peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numexpr
/expressions.py
| ################################################################### | |
| # Numexpr - Fast numerical array expression evaluator for NumPy. | |
| # | |
| # License: MIT | |
| # Author: See AUTHORS.txt | |
| # | |
| # See LICENSE.txt and LICENSES/*.txt for details about copyright and | |
| # rights to use. | |
| #################################################################### | |
| __all__ = ['E'] | |
| import operator | |
| import sys | |
| import threading | |
| import numpy | |
| # Declare a double type that does not exist in Python space | |
| double = numpy.double | |
| # The default kind for undeclared variables | |
| default_kind = 'double' | |
| int_ = numpy.int32 | |
| long_ = numpy.int64 | |
| type_to_kind = {bool: 'bool', int_: 'int', long_: 'long', float: 'float', | |
| double: 'double', complex: 'complex', bytes: 'bytes', str: 'str'} | |
| kind_to_type = {'bool': bool, 'int': int_, 'long': long_, 'float': float, | |
| 'double': double, 'complex': complex, 'bytes': bytes, 'str': str} | |
| kind_rank = ('bool', 'int', 'long', 'float', 'double', 'complex', 'none') | |
| scalar_constant_types = [bool, int_, int, float, double, complex, bytes, str] | |
| scalar_constant_types = tuple(scalar_constant_types) | |
| from numexpr import interpreter | |
| class Expression(): | |
| def __getattr__(self, name): | |
| if name.startswith('_'): | |
| try: | |
| return self.__dict__[name] | |
| except KeyError: | |
| raise AttributeError | |
| else: | |
| return VariableNode(name, default_kind) | |
| E = Expression() | |
| class Context(threading.local): | |
| def get(self, value, default): | |
| return self.__dict__.get(value, default) | |
| def get_current_context(self): | |
| return self.__dict__ | |
| def set_new_context(self, dict_): | |
| self.__dict__.update(dict_) | |
| # This will be called each time the local object is used in a separate thread | |
| _context = Context() | |
| def get_optimization(): | |
| return _context.get('optimization', 'none') | |
| # helper functions for creating __magic__ methods | |
| def ophelper(f): | |
| def func(*args): | |
| args = list(args) | |
| for i, x in enumerate(args): | |
| if isConstant(x): | |
| args[i] = x = ConstantNode(x) | |
| if not isinstance(x, ExpressionNode): | |
| raise TypeError("unsupported object type: %s" % type(x)) | |
| return f(*args) | |
| func.__name__ = f.__name__ | |
| func.__doc__ = f.__doc__ | |
| func.__dict__.update(f.__dict__) | |
| return func | |
| def allConstantNodes(args): | |
| "returns True if args are all ConstantNodes." | |
| for x in args: | |
| if not isinstance(x, ConstantNode): | |
| return False | |
| return True | |
| def isConstant(ex): | |
| "Returns True if ex is a constant scalar of an allowed type." | |
| return isinstance(ex, scalar_constant_types) | |
| def commonKind(nodes): | |
| node_kinds = [node.astKind for node in nodes] | |
| str_count = node_kinds.count('bytes') + node_kinds.count('str') | |
| if 0 < str_count < len(node_kinds): # some args are strings, but not all | |
| raise TypeError("strings can only be operated with strings") | |
| if str_count > 0: # if there are some, all of them must be | |
| return 'bytes' | |
| n = -1 | |
| for x in nodes: | |
| n = max(n, kind_rank.index(x.astKind)) | |
| return kind_rank[n] | |
| max_int32 = 2147483647 | |
| min_int32 = -max_int32 - 1 | |
| def bestConstantType(x): | |
| # ``numpy.string_`` is a subclass of ``bytes`` | |
| if isinstance(x, (bytes, str)): | |
| return bytes | |
| # Numeric conversion to boolean values is not tried because | |
| # ``bool(1) == True`` (same for 0 and False), so 0 and 1 would be | |
| # interpreted as booleans when ``False`` and ``True`` are already | |
| # supported. | |
| if isinstance(x, (bool, numpy.bool_)): | |
| return bool | |
| # ``long`` objects are kept as is to allow the user to force | |
| # promotion of results by using long constants, e.g. by operating | |
| # a 32-bit array with a long (64-bit) constant. | |
| if isinstance(x, (long_, numpy.int64)): | |
| return long_ | |
| # ``double`` objects are kept as is to allow the user to force | |
| # promotion of results by using double constants, e.g. by operating | |
| # a float (32-bit) array with a double (64-bit) constant. | |
| if isinstance(x, double): | |
| return double | |
| if isinstance(x, numpy.float32): | |
| return float | |
| if isinstance(x, (int, numpy.integer)): | |
| # Constants needing more than 32 bits are always | |
| # considered ``long``, *regardless of the platform*, so we | |
| # can clearly tell 32- and 64-bit constants apart. | |
| if not (min_int32 <= x <= max_int32): | |
| return long_ | |
| return int_ | |
| # The duality of float and double in Python avoids that we have to list | |
| # ``double`` too. | |
| for converter in float, complex: | |
| try: | |
| y = converter(x) | |
| except Exception as err: | |
| continue | |
| if y == x or numpy.isnan(y): | |
| return converter | |
| def getKind(x): | |
| converter = bestConstantType(x) | |
| return type_to_kind[converter] | |
| def binop(opname, reversed=False, kind=None): | |
| # Getting the named method from self (after reversal) does not | |
| # always work (e.g. int constants do not have a __lt__ method). | |
| opfunc = getattr(operator, "__%s__" % opname) | |
| def operation(self, other): | |
| if reversed: | |
| self, other = other, self | |
| if allConstantNodes([self, other]): | |
| return ConstantNode(opfunc(self.value, other.value)) | |
| else: | |
| return OpNode(opname, (self, other), kind=kind) | |
| return operation | |
| def func(func, minkind=None, maxkind=None): | |
| def function(*args): | |
| if allConstantNodes(args): | |
| return ConstantNode(func(*[x.value for x in args])) | |
| kind = commonKind(args) | |
| if kind in ('int', 'long'): | |
| # Exception for following NumPy casting rules | |
| #FIXME: this is not always desirable. The following | |
| # functions which return ints (for int inputs) on numpy | |
| # but not on numexpr: copy, abs, fmod, ones_like | |
| kind = 'double' | |
| else: | |
| # Apply regular casting rules | |
| if minkind and kind_rank.index(minkind) > kind_rank.index(kind): | |
| kind = minkind | |
| if maxkind and kind_rank.index(maxkind) < kind_rank.index(kind): | |
| kind = maxkind | |
| return FuncNode(func.__name__, args, kind) | |
| return function | |
| def where_func(a, b, c): | |
| if isinstance(a, ConstantNode): | |
| return b if a.value else c | |
| if allConstantNodes([a, b, c]): | |
| return ConstantNode(numpy.where(a, b, c)) | |
| return FuncNode('where', [a, b, c]) | |
| def encode_axis(axis): | |
| if isinstance(axis, ConstantNode): | |
| axis = axis.value | |
| if axis is None: | |
| axis = interpreter.allaxes | |
| else: | |
| if axis < 0: | |
| raise ValueError("negative axis are not supported") | |
| if axis > 254: | |
| raise ValueError("cannot encode axis") | |
| return RawNode(axis) | |
| def gen_reduce_axis_func(name): | |
| def _func(a, axis=None): | |
| axis = encode_axis(axis) | |
| if isinstance(a, ConstantNode): | |
| return a | |
| if isinstance(a, (bool, int_, long_, float, double, complex)): | |
| a = ConstantNode(a) | |
| return FuncNode(name, [a, axis], kind=a.astKind) | |
| return _func | |
| def contains_func(a, b): | |
| return FuncNode('contains', [a, b], kind='bool') | |
| def div_op(a, b): | |
| if get_optimization() in ('moderate', 'aggressive'): | |
| if (isinstance(b, ConstantNode) and | |
| (a.astKind == b.astKind) and | |
| a.astKind in ('float', 'double', 'complex')): | |
| return OpNode('mul', [a, ConstantNode(1. / b.value)]) | |
| return OpNode('div', [a, b]) | |
| def truediv_op(a, b): | |
| if get_optimization() in ('moderate', 'aggressive'): | |
| if (isinstance(b, ConstantNode) and | |
| (a.astKind == b.astKind) and | |
| a.astKind in ('float', 'double', 'complex')): | |
| return OpNode('mul', [a, ConstantNode(1. / b.value)]) | |
| kind = commonKind([a, b]) | |
| if kind in ('bool', 'int', 'long'): | |
| kind = 'double' | |
| return OpNode('div', [a, b], kind=kind) | |
| def rtruediv_op(a, b): | |
| return truediv_op(b, a) | |
| def pow_op(a, b): | |
| if isinstance(b, ConstantNode): | |
| x = b.value | |
| if ( a.astKind in ('int', 'long') and | |
| b.astKind in ('int', 'long') and x < 0) : | |
| raise ValueError( | |
| 'Integers to negative integer powers are not allowed.') | |
| if get_optimization() == 'aggressive': | |
| RANGE = 50 # Approximate break even point with pow(x,y) | |
| # Optimize all integral and half integral powers in [-RANGE, RANGE] | |
| # Note: for complex numbers RANGE could be larger. | |
| if (int(2 * x) == 2 * x) and (-RANGE <= abs(x) <= RANGE): | |
| n = int_(abs(x)) | |
| ishalfpower = int_(abs(2 * x)) % 2 | |
| def multiply(x, y): | |
| if x is None: return y | |
| return OpNode('mul', [x, y]) | |
| r = None | |
| p = a | |
| mask = 1 | |
| while True: | |
| if (n & mask): | |
| r = multiply(r, p) | |
| mask <<= 1 | |
| if mask > n: | |
| break | |
| p = OpNode('mul', [p, p]) | |
| if ishalfpower: | |
| kind = commonKind([a]) | |
| if kind in ('int', 'long'): | |
| kind = 'double' | |
| r = multiply(r, OpNode('sqrt', [a], kind)) | |
| if r is None: | |
| r = OpNode('ones_like', [a]) | |
| if x < 0: | |
| # Issue #428 | |
| r = truediv_op(ConstantNode(1), r) | |
| return r | |
| if get_optimization() in ('moderate', 'aggressive'): | |
| if x == -1: | |
| return OpNode('div', [ConstantNode(1), a]) | |
| if x == 0: | |
| return OpNode('ones_like', [a]) | |
| if x == 0.5: | |
| kind = a.astKind | |
| if kind in ('int', 'long'): kind = 'double' | |
| return FuncNode('sqrt', [a], kind=kind) | |
| if x == 1: | |
| return a | |
| if x == 2: | |
| return OpNode('mul', [a, a]) | |
| return OpNode('pow', [a, b]) | |
| # The functions and the minimum and maximum types accepted | |
| numpy.expm1x = numpy.expm1 | |
| functions = { | |
| 'copy': func(numpy.copy), | |
| 'ones_like': func(numpy.ones_like), | |
| 'sqrt': func(numpy.sqrt, 'float'), | |
| 'sin': func(numpy.sin, 'float'), | |
| 'cos': func(numpy.cos, 'float'), | |
| 'tan': func(numpy.tan, 'float'), | |
| 'arcsin': func(numpy.arcsin, 'float'), | |
| 'arccos': func(numpy.arccos, 'float'), | |
| 'arctan': func(numpy.arctan, 'float'), | |
| 'sinh': func(numpy.sinh, 'float'), | |
| 'cosh': func(numpy.cosh, 'float'), | |
| 'tanh': func(numpy.tanh, 'float'), | |
| 'arcsinh': func(numpy.arcsinh, 'float'), | |
| 'arccosh': func(numpy.arccosh, 'float'), | |
| 'arctanh': func(numpy.arctanh, 'float'), | |
| 'fmod': func(numpy.fmod, 'float'), | |
| 'arctan2': func(numpy.arctan2, 'float'), | |
| 'log': func(numpy.log, 'float'), | |
| 'log1p': func(numpy.log1p, 'float'), | |
| 'log10': func(numpy.log10, 'float'), | |
| 'exp': func(numpy.exp, 'float'), | |
| 'expm1': func(numpy.expm1, 'float'), | |
| 'abs': func(numpy.absolute, 'float'), | |
| 'ceil': func(numpy.ceil, 'float', 'double'), | |
| 'floor': func(numpy.floor, 'float', 'double'), | |
| 'where': where_func, | |
| 'real': func(numpy.real, 'double', 'double'), | |
| 'imag': func(numpy.imag, 'double', 'double'), | |
| 'complex': func(complex, 'complex'), | |
| 'conj': func(numpy.conj, 'complex'), | |
| 'sum': gen_reduce_axis_func('sum'), | |
| 'prod': gen_reduce_axis_func('prod'), | |
| 'min': gen_reduce_axis_func('min'), | |
| 'max': gen_reduce_axis_func('max'), | |
| 'contains': contains_func, | |
| } | |
| class ExpressionNode(): | |
| """ | |
| An object that represents a generic number object. | |
| This implements the number special methods so that we can keep | |
| track of how this object has been used. | |
| """ | |
| astType = 'generic' | |
| def __init__(self, value=None, kind=None, children=None): | |
| self.value = value | |
| if kind is None: | |
| kind = 'none' | |
| self.astKind = kind | |
| if children is None: | |
| self.children = () | |
| else: | |
| self.children = tuple(children) | |
| def get_real(self): | |
| if self.astType == 'constant': | |
| return ConstantNode(complex(self.value).real) | |
| return OpNode('real', (self,), 'double') | |
| real = property(get_real) | |
| def get_imag(self): | |
| if self.astType == 'constant': | |
| return ConstantNode(complex(self.value).imag) | |
| return OpNode('imag', (self,), 'double') | |
| imag = property(get_imag) | |
| def __str__(self): | |
| return '%s(%s, %s, %s)' % (self.__class__.__name__, self.value, | |
| self.astKind, self.children) | |
| def __repr__(self): | |
| return self.__str__() | |
| def __neg__(self): | |
| return OpNode('neg', (self,)) | |
| def __invert__(self): | |
| return OpNode('invert', (self,)) | |
| def __pos__(self): | |
| return self | |
| # The next check is commented out. See #24 for more info. | |
| def __bool__(self): | |
| raise TypeError("You can't use Python's standard boolean operators in " | |
| "NumExpr expressions. You should use their bitwise " | |
| "counterparts instead: '&' instead of 'and', " | |
| "'|' instead of 'or', and '~' instead of 'not'.") | |
| __add__ = __radd__ = binop('add') | |
| __sub__ = binop('sub') | |
| __rsub__ = binop('sub', reversed=True) | |
| __mul__ = __rmul__ = binop('mul') | |
| __truediv__ = truediv_op | |
| __rtruediv__ = rtruediv_op | |
| __pow__ = pow_op | |
| __rpow__ = binop('pow', reversed=True) | |
| __mod__ = binop('mod') | |
| __rmod__ = binop('mod', reversed=True) | |
| __lshift__ = binop('lshift') | |
| __rlshift__ = binop('lshift', reversed=True) | |
| __rshift__ = binop('rshift') | |
| __rrshift__ = binop('rshift', reversed=True) | |
| # boolean operations | |
| __and__ = binop('and', kind='bool') | |
| __or__ = binop('or', kind='bool') | |
| __gt__ = binop('gt', kind='bool') | |
| __ge__ = binop('ge', kind='bool') | |
| __eq__ = binop('eq', kind='bool') | |
| __ne__ = binop('ne', kind='bool') | |
| __lt__ = binop('gt', reversed=True, kind='bool') | |
| __le__ = binop('ge', reversed=True, kind='bool') | |
| class LeafNode(ExpressionNode): | |
| leafNode = True | |
| class VariableNode(LeafNode): | |
| astType = 'variable' | |
| def __init__(self, value=None, kind=None, children=None): | |
| LeafNode.__init__(self, value=value, kind=kind) | |
| class RawNode(): | |
| """ | |
| Used to pass raw integers to interpreter. | |
| For instance, for selecting what function to use in func1. | |
| Purposely don't inherit from ExpressionNode, since we don't wan't | |
| this to be used for anything but being walked. | |
| """ | |
| astType = 'raw' | |
| astKind = 'none' | |
| def __init__(self, value): | |
| self.value = value | |
| self.children = () | |
| def __str__(self): | |
| return 'RawNode(%s)' % (self.value,) | |
| __repr__ = __str__ | |
| class ConstantNode(LeafNode): | |
| astType = 'constant' | |
| def __init__(self, value=None, children=None): | |
| kind = getKind(value) | |
| # Python float constants are double precision by default | |
| if kind == 'float' and isinstance(value, float): | |
| kind = 'double' | |
| LeafNode.__init__(self, value=value, kind=kind) | |
| def __neg__(self): | |
| return ConstantNode(-self.value) | |
| def __invert__(self): | |
| return ConstantNode(~self.value) | |
| class OpNode(ExpressionNode): | |
| astType = 'op' | |
| def __init__(self, opcode=None, args=None, kind=None): | |
| if (kind is None) and (args is not None): | |
| kind = commonKind(args) | |
| ExpressionNode.__init__(self, value=opcode, kind=kind, children=args) | |
| class FuncNode(OpNode): | |
| def __init__(self, opcode=None, args=None, kind=None): | |
| if (kind is None) and (args is not None): | |
| kind = commonKind(args) | |
| OpNode.__init__(self, opcode, args, kind) | |