None, | |
return_type=None, | |
**kwargs, | |
): | |
grouped = data.groupby(by, observed=False) | |
if columns is None: | |
if not isinstance(by, (list, tuple)): | |
by = [by] | |
columns = data._get_numeric_data().columns.difference(by) | |
naxes = len(columns) | |
fig, axes = create_subplots( | |
naxes=naxes, | |
sharex=kwargs.pop("sharex", True), | |
sharey=kwargs.pop("sharey", True), | |
figsize=figsize, | |
ax=ax, | |
layout=layout, | |
) | |
_axes = flatten_axes(axes) | |
# GH 45465: move the "by" label based on "vert" | |
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None) | |
if kwargs.get("vert", True): | |
xlabel = xlabel or by | |
else: | |
ylabel = ylabel or by | |
ax_values = [] | |
for i, col in enumerate(columns): | |
ax = _axes[i] | |
gp_col = grouped[col] | |
keys, values = zip(*gp_col) | |
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs) | |
ax.set_title(col) | |
ax_values.append(re_plotf) | |
ax.grid(grid) | |
result = pd.Series(ax_values, index=columns, copy=False) | |
# Return axes in multiplot case, maybe revisit later # 985 | |
if return_type is None: | |
result = axes | |
byline = by[0] if len(by) == 1 else by | |
fig.suptitle(f"Boxplot grouped by {byline}") | |
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) | |
return result | |
def boxplot( | |
data, | |
column=None, | |
by=None, | |
ax=None, | |
fontsize: int | None = None, | |
rot: int = 0, | |
grid: bool = True, | |
figsize: tuple[float, float] | None = None, | |
layout=None, | |
return_type=None, | |
**kwds, | |
): | |
import matplotlib.pyplot as plt | |
# validate return_type: | |
if return_type not in BoxPlot._valid_return_types: | |
raise ValueError("return_type must be {'axes', 'dict', 'both'}") | |
if isinstance(data, ABCSeries): | |
data = data.to_frame("x") | |
column = "x" | |
def _get_colors(): | |
# num_colors=3 is required as method maybe_color_bp takes the colors | |
# in positions 0 and 2. | |
# if colors not provided, use same defaults as DataFrame.plot.box | |
result = get_standard_colors(num_colors=3) | |
result = np.take(result, [0, 0, 2]) | |
result = np.append(result, "k") | |
colors = kwds.pop("color", None) | |
if colors: | |
if is_dict_like(colors): | |
# replace colors in result array with user-specified colors | |
# taken from the colors dict parameter | |
# "boxes" value placed in position 0, "whiskers" in 1, etc. | |
valid_keys = ["boxes", "whiskers", "medians", "caps"] | |
key_to_index = dict(zip(valid_keys, range(4))) | |
for key, value in colors.items(): | |
if key in valid_keys: | |
result[key_to_index[key]] = value | |
else: | |
raise ValueError( | |
f"color dict contains invalid key '{key}'. " | |
f"The key must be either {valid_keys}" | |
) | |
else: | |
result.fill(colors) | |
return result | |
def plot_group(keys, values, ax: Axes, **kwds): | |
# GH 45465: xlabel/ylabel need to be popped out before plotting happens | |
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None) | |
if xlabel: | |
ax.set_xlabel(pprint_thing(xlabel)) | |
if ylabel: | |
ax.set_ylabel(pprint_thing(ylabel)) | |
keys = [pprint_thing(x) for x in keys] | |
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values] | |
bp = ax.boxplot(values, **kwds) | |
if fontsize is not None: | |
ax.tick_params(axis="both", labelsize=fontsize) | |
# GH 45465: x/y are flipped when "vert" changes | |
_set_ticklabels( | |
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot | |
) | |
maybe_color_bp(bp, color_tup=colors, **kwds) | |
# Return axes in multiplot case, maybe revisit later # 985 | |
if return_type == "dict": | |
return bp | |
elif return_type == "both": | |
return BoxPlot.BP(ax=ax, lines=bp) | |
else: | |
return ax | |
colors = _get_colors() | |
if column is None: | |
columns = None | |
elif isinstance(column, (list, tuple)): | |
columns = column | |
else: | |
columns = [column] | |
if by is not None: | |
# Prefer array return type for 2-D plots to match the subplot layout | |
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580 | |
result = _grouped_plot_by_column( | |
plot_group, | |
data, | |
columns=columns, | |
by=by, | |
grid=grid, | |
figsize=figsize, | |
ax=ax, | |
layout=layout, | |
return_type=return_type, | |
**kwds, | |
) | |
else: | |
if return_type is None: | |
return_type = "axes" | |
if layout is not None: | |
raise ValueError("The 'layout' keyword is not supported when 'by' is None") | |
if ax is None: | |
rc = {"figure.figsize": figsize} if figsize is not None else {} | |
with plt.rc_context(rc): | |
ax = plt.gca() | |
data = data._get_numeric_data() | |
naxes = len(data.columns) | |
if naxes == 0: | |
raise ValueError( | |
"boxplot method requires numerical columns, nothing to plot." | |
) | |
if columns is None: | |
columns = data.columns | |
else: | |
data = data[columns] | |
result = plot_group(columns, data.values.T, ax, **kwds) | |
ax.grid(grid) | |
return result | |
def boxplot_frame( | |
self, | |
column=None, | |
by=None, | |
ax=None, | |
fontsize: int | None = None, | |
rot: int = 0, | |
grid: bool = True, | |
figsize: tuple[float, float] | None = None, | |
layout=None, | |
return_type=None, | |
**kwds, | |
): | |
import matplotlib.pyplot as plt | |
ax = boxplot( | |
self, | |
column=column, | |
by=by, | |
ax=ax, | |
fontsize=fontsize, | |
grid=grid, | |
rot=rot, | |
figsize=figsize, | |
layout=layout, | |
return_type=return_type, | |
**kwds, | |
) | |
plt.draw_if_interactive() | |
return ax | |
def boxplot_frame_groupby( | |
grouped, | |
subplots: bool = True, | |
column=None, | |
fontsize: int | None = None, | |
rot: int = 0, | |
grid: bool = True, | |
ax=None, | |
figsize: tuple[float, float] | None = None, | |
layout=None, | |
sharex: bool = False, | |
sharey: bool = True, | |
**kwds, | |
): | |
if subplots is True: | |
naxes = len(grouped) | |
fig, axes = create_subplots( | |
naxes=naxes, | |
squeeze=False, | |
ax=ax, | |
sharex=sharex, | |
sharey=sharey, | |
figsize=figsize, | |
layout=layout, | |
) | |
axes = flatten_axes(axes) | |
ret = pd.Series(dtype=object) | |
for (key, group), ax in zip(grouped, axes): | |
d = group.boxplot( | |
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds | |
) | |
ax.set_title(pprint_thing(key)) | |
ret.loc[key] = d | |
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) | |
else: | |
keys, frames = zip(*grouped) | |
if grouped.axis == 0: | |
df = pd.concat(frames, keys=keys, axis=1) | |
elif len(frames) > 1: | |
df = frames[0].join(frames[1::]) | |
else: | |
df = frames[0] | |
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument | |
# is assigned, and in this case, since `df` here becomes MI after groupby, | |
# so we need to couple the keys (grouped values) and column (original df | |
# column) together to search for subset to plot | |
if column is not None: | |
column = com.convert_to_list_like(column) | |
multi_key = pd.MultiIndex.from_product([keys, column]) | |
column = list(multi_key.values) | |
ret = df.boxplot( | |
column=column, | |
fontsize=fontsize, | |
rot=rot, | |
grid=grid, | |
ax=ax, | |
figsize=figsize, | |
layout=layout, | |
**kwds, | |
) | |
return ret | |