peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tree
/tests
/test_tree.py
""" | |
Testing for the tree module (sklearn.tree). | |
""" | |
import copy | |
import copyreg | |
import io | |
import pickle | |
import struct | |
from itertools import chain, product | |
import joblib | |
import numpy as np | |
import pytest | |
from joblib.numpy_pickle import NumpyPickler | |
from numpy.testing import assert_allclose | |
from sklearn import clone, datasets, tree | |
from sklearn.dummy import DummyRegressor | |
from sklearn.exceptions import NotFittedError | |
from sklearn.impute import SimpleImputer | |
from sklearn.metrics import accuracy_score, mean_poisson_deviance, mean_squared_error | |
from sklearn.model_selection import train_test_split | |
from sklearn.pipeline import make_pipeline | |
from sklearn.random_projection import _sparse_random_matrix | |
from sklearn.tree import ( | |
DecisionTreeClassifier, | |
DecisionTreeRegressor, | |
ExtraTreeClassifier, | |
ExtraTreeRegressor, | |
) | |
from sklearn.tree._classes import ( | |
CRITERIA_CLF, | |
CRITERIA_REG, | |
DENSE_SPLITTERS, | |
SPARSE_SPLITTERS, | |
) | |
from sklearn.tree._tree import ( | |
NODE_DTYPE, | |
TREE_LEAF, | |
TREE_UNDEFINED, | |
_check_n_classes, | |
_check_node_ndarray, | |
_check_value_ndarray, | |
) | |
from sklearn.tree._tree import Tree as CythonTree | |
from sklearn.utils import _IS_32BIT, compute_sample_weight | |
from sklearn.utils._testing import ( | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
create_memmap_backed_data, | |
ignore_warnings, | |
skip_if_32bit, | |
) | |
from sklearn.utils.estimator_checks import check_sample_weights_invariance | |
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS | |
from sklearn.utils.validation import check_random_state | |
CLF_CRITERIONS = ("gini", "log_loss") | |
REG_CRITERIONS = ("squared_error", "absolute_error", "friedman_mse", "poisson") | |
CLF_TREES = { | |
"DecisionTreeClassifier": DecisionTreeClassifier, | |
"ExtraTreeClassifier": ExtraTreeClassifier, | |
} | |
REG_TREES = { | |
"DecisionTreeRegressor": DecisionTreeRegressor, | |
"ExtraTreeRegressor": ExtraTreeRegressor, | |
} | |
ALL_TREES: dict = dict() | |
ALL_TREES.update(CLF_TREES) | |
ALL_TREES.update(REG_TREES) | |
SPARSE_TREES = [ | |
"DecisionTreeClassifier", | |
"DecisionTreeRegressor", | |
"ExtraTreeClassifier", | |
"ExtraTreeRegressor", | |
] | |
X_small = np.array( | |
[ | |
[0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0], | |
[0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1], | |
[-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1], | |
[-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1], | |
[-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1], | |
[-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1], | |
[2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1], | |
[2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1], | |
[2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1], | |
[2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0], | |
[2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0], | |
[2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0], | |
[2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0], | |
[1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0], | |
[3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1], | |
[2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1], | |
[2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1], | |
[2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1], | |
[2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1], | |
[2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1], | |
[2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1], | |
[1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1], | |
[3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0], | |
] | |
) | |
y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] | |
y_small_reg = [ | |
1.0, | |
2.1, | |
1.2, | |
0.05, | |
10, | |
2.4, | |
3.1, | |
1.01, | |
0.01, | |
2.98, | |
3.1, | |
1.1, | |
0.0, | |
1.2, | |
2, | |
11, | |
0, | |
0, | |
4.5, | |
0.201, | |
1.06, | |
0.9, | |
0, | |
] | |
# toy sample | |
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] | |
y = [-1, -1, -1, 1, 1, 1] | |
T = [[-1, -1], [2, 2], [3, 2]] | |
true_result = [-1, 1, 1] | |
# also load the iris dataset | |
# and randomly permute it | |
iris = datasets.load_iris() | |
rng = np.random.RandomState(1) | |
perm = rng.permutation(iris.target.size) | |
iris.data = iris.data[perm] | |
iris.target = iris.target[perm] | |
# also load the diabetes dataset | |
# and randomly permute it | |
diabetes = datasets.load_diabetes() | |
perm = rng.permutation(diabetes.target.size) | |
diabetes.data = diabetes.data[perm] | |
diabetes.target = diabetes.target[perm] | |
digits = datasets.load_digits() | |
perm = rng.permutation(digits.target.size) | |
digits.data = digits.data[perm] | |
digits.target = digits.target[perm] | |
random_state = check_random_state(0) | |
X_multilabel, y_multilabel = datasets.make_multilabel_classification( | |
random_state=0, n_samples=30, n_features=10 | |
) | |
# NB: despite their names X_sparse_* are numpy arrays (and not sparse matrices) | |
X_sparse_pos = random_state.uniform(size=(20, 5)) | |
X_sparse_pos[X_sparse_pos <= 0.8] = 0.0 | |
y_random = random_state.randint(0, 4, size=(20,)) | |
X_sparse_mix = _sparse_random_matrix(20, 10, density=0.25, random_state=0).toarray() | |
DATASETS = { | |
"iris": {"X": iris.data, "y": iris.target}, | |
"diabetes": {"X": diabetes.data, "y": diabetes.target}, | |
"digits": {"X": digits.data, "y": digits.target}, | |
"toy": {"X": X, "y": y}, | |
"clf_small": {"X": X_small, "y": y_small}, | |
"reg_small": {"X": X_small, "y": y_small_reg}, | |
"multilabel": {"X": X_multilabel, "y": y_multilabel}, | |
"sparse-pos": {"X": X_sparse_pos, "y": y_random}, | |
"sparse-neg": {"X": -X_sparse_pos, "y": y_random}, | |
"sparse-mix": {"X": X_sparse_mix, "y": y_random}, | |
"zeros": {"X": np.zeros((20, 3)), "y": y_random}, | |
} | |
def assert_tree_equal(d, s, message): | |
assert ( | |
s.node_count == d.node_count | |
), "{0}: inequal number of node ({1} != {2})".format( | |
message, s.node_count, d.node_count | |
) | |
assert_array_equal( | |
d.children_right, s.children_right, message + ": inequal children_right" | |
) | |
assert_array_equal( | |
d.children_left, s.children_left, message + ": inequal children_left" | |
) | |
external = d.children_right == TREE_LEAF | |
internal = np.logical_not(external) | |
assert_array_equal( | |
d.feature[internal], s.feature[internal], message + ": inequal features" | |
) | |
assert_array_equal( | |
d.threshold[internal], s.threshold[internal], message + ": inequal threshold" | |
) | |
assert_array_equal( | |
d.n_node_samples.sum(), | |
s.n_node_samples.sum(), | |
message + ": inequal sum(n_node_samples)", | |
) | |
assert_array_equal( | |
d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples" | |
) | |
assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") | |
assert_array_almost_equal( | |
d.value[external], s.value[external], err_msg=message + ": inequal value" | |
) | |
def test_classification_toy(): | |
# Check classification on a toy dataset. | |
for name, Tree in CLF_TREES.items(): | |
clf = Tree(random_state=0) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) | |
clf = Tree(max_features=1, random_state=1) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) | |
def test_weighted_classification_toy(): | |
# Check classification on a weighted toy dataset. | |
for name, Tree in CLF_TREES.items(): | |
clf = Tree(random_state=0) | |
clf.fit(X, y, sample_weight=np.ones(len(X))) | |
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) | |
clf.fit(X, y, sample_weight=np.full(len(X), 0.5)) | |
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) | |
def test_regression_toy(Tree, criterion): | |
# Check regression on a toy dataset. | |
if criterion == "poisson": | |
# make target positive while not touching the original y and | |
# true_result | |
a = np.abs(np.min(y)) + 1 | |
y_train = np.array(y) + a | |
y_test = np.array(true_result) + a | |
else: | |
y_train = y | |
y_test = true_result | |
reg = Tree(criterion=criterion, random_state=1) | |
reg.fit(X, y_train) | |
assert_allclose(reg.predict(T), y_test) | |
clf = Tree(criterion=criterion, max_features=1, random_state=1) | |
clf.fit(X, y_train) | |
assert_allclose(reg.predict(T), y_test) | |
def test_xor(): | |
# Check on a XOR problem | |
y = np.zeros((10, 10)) | |
y[:5, :5] = 1 | |
y[5:, 5:] = 1 | |
gridx, gridy = np.indices(y.shape) | |
X = np.vstack([gridx.ravel(), gridy.ravel()]).T | |
y = y.ravel() | |
for name, Tree in CLF_TREES.items(): | |
clf = Tree(random_state=0) | |
clf.fit(X, y) | |
assert clf.score(X, y) == 1.0, "Failed with {0}".format(name) | |
clf = Tree(random_state=0, max_features=1) | |
clf.fit(X, y) | |
assert clf.score(X, y) == 1.0, "Failed with {0}".format(name) | |
def test_iris(): | |
# Check consistency on dataset iris. | |
for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): | |
clf = Tree(criterion=criterion, random_state=0) | |
clf.fit(iris.data, iris.target) | |
score = accuracy_score(clf.predict(iris.data), iris.target) | |
assert score > 0.9, "Failed with {0}, criterion = {1} and score = {2}".format( | |
name, criterion, score | |
) | |
clf = Tree(criterion=criterion, max_features=2, random_state=0) | |
clf.fit(iris.data, iris.target) | |
score = accuracy_score(clf.predict(iris.data), iris.target) | |
assert score > 0.5, "Failed with {0}, criterion = {1} and score = {2}".format( | |
name, criterion, score | |
) | |
def test_diabetes_overfit(name, Tree, criterion): | |
# check consistency of overfitted trees on the diabetes dataset | |
# since the trees will overfit, we expect an MSE of 0 | |
reg = Tree(criterion=criterion, random_state=0) | |
reg.fit(diabetes.data, diabetes.target) | |
score = mean_squared_error(diabetes.target, reg.predict(diabetes.data)) | |
assert score == pytest.approx( | |
0 | |
), f"Failed with {name}, criterion = {criterion} and score = {score}" | |
def test_diabetes_underfit(name, Tree, criterion, max_depth, metric, max_loss): | |
# check consistency of trees when the depth and the number of features are | |
# limited | |
reg = Tree(criterion=criterion, max_depth=max_depth, max_features=6, random_state=0) | |
reg.fit(diabetes.data, diabetes.target) | |
loss = metric(diabetes.target, reg.predict(diabetes.data)) | |
assert 0 < loss < max_loss | |
def test_probability(): | |
# Predict probabilities using DecisionTreeClassifier. | |
for name, Tree in CLF_TREES.items(): | |
clf = Tree(max_depth=1, max_features=1, random_state=42) | |
clf.fit(iris.data, iris.target) | |
prob_predict = clf.predict_proba(iris.data) | |
assert_array_almost_equal( | |
np.sum(prob_predict, 1), | |
np.ones(iris.data.shape[0]), | |
err_msg="Failed with {0}".format(name), | |
) | |
assert_array_equal( | |
np.argmax(prob_predict, 1), | |
clf.predict(iris.data), | |
err_msg="Failed with {0}".format(name), | |
) | |
assert_almost_equal( | |
clf.predict_proba(iris.data), | |
np.exp(clf.predict_log_proba(iris.data)), | |
8, | |
err_msg="Failed with {0}".format(name), | |
) | |
def test_arrayrepr(): | |
# Check the array representation. | |
# Check resize | |
X = np.arange(10000)[:, np.newaxis] | |
y = np.arange(10000) | |
for name, Tree in REG_TREES.items(): | |
reg = Tree(max_depth=None, random_state=0) | |
reg.fit(X, y) | |
def test_pure_set(): | |
# Check when y is pure. | |
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] | |
y = [1, 1, 1, 1, 1, 1] | |
for name, TreeClassifier in CLF_TREES.items(): | |
clf = TreeClassifier(random_state=0) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) | |
for name, TreeRegressor in REG_TREES.items(): | |
reg = TreeRegressor(random_state=0) | |
reg.fit(X, y) | |
assert_almost_equal(reg.predict(X), y, err_msg="Failed with {0}".format(name)) | |
def test_numerical_stability(): | |
# Check numerical stability. | |
X = np.array( | |
[ | |
[152.08097839, 140.40744019, 129.75102234, 159.90493774], | |
[142.50700378, 135.81935120, 117.82884979, 162.75781250], | |
[127.28772736, 140.40744019, 129.75102234, 159.90493774], | |
[132.37025452, 143.71923828, 138.35694885, 157.84558105], | |
[103.10237122, 143.71928406, 138.35696411, 157.84559631], | |
[127.71276855, 143.71923828, 138.35694885, 157.84558105], | |
[120.91514587, 140.40744019, 129.75102234, 159.90493774], | |
] | |
) | |
y = np.array([1.0, 0.70209277, 0.53896582, 0.0, 0.90914464, 0.48026916, 0.49622521]) | |
with np.errstate(all="raise"): | |
for name, Tree in REG_TREES.items(): | |
reg = Tree(random_state=0) | |
reg.fit(X, y) | |
reg.fit(X, -y) | |
reg.fit(-X, y) | |
reg.fit(-X, -y) | |
def test_importances(): | |
# Check variable importances. | |
X, y = datasets.make_classification( | |
n_samples=5000, | |
n_features=10, | |
n_informative=3, | |
n_redundant=0, | |
n_repeated=0, | |
shuffle=False, | |
random_state=0, | |
) | |
for name, Tree in CLF_TREES.items(): | |
clf = Tree(random_state=0) | |
clf.fit(X, y) | |
importances = clf.feature_importances_ | |
n_important = np.sum(importances > 0.1) | |
assert importances.shape[0] == 10, "Failed with {0}".format(name) | |
assert n_important == 3, "Failed with {0}".format(name) | |
# Check on iris that importances are the same for all builders | |
clf = DecisionTreeClassifier(random_state=0) | |
clf.fit(iris.data, iris.target) | |
clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) | |
clf2.fit(iris.data, iris.target) | |
assert_array_equal(clf.feature_importances_, clf2.feature_importances_) | |
def test_importances_raises(): | |
# Check if variable importance before fit raises ValueError. | |
clf = DecisionTreeClassifier() | |
with pytest.raises(ValueError): | |
getattr(clf, "feature_importances_") | |
def test_importances_gini_equal_squared_error(): | |
# Check that gini is equivalent to squared_error for binary output variable | |
X, y = datasets.make_classification( | |
n_samples=2000, | |
n_features=10, | |
n_informative=3, | |
n_redundant=0, | |
n_repeated=0, | |
shuffle=False, | |
random_state=0, | |
) | |
# The gini index and the mean square error (variance) might differ due | |
# to numerical instability. Since those instabilities mainly occurs at | |
# high tree depth, we restrict this maximal depth. | |
clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit( | |
X, y | |
) | |
reg = DecisionTreeRegressor( | |
criterion="squared_error", max_depth=5, random_state=0 | |
).fit(X, y) | |
assert_almost_equal(clf.feature_importances_, reg.feature_importances_) | |
assert_array_equal(clf.tree_.feature, reg.tree_.feature) | |
assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) | |
assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) | |
assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) | |
def test_max_features(): | |
# Check max_features. | |
for name, TreeEstimator in ALL_TREES.items(): | |
est = TreeEstimator(max_features="sqrt") | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == int(np.sqrt(iris.data.shape[1])) | |
est = TreeEstimator(max_features="log2") | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == int(np.log2(iris.data.shape[1])) | |
est = TreeEstimator(max_features=1) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == 1 | |
est = TreeEstimator(max_features=3) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == 3 | |
est = TreeEstimator(max_features=0.01) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == 1 | |
est = TreeEstimator(max_features=0.5) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == int(0.5 * iris.data.shape[1]) | |
est = TreeEstimator(max_features=1.0) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == iris.data.shape[1] | |
est = TreeEstimator(max_features=None) | |
est.fit(iris.data, iris.target) | |
assert est.max_features_ == iris.data.shape[1] | |
def test_error(): | |
# Test that it gives proper exception on deficient input. | |
for name, TreeEstimator in CLF_TREES.items(): | |
# predict before fit | |
est = TreeEstimator() | |
with pytest.raises(NotFittedError): | |
est.predict_proba(X) | |
est.fit(X, y) | |
X2 = [[-2, -1, 1]] # wrong feature shape for sample | |
with pytest.raises(ValueError): | |
est.predict_proba(X2) | |
# Wrong dimensions | |
est = TreeEstimator() | |
y2 = y[:-1] | |
with pytest.raises(ValueError): | |
est.fit(X, y2) | |
# Test with arrays that are non-contiguous. | |
Xf = np.asfortranarray(X) | |
est = TreeEstimator() | |
est.fit(Xf, y) | |
assert_almost_equal(est.predict(T), true_result) | |
# predict before fitting | |
est = TreeEstimator() | |
with pytest.raises(NotFittedError): | |
est.predict(T) | |
# predict on vector with different dims | |
est.fit(X, y) | |
t = np.asarray(T) | |
with pytest.raises(ValueError): | |
est.predict(t[:, 1:]) | |
# wrong sample shape | |
Xt = np.array(X).T | |
est = TreeEstimator() | |
est.fit(np.dot(X, Xt), y) | |
with pytest.raises(ValueError): | |
est.predict(X) | |
with pytest.raises(ValueError): | |
est.apply(X) | |
clf = TreeEstimator() | |
clf.fit(X, y) | |
with pytest.raises(ValueError): | |
clf.predict(Xt) | |
with pytest.raises(ValueError): | |
clf.apply(Xt) | |
# apply before fitting | |
est = TreeEstimator() | |
with pytest.raises(NotFittedError): | |
est.apply(T) | |
# non positive target for Poisson splitting Criterion | |
est = DecisionTreeRegressor(criterion="poisson") | |
with pytest.raises(ValueError, match="y is not positive.*Poisson"): | |
est.fit([[0, 1, 2]], [0, 0, 0]) | |
with pytest.raises(ValueError, match="Some.*y are negative.*Poisson"): | |
est.fit([[0, 1, 2]], [5, -0.1, 2]) | |
def test_min_samples_split(): | |
"""Test min_samples_split parameter""" | |
X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE) | |
y = iris.target | |
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder | |
# by setting max_leaf_nodes | |
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): | |
TreeEstimator = ALL_TREES[name] | |
# test for integer parameter | |
est = TreeEstimator( | |
min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y) | |
# count samples on nodes, -1 means it is a leaf | |
node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] | |
assert np.min(node_samples) > 9, "Failed with {0}".format(name) | |
# test for float parameter | |
est = TreeEstimator( | |
min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y) | |
# count samples on nodes, -1 means it is a leaf | |
node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] | |
assert np.min(node_samples) > 9, "Failed with {0}".format(name) | |
def test_min_samples_leaf(): | |
# Test if leaves contain more than leaf_count training examples | |
X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE) | |
y = iris.target | |
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder | |
# by setting max_leaf_nodes | |
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): | |
TreeEstimator = ALL_TREES[name] | |
# test integer parameter | |
est = TreeEstimator( | |
min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y) | |
out = est.tree_.apply(X) | |
node_counts = np.bincount(out) | |
# drop inner nodes | |
leaf_count = node_counts[node_counts != 0] | |
assert np.min(leaf_count) > 4, "Failed with {0}".format(name) | |
# test float parameter | |
est = TreeEstimator( | |
min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y) | |
out = est.tree_.apply(X) | |
node_counts = np.bincount(out) | |
# drop inner nodes | |
leaf_count = node_counts[node_counts != 0] | |
assert np.min(leaf_count) > 4, "Failed with {0}".format(name) | |
def check_min_weight_fraction_leaf(name, datasets, sparse_container=None): | |
"""Test if leaves contain at least min_weight_fraction_leaf of the | |
training set""" | |
X = DATASETS[datasets]["X"].astype(np.float32) | |
if sparse_container is not None: | |
X = sparse_container(X) | |
y = DATASETS[datasets]["y"] | |
weights = rng.rand(X.shape[0]) | |
total_weight = np.sum(weights) | |
TreeEstimator = ALL_TREES[name] | |
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder | |
# by setting max_leaf_nodes | |
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): | |
est = TreeEstimator( | |
min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y, sample_weight=weights) | |
if sparse_container is not None: | |
out = est.tree_.apply(X.tocsr()) | |
else: | |
out = est.tree_.apply(X) | |
node_weights = np.bincount(out, weights=weights) | |
# drop inner nodes | |
leaf_weights = node_weights[node_weights != 0] | |
assert ( | |
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf | |
), "Failed with {0} min_weight_fraction_leaf={1}".format( | |
name, est.min_weight_fraction_leaf | |
) | |
# test case with no weights passed in | |
total_weight = X.shape[0] | |
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): | |
est = TreeEstimator( | |
min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0 | |
) | |
est.fit(X, y) | |
if sparse_container is not None: | |
out = est.tree_.apply(X.tocsr()) | |
else: | |
out = est.tree_.apply(X) | |
node_weights = np.bincount(out) | |
# drop inner nodes | |
leaf_weights = node_weights[node_weights != 0] | |
assert ( | |
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf | |
), "Failed with {0} min_weight_fraction_leaf={1}".format( | |
name, est.min_weight_fraction_leaf | |
) | |
def test_min_weight_fraction_leaf_on_dense_input(name): | |
check_min_weight_fraction_leaf(name, "iris") | |
def test_min_weight_fraction_leaf_on_sparse_input(name, csc_container): | |
check_min_weight_fraction_leaf(name, "multilabel", sparse_container=csc_container) | |
def check_min_weight_fraction_leaf_with_min_samples_leaf( | |
name, datasets, sparse_container=None | |
): | |
"""Test the interaction between min_weight_fraction_leaf and | |
min_samples_leaf when sample_weights is not provided in fit.""" | |
X = DATASETS[datasets]["X"].astype(np.float32) | |
if sparse_container is not None: | |
X = sparse_container(X) | |
y = DATASETS[datasets]["y"] | |
total_weight = X.shape[0] | |
TreeEstimator = ALL_TREES[name] | |
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)): | |
# test integer min_samples_leaf | |
est = TreeEstimator( | |
min_weight_fraction_leaf=frac, | |
max_leaf_nodes=max_leaf_nodes, | |
min_samples_leaf=5, | |
random_state=0, | |
) | |
est.fit(X, y) | |
if sparse_container is not None: | |
out = est.tree_.apply(X.tocsr()) | |
else: | |
out = est.tree_.apply(X) | |
node_weights = np.bincount(out) | |
# drop inner nodes | |
leaf_weights = node_weights[node_weights != 0] | |
assert np.min(leaf_weights) >= max( | |
(total_weight * est.min_weight_fraction_leaf), 5 | |
), "Failed with {0} min_weight_fraction_leaf={1}, min_samples_leaf={2}".format( | |
name, est.min_weight_fraction_leaf, est.min_samples_leaf | |
) | |
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)): | |
# test float min_samples_leaf | |
est = TreeEstimator( | |
min_weight_fraction_leaf=frac, | |
max_leaf_nodes=max_leaf_nodes, | |
min_samples_leaf=0.1, | |
random_state=0, | |
) | |
est.fit(X, y) | |
if sparse_container is not None: | |
out = est.tree_.apply(X.tocsr()) | |
else: | |
out = est.tree_.apply(X) | |
node_weights = np.bincount(out) | |
# drop inner nodes | |
leaf_weights = node_weights[node_weights != 0] | |
assert np.min(leaf_weights) >= max( | |
(total_weight * est.min_weight_fraction_leaf), | |
(total_weight * est.min_samples_leaf), | |
), "Failed with {0} min_weight_fraction_leaf={1}, min_samples_leaf={2}".format( | |
name, est.min_weight_fraction_leaf, est.min_samples_leaf | |
) | |
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input(name): | |
check_min_weight_fraction_leaf_with_min_samples_leaf(name, "iris") | |
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input( | |
name, csc_container | |
): | |
check_min_weight_fraction_leaf_with_min_samples_leaf( | |
name, "multilabel", sparse_container=csc_container | |
) | |
def test_min_impurity_decrease(global_random_seed): | |
# test if min_impurity_decrease ensure that a split is made only if | |
# if the impurity decrease is at least that value | |
X, y = datasets.make_classification(n_samples=100, random_state=global_random_seed) | |
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder | |
# by setting max_leaf_nodes | |
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): | |
TreeEstimator = ALL_TREES[name] | |
# Check default value of min_impurity_decrease, 1e-7 | |
est1 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0) | |
# Check with explicit value of 0.05 | |
est2 = TreeEstimator( | |
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.05, random_state=0 | |
) | |
# Check with a much lower value of 0.0001 | |
est3 = TreeEstimator( | |
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.0001, random_state=0 | |
) | |
# Check with a much lower value of 0.1 | |
est4 = TreeEstimator( | |
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.1, random_state=0 | |
) | |
for est, expected_decrease in ( | |
(est1, 1e-7), | |
(est2, 0.05), | |
(est3, 0.0001), | |
(est4, 0.1), | |
): | |
assert ( | |
est.min_impurity_decrease <= expected_decrease | |
), "Failed, min_impurity_decrease = {0} > {1}".format( | |
est.min_impurity_decrease, expected_decrease | |
) | |
est.fit(X, y) | |
for node in range(est.tree_.node_count): | |
# If current node is a not leaf node, check if the split was | |
# justified w.r.t the min_impurity_decrease | |
if est.tree_.children_left[node] != TREE_LEAF: | |
imp_parent = est.tree_.impurity[node] | |
wtd_n_node = est.tree_.weighted_n_node_samples[node] | |
left = est.tree_.children_left[node] | |
wtd_n_left = est.tree_.weighted_n_node_samples[left] | |
imp_left = est.tree_.impurity[left] | |
wtd_imp_left = wtd_n_left * imp_left | |
right = est.tree_.children_right[node] | |
wtd_n_right = est.tree_.weighted_n_node_samples[right] | |
imp_right = est.tree_.impurity[right] | |
wtd_imp_right = wtd_n_right * imp_right | |
wtd_avg_left_right_imp = wtd_imp_right + wtd_imp_left | |
wtd_avg_left_right_imp /= wtd_n_node | |
fractional_node_weight = ( | |
est.tree_.weighted_n_node_samples[node] / X.shape[0] | |
) | |
actual_decrease = fractional_node_weight * ( | |
imp_parent - wtd_avg_left_right_imp | |
) | |
assert ( | |
actual_decrease >= expected_decrease | |
), "Failed with {0} expected min_impurity_decrease={1}".format( | |
actual_decrease, expected_decrease | |
) | |
def test_pickle(): | |
"""Test pickling preserves Tree properties and performance.""" | |
for name, TreeEstimator in ALL_TREES.items(): | |
if "Classifier" in name: | |
X, y = iris.data, iris.target | |
else: | |
X, y = diabetes.data, diabetes.target | |
est = TreeEstimator(random_state=0) | |
est.fit(X, y) | |
score = est.score(X, y) | |
# test that all class properties are maintained | |
attributes = [ | |
"max_depth", | |
"node_count", | |
"capacity", | |
"n_classes", | |
"children_left", | |
"children_right", | |
"n_leaves", | |
"feature", | |
"threshold", | |
"impurity", | |
"n_node_samples", | |
"weighted_n_node_samples", | |
"value", | |
] | |
fitted_attribute = { | |
attribute: getattr(est.tree_, attribute) for attribute in attributes | |
} | |
serialized_object = pickle.dumps(est) | |
est2 = pickle.loads(serialized_object) | |
assert type(est2) == est.__class__ | |
score2 = est2.score(X, y) | |
assert ( | |
score == score2 | |
), "Failed to generate same score after pickling with {0}".format(name) | |
for attribute in fitted_attribute: | |
assert_array_equal( | |
getattr(est2.tree_, attribute), | |
fitted_attribute[attribute], | |
err_msg=( | |
f"Failed to generate same attribute {attribute} after pickling with" | |
f" {name}" | |
), | |
) | |
def test_multioutput(): | |
# Check estimators on multi-output problems. | |
X = [ | |
[-2, -1], | |
[-1, -1], | |
[-1, -2], | |
[1, 1], | |
[1, 2], | |
[2, 1], | |
[-2, 1], | |
[-1, 1], | |
[-1, 2], | |
[2, -1], | |
[1, -1], | |
[1, -2], | |
] | |
y = [ | |
[-1, 0], | |
[-1, 0], | |
[-1, 0], | |
[1, 1], | |
[1, 1], | |
[1, 1], | |
[-1, 2], | |
[-1, 2], | |
[-1, 2], | |
[1, 3], | |
[1, 3], | |
[1, 3], | |
] | |
T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] | |
y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] | |
# toy classification problem | |
for name, TreeClassifier in CLF_TREES.items(): | |
clf = TreeClassifier(random_state=0) | |
y_hat = clf.fit(X, y).predict(T) | |
assert_array_equal(y_hat, y_true) | |
assert y_hat.shape == (4, 2) | |
proba = clf.predict_proba(T) | |
assert len(proba) == 2 | |
assert proba[0].shape == (4, 2) | |
assert proba[1].shape == (4, 4) | |
log_proba = clf.predict_log_proba(T) | |
assert len(log_proba) == 2 | |
assert log_proba[0].shape == (4, 2) | |
assert log_proba[1].shape == (4, 4) | |
# toy regression problem | |
for name, TreeRegressor in REG_TREES.items(): | |
reg = TreeRegressor(random_state=0) | |
y_hat = reg.fit(X, y).predict(T) | |
assert_almost_equal(y_hat, y_true) | |
assert y_hat.shape == (4, 2) | |
def test_classes_shape(): | |
# Test that n_classes_ and classes_ have proper shape. | |
for name, TreeClassifier in CLF_TREES.items(): | |
# Classification, single output | |
clf = TreeClassifier(random_state=0) | |
clf.fit(X, y) | |
assert clf.n_classes_ == 2 | |
assert_array_equal(clf.classes_, [-1, 1]) | |
# Classification, multi-output | |
_y = np.vstack((y, np.array(y) * 2)).T | |
clf = TreeClassifier(random_state=0) | |
clf.fit(X, _y) | |
assert len(clf.n_classes_) == 2 | |
assert len(clf.classes_) == 2 | |
assert_array_equal(clf.n_classes_, [2, 2]) | |
assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) | |
def test_unbalanced_iris(): | |
# Check class rebalancing. | |
unbalanced_X = iris.data[:125] | |
unbalanced_y = iris.target[:125] | |
sample_weight = compute_sample_weight("balanced", unbalanced_y) | |
for name, TreeClassifier in CLF_TREES.items(): | |
clf = TreeClassifier(random_state=0) | |
clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) | |
assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) | |
def test_memory_layout(): | |
# Check that it works no matter the memory layout | |
for (name, TreeEstimator), dtype in product( | |
ALL_TREES.items(), [np.float64, np.float32] | |
): | |
est = TreeEstimator(random_state=0) | |
# Nothing | |
X = np.asarray(iris.data, dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# C-order | |
X = np.asarray(iris.data, order="C", dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# F-order | |
X = np.asarray(iris.data, order="F", dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# Contiguous | |
X = np.ascontiguousarray(iris.data, dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# csr | |
for csr_container in CSR_CONTAINERS: | |
X = csr_container(iris.data, dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# csc | |
for csc_container in CSC_CONTAINERS: | |
X = csc_container(iris.data, dtype=dtype) | |
y = iris.target | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
# Strided | |
X = np.asarray(iris.data[::3], dtype=dtype) | |
y = iris.target[::3] | |
assert_array_equal(est.fit(X, y).predict(X), y) | |
def test_sample_weight(): | |
# Check sample weighting. | |
# Test that zero-weighted samples are not taken into account | |
X = np.arange(100)[:, np.newaxis] | |
y = np.ones(100) | |
y[:50] = 0.0 | |
sample_weight = np.ones(100) | |
sample_weight[y == 0] = 0.0 | |
clf = DecisionTreeClassifier(random_state=0) | |
clf.fit(X, y, sample_weight=sample_weight) | |
assert_array_equal(clf.predict(X), np.ones(100)) | |
# Test that low weighted samples are not taken into account at low depth | |
X = np.arange(200)[:, np.newaxis] | |
y = np.zeros(200) | |
y[50:100] = 1 | |
y[100:200] = 2 | |
X[100:200, 0] = 200 | |
sample_weight = np.ones(200) | |
sample_weight[y == 2] = 0.51 # Samples of class '2' are still weightier | |
clf = DecisionTreeClassifier(max_depth=1, random_state=0) | |
clf.fit(X, y, sample_weight=sample_weight) | |
assert clf.tree_.threshold[0] == 149.5 | |
sample_weight[y == 2] = 0.5 # Samples of class '2' are no longer weightier | |
clf = DecisionTreeClassifier(max_depth=1, random_state=0) | |
clf.fit(X, y, sample_weight=sample_weight) | |
assert clf.tree_.threshold[0] == 49.5 # Threshold should have moved | |
# Test that sample weighting is the same as having duplicates | |
X = iris.data | |
y = iris.target | |
duplicates = rng.randint(0, X.shape[0], 100) | |
clf = DecisionTreeClassifier(random_state=1) | |
clf.fit(X[duplicates], y[duplicates]) | |
sample_weight = np.bincount(duplicates, minlength=X.shape[0]) | |
clf2 = DecisionTreeClassifier(random_state=1) | |
clf2.fit(X, y, sample_weight=sample_weight) | |
internal = clf.tree_.children_left != tree._tree.TREE_LEAF | |
assert_array_almost_equal( | |
clf.tree_.threshold[internal], clf2.tree_.threshold[internal] | |
) | |
def test_sample_weight_invalid(): | |
# Check sample weighting raises errors. | |
X = np.arange(100)[:, np.newaxis] | |
y = np.ones(100) | |
y[:50] = 0.0 | |
clf = DecisionTreeClassifier(random_state=0) | |
sample_weight = np.random.rand(100, 1) | |
with pytest.raises(ValueError): | |
clf.fit(X, y, sample_weight=sample_weight) | |
sample_weight = np.array(0) | |
expected_err = r"Singleton.* cannot be considered a valid collection" | |
with pytest.raises(TypeError, match=expected_err): | |
clf.fit(X, y, sample_weight=sample_weight) | |
def test_class_weights(name): | |
# Test that class_weights resemble sample_weights behavior. | |
TreeClassifier = CLF_TREES[name] | |
# Iris is balanced, so no effect expected for using 'balanced' weights | |
clf1 = TreeClassifier(random_state=0) | |
clf1.fit(iris.data, iris.target) | |
clf2 = TreeClassifier(class_weight="balanced", random_state=0) | |
clf2.fit(iris.data, iris.target) | |
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) | |
# Make a multi-output problem with three copies of Iris | |
iris_multi = np.vstack((iris.target, iris.target, iris.target)).T | |
# Create user-defined weights that should balance over the outputs | |
clf3 = TreeClassifier( | |
class_weight=[ | |
{0: 2.0, 1: 2.0, 2: 1.0}, | |
{0: 2.0, 1: 1.0, 2: 2.0}, | |
{0: 1.0, 1: 2.0, 2: 2.0}, | |
], | |
random_state=0, | |
) | |
clf3.fit(iris.data, iris_multi) | |
assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) | |
# Check against multi-output "auto" which should also have no effect | |
clf4 = TreeClassifier(class_weight="balanced", random_state=0) | |
clf4.fit(iris.data, iris_multi) | |
assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) | |
# Inflate importance of class 1, check against user-defined weights | |
sample_weight = np.ones(iris.target.shape) | |
sample_weight[iris.target == 1] *= 100 | |
class_weight = {0: 1.0, 1: 100.0, 2: 1.0} | |
clf1 = TreeClassifier(random_state=0) | |
clf1.fit(iris.data, iris.target, sample_weight) | |
clf2 = TreeClassifier(class_weight=class_weight, random_state=0) | |
clf2.fit(iris.data, iris.target) | |
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) | |
# Check that sample_weight and class_weight are multiplicative | |
clf1 = TreeClassifier(random_state=0) | |
clf1.fit(iris.data, iris.target, sample_weight**2) | |
clf2 = TreeClassifier(class_weight=class_weight, random_state=0) | |
clf2.fit(iris.data, iris.target, sample_weight) | |
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) | |
def test_class_weight_errors(name): | |
# Test if class_weight raises errors and warnings when expected. | |
TreeClassifier = CLF_TREES[name] | |
_y = np.vstack((y, np.array(y) * 2)).T | |
# Incorrect length list for multi-output | |
clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.0}], random_state=0) | |
err_msg = "number of elements in class_weight should match number of outputs." | |
with pytest.raises(ValueError, match=err_msg): | |
clf.fit(X, _y) | |
def test_max_leaf_nodes(): | |
# Test greedy trees with max_depth + 1 leafs. | |
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) | |
k = 4 | |
for name, TreeEstimator in ALL_TREES.items(): | |
est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) | |
assert est.get_n_leaves() == k + 1 | |
def test_max_leaf_nodes_max_depth(): | |
# Test precedence of max_leaf_nodes over max_depth. | |
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) | |
k = 4 | |
for name, TreeEstimator in ALL_TREES.items(): | |
est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) | |
assert est.get_depth() == 1 | |
def test_arrays_persist(): | |
# Ensure property arrays' memory stays alive when tree disappears | |
# non-regression for #2726 | |
for attr in [ | |
"n_classes", | |
"value", | |
"children_left", | |
"children_right", | |
"threshold", | |
"impurity", | |
"feature", | |
"n_node_samples", | |
]: | |
value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) | |
# if pointing to freed memory, contents may be arbitrary | |
assert -3 <= value.flat[0] < 3, "Array points to arbitrary memory" | |
def test_only_constant_features(): | |
random_state = check_random_state(0) | |
X = np.zeros((10, 20)) | |
y = random_state.randint(0, 2, (10,)) | |
for name, TreeEstimator in ALL_TREES.items(): | |
est = TreeEstimator(random_state=0) | |
est.fit(X, y) | |
assert est.tree_.max_depth == 0 | |
def test_behaviour_constant_feature_after_splits(): | |
X = np.transpose( | |
np.vstack(([[0, 0, 0, 0, 0, 1, 2, 4, 5, 6, 7]], np.zeros((4, 11)))) | |
) | |
y = [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3] | |
for name, TreeEstimator in ALL_TREES.items(): | |
# do not check extra random trees | |
if "ExtraTree" not in name: | |
est = TreeEstimator(random_state=0, max_features=1) | |
est.fit(X, y) | |
assert est.tree_.max_depth == 2 | |
assert est.tree_.node_count == 5 | |
def test_with_only_one_non_constant_features(): | |
X = np.hstack([np.array([[1.0], [1.0], [0.0], [0.0]]), np.zeros((4, 1000))]) | |
y = np.array([0.0, 1.0, 0.0, 1.0]) | |
for name, TreeEstimator in CLF_TREES.items(): | |
est = TreeEstimator(random_state=0, max_features=1) | |
est.fit(X, y) | |
assert est.tree_.max_depth == 1 | |
assert_array_equal(est.predict_proba(X), np.full((4, 2), 0.5)) | |
for name, TreeEstimator in REG_TREES.items(): | |
est = TreeEstimator(random_state=0, max_features=1) | |
est.fit(X, y) | |
assert est.tree_.max_depth == 1 | |
assert_array_equal(est.predict(X), np.full((4,), 0.5)) | |
def test_big_input(): | |
# Test if the warning for too large inputs is appropriate. | |
X = np.repeat(10**40.0, 4).astype(np.float64).reshape(-1, 1) | |
clf = DecisionTreeClassifier() | |
with pytest.raises(ValueError, match="float32"): | |
clf.fit(X, [0, 1, 0, 1]) | |
def test_realloc(): | |
from sklearn.tree._utils import _realloc_test | |
with pytest.raises(MemoryError): | |
_realloc_test() | |
def test_huge_allocations(): | |
n_bits = 8 * struct.calcsize("P") | |
X = np.random.randn(10, 2) | |
y = np.random.randint(0, 2, 10) | |
# Sanity check: we cannot request more memory than the size of the address | |
# space. Currently raises OverflowError. | |
huge = 2 ** (n_bits + 1) | |
clf = DecisionTreeClassifier(splitter="best", max_leaf_nodes=huge) | |
with pytest.raises(Exception): | |
clf.fit(X, y) | |
# Non-regression test: MemoryError used to be dropped by Cython | |
# because of missing "except *". | |
huge = 2 ** (n_bits - 1) - 1 | |
clf = DecisionTreeClassifier(splitter="best", max_leaf_nodes=huge) | |
with pytest.raises(MemoryError): | |
clf.fit(X, y) | |
def check_sparse_input(tree, dataset, max_depth=None): | |
TreeEstimator = ALL_TREES[tree] | |
X = DATASETS[dataset]["X"] | |
y = DATASETS[dataset]["y"] | |
# Gain testing time | |
if dataset in ["digits", "diabetes"]: | |
n_samples = X.shape[0] // 5 | |
X = X[:n_samples] | |
y = y[:n_samples] | |
for sparse_container in COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS: | |
X_sparse = sparse_container(X) | |
# Check the default (depth first search) | |
d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) | |
s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree), | |
) | |
y_pred = d.predict(X) | |
if tree in CLF_TREES: | |
y_proba = d.predict_proba(X) | |
y_log_proba = d.predict_log_proba(X) | |
for sparse_container_test in COO_CONTAINERS + CSR_CONTAINERS + CSC_CONTAINERS: | |
X_sparse_test = sparse_container_test(X_sparse, dtype=np.float32) | |
assert_array_almost_equal(s.predict(X_sparse_test), y_pred) | |
if tree in CLF_TREES: | |
assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) | |
assert_array_almost_equal( | |
s.predict_log_proba(X_sparse_test), y_log_proba | |
) | |
def test_sparse_input(tree_type, dataset): | |
max_depth = 3 if dataset == "digits" else None | |
check_sparse_input(tree_type, dataset, max_depth) | |
def test_sparse_input_reg_trees(tree_type, dataset): | |
# Due to numerical instability of MSE and too strict test, we limit the | |
# maximal depth | |
check_sparse_input(tree_type, dataset, 2) | |
def test_sparse_parameters(tree_type, dataset, csc_container): | |
TreeEstimator = ALL_TREES[tree_type] | |
X = DATASETS[dataset]["X"] | |
X_sparse = csc_container(X) | |
y = DATASETS[dataset]["y"] | |
# Check max_features | |
d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) | |
s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree_type), | |
) | |
assert_array_almost_equal(s.predict(X), d.predict(X)) | |
# Check min_samples_split | |
d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) | |
s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit( | |
X_sparse, y | |
) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree_type), | |
) | |
assert_array_almost_equal(s.predict(X), d.predict(X)) | |
# Check min_samples_leaf | |
d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) | |
s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit( | |
X_sparse, y | |
) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree_type), | |
) | |
assert_array_almost_equal(s.predict(X), d.predict(X)) | |
# Check best-first search | |
d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) | |
s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree_type), | |
) | |
assert_array_almost_equal(s.predict(X), d.predict(X)) | |
def test_sparse_criteria(tree_type, dataset, csc_container, criterion): | |
TreeEstimator = ALL_TREES[tree_type] | |
X = DATASETS[dataset]["X"] | |
X_sparse = csc_container(X) | |
y = DATASETS[dataset]["y"] | |
d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) | |
s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree_type), | |
) | |
assert_array_almost_equal(s.predict(X), d.predict(X)) | |
def test_explicit_sparse_zeros(tree_type, csc_container, csr_container): | |
TreeEstimator = ALL_TREES[tree_type] | |
max_depth = 3 | |
n_features = 10 | |
# n_samples set n_feature to ease construction of a simultaneous | |
# construction of a csr and csc matrix | |
n_samples = n_features | |
samples = np.arange(n_samples) | |
# Generate X, y | |
random_state = check_random_state(0) | |
indices = [] | |
data = [] | |
offset = 0 | |
indptr = [offset] | |
for i in range(n_features): | |
n_nonzero_i = random_state.binomial(n_samples, 0.5) | |
indices_i = random_state.permutation(samples)[:n_nonzero_i] | |
indices.append(indices_i) | |
data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i,)) - 1 | |
data.append(data_i) | |
offset += n_nonzero_i | |
indptr.append(offset) | |
indices = np.concatenate(indices).astype(np.int32) | |
indptr = np.array(indptr, dtype=np.int32) | |
data = np.array(np.concatenate(data), dtype=np.float32) | |
X_sparse = csc_container((data, indices, indptr), shape=(n_samples, n_features)) | |
X = X_sparse.toarray() | |
X_sparse_test = csr_container( | |
(data, indices, indptr), shape=(n_samples, n_features) | |
) | |
X_test = X_sparse_test.toarray() | |
y = random_state.randint(0, 3, size=(n_samples,)) | |
# Ensure that X_sparse_test owns its data, indices and indptr array | |
X_sparse_test = X_sparse_test.copy() | |
# Ensure that we have explicit zeros | |
assert (X_sparse.data == 0.0).sum() > 0 | |
assert (X_sparse_test.data == 0.0).sum() > 0 | |
# Perform the comparison | |
d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) | |
s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) | |
assert_tree_equal( | |
d.tree_, | |
s.tree_, | |
"{0} with dense and sparse format gave different trees".format(tree), | |
) | |
Xs = (X_test, X_sparse_test) | |
for X1, X2 in product(Xs, Xs): | |
assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) | |
assert_array_almost_equal(s.apply(X1), d.apply(X2)) | |
assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) | |
assert_array_almost_equal( | |
s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray() | |
) | |
assert_array_almost_equal( | |
s.decision_path(X1).toarray(), d.decision_path(X2).toarray() | |
) | |
assert_array_almost_equal( | |
s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray() | |
) | |
assert_array_almost_equal(s.predict(X1), d.predict(X2)) | |
if tree in CLF_TREES: | |
assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) | |
def check_raise_error_on_1d_input(name): | |
TreeEstimator = ALL_TREES[name] | |
X = iris.data[:, 0].ravel() | |
X_2d = iris.data[:, 0].reshape((-1, 1)) | |
y = iris.target | |
with pytest.raises(ValueError): | |
TreeEstimator(random_state=0).fit(X, y) | |
est = TreeEstimator(random_state=0) | |
est.fit(X_2d, y) | |
with pytest.raises(ValueError): | |
est.predict([X]) | |
def test_1d_input(name): | |
with ignore_warnings(): | |
check_raise_error_on_1d_input(name) | |
def test_min_weight_leaf_split_level(name, sparse_container): | |
TreeEstimator = ALL_TREES[name] | |
X = np.array([[0], [0], [0], [0], [1]]) | |
y = [0, 0, 0, 0, 1] | |
sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] | |
if sparse_container is not None: | |
X = sparse_container(X) | |
est = TreeEstimator(random_state=0) | |
est.fit(X, y, sample_weight=sample_weight) | |
assert est.tree_.max_depth == 1 | |
est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) | |
est.fit(X, y, sample_weight=sample_weight) | |
assert est.tree_.max_depth == 0 | |
def test_public_apply_all_trees(name): | |
X_small32 = X_small.astype(tree._tree.DTYPE, copy=False) | |
est = ALL_TREES[name]() | |
est.fit(X_small, y_small) | |
assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) | |
def test_public_apply_sparse_trees(name, csr_container): | |
X_small32 = csr_container(X_small.astype(tree._tree.DTYPE, copy=False)) | |
est = ALL_TREES[name]() | |
est.fit(X_small, y_small) | |
assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) | |
def test_decision_path_hardcoded(): | |
X = iris.data | |
y = iris.target | |
est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) | |
node_indicator = est.decision_path(X[:2]).toarray() | |
assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) | |
def test_decision_path(name): | |
X = iris.data | |
y = iris.target | |
n_samples = X.shape[0] | |
TreeEstimator = ALL_TREES[name] | |
est = TreeEstimator(random_state=0, max_depth=2) | |
est.fit(X, y) | |
node_indicator_csr = est.decision_path(X) | |
node_indicator = node_indicator_csr.toarray() | |
assert node_indicator.shape == (n_samples, est.tree_.node_count) | |
# Assert that leaves index are correct | |
leaves = est.apply(X) | |
leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] | |
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) | |
# Ensure only one leave node per sample | |
all_leaves = est.tree_.children_left == TREE_LEAF | |
assert_array_almost_equal( | |
np.dot(node_indicator, all_leaves), np.ones(shape=n_samples) | |
) | |
# Ensure max depth is consistent with sum of indicator | |
max_depth = node_indicator.sum(axis=1).max() | |
assert est.tree_.max_depth <= max_depth | |
def test_no_sparse_y_support(name, csr_container): | |
# Currently we don't support sparse y | |
X, y = X_multilabel, csr_container(y_multilabel) | |
TreeEstimator = ALL_TREES[name] | |
with pytest.raises(TypeError): | |
TreeEstimator(random_state=0).fit(X, y) | |
def test_mae(): | |
"""Check MAE criterion produces correct results on small toy dataset: | |
------------------ | |
| X | y | weight | | |
------------------ | |
| 3 | 3 | 0.1 | | |
| 5 | 3 | 0.3 | | |
| 8 | 4 | 1.0 | | |
| 3 | 6 | 0.6 | | |
| 5 | 7 | 0.3 | | |
------------------ | |
|sum wt:| 2.3 | | |
------------------ | |
Because we are dealing with sample weights, we cannot find the median by | |
simply choosing/averaging the centre value(s), instead we consider the | |
median where 50% of the cumulative weight is found (in a y sorted data set) | |
. Therefore with regards to this test data, the cumulative weight is >= 50% | |
when y = 4. Therefore: | |
Median = 4 | |
For all the samples, we can get the total error by summing: | |
Absolute(Median - y) * weight | |
I.e., total error = (Absolute(4 - 3) * 0.1) | |
+ (Absolute(4 - 3) * 0.3) | |
+ (Absolute(4 - 4) * 1.0) | |
+ (Absolute(4 - 6) * 0.6) | |
+ (Absolute(4 - 7) * 0.3) | |
= 2.5 | |
Impurity = Total error / total weight | |
= 2.5 / 2.3 | |
= 1.08695652173913 | |
------------------ | |
From this root node, the next best split is between X values of 3 and 5. | |
Thus, we have left and right child nodes: | |
LEFT RIGHT | |
------------------ ------------------ | |
| X | y | weight | | X | y | weight | | |
------------------ ------------------ | |
| 3 | 3 | 0.1 | | 5 | 3 | 0.3 | | |
| 3 | 6 | 0.6 | | 8 | 4 | 1.0 | | |
------------------ | 5 | 7 | 0.3 | | |
|sum wt:| 0.7 | ------------------ | |
------------------ |sum wt:| 1.6 | | |
------------------ | |
Impurity is found in the same way: | |
Left node Median = 6 | |
Total error = (Absolute(6 - 3) * 0.1) | |
+ (Absolute(6 - 6) * 0.6) | |
= 0.3 | |
Left Impurity = Total error / total weight | |
= 0.3 / 0.7 | |
= 0.428571428571429 | |
------------------- | |
Likewise for Right node: | |
Right node Median = 4 | |
Total error = (Absolute(4 - 3) * 0.3) | |
+ (Absolute(4 - 4) * 1.0) | |
+ (Absolute(4 - 7) * 0.3) | |
= 1.2 | |
Right Impurity = Total error / total weight | |
= 1.2 / 1.6 | |
= 0.75 | |
------ | |
""" | |
dt_mae = DecisionTreeRegressor( | |
random_state=0, criterion="absolute_error", max_leaf_nodes=2 | |
) | |
# Test MAE where sample weights are non-uniform (as illustrated above): | |
dt_mae.fit( | |
X=[[3], [5], [3], [8], [5]], | |
y=[6, 7, 3, 4, 3], | |
sample_weight=[0.6, 0.3, 0.1, 1.0, 0.3], | |
) | |
assert_allclose(dt_mae.tree_.impurity, [2.5 / 2.3, 0.3 / 0.7, 1.2 / 1.6]) | |
assert_array_equal(dt_mae.tree_.value.flat, [4.0, 6.0, 4.0]) | |
# Test MAE where all sample weights are uniform: | |
dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3], sample_weight=np.ones(5)) | |
assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0]) | |
assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0]) | |
# Test MAE where a `sample_weight` is not explicitly provided. | |
# This is equivalent to providing uniform sample weights, though | |
# the internal logic is different: | |
dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3]) | |
assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0]) | |
assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0]) | |
def test_criterion_copy(): | |
# Let's check whether copy of our criterion has the same type | |
# and properties as original | |
n_outputs = 3 | |
n_classes = np.arange(3, dtype=np.intp) | |
n_samples = 100 | |
def _pickle_copy(obj): | |
return pickle.loads(pickle.dumps(obj)) | |
for copy_func in [copy.copy, copy.deepcopy, _pickle_copy]: | |
for _, typename in CRITERIA_CLF.items(): | |
criteria = typename(n_outputs, n_classes) | |
result = copy_func(criteria).__reduce__() | |
typename_, (n_outputs_, n_classes_), _ = result | |
assert typename == typename_ | |
assert n_outputs == n_outputs_ | |
assert_array_equal(n_classes, n_classes_) | |
for _, typename in CRITERIA_REG.items(): | |
criteria = typename(n_outputs, n_samples) | |
result = copy_func(criteria).__reduce__() | |
typename_, (n_outputs_, n_samples_), _ = result | |
assert typename == typename_ | |
assert n_outputs == n_outputs_ | |
assert n_samples == n_samples_ | |
def test_empty_leaf_infinite_threshold(sparse_container): | |
# try to make empty leaf by using near infinite value. | |
data = np.random.RandomState(0).randn(100, 11) * 2e38 | |
data = np.nan_to_num(data.astype("float32")) | |
X = data[:, :-1] | |
if sparse_container is not None: | |
X = sparse_container(X) | |
y = data[:, -1] | |
tree = DecisionTreeRegressor(random_state=0).fit(X, y) | |
terminal_regions = tree.apply(X) | |
left_leaf = set(np.where(tree.tree_.children_left == TREE_LEAF)[0]) | |
empty_leaf = left_leaf.difference(terminal_regions) | |
infinite_threshold = np.where(~np.isfinite(tree.tree_.threshold))[0] | |
assert len(infinite_threshold) == 0 | |
assert len(empty_leaf) == 0 | |
def test_prune_tree_classifier_are_subtrees(dataset, tree_cls): | |
dataset = DATASETS[dataset] | |
X, y = dataset["X"], dataset["y"] | |
est = tree_cls(max_leaf_nodes=20, random_state=0) | |
info = est.cost_complexity_pruning_path(X, y) | |
pruning_path = info.ccp_alphas | |
impurities = info.impurities | |
assert np.all(np.diff(pruning_path) >= 0) | |
assert np.all(np.diff(impurities) >= 0) | |
assert_pruning_creates_subtree(tree_cls, X, y, pruning_path) | |
def test_prune_tree_regression_are_subtrees(dataset, tree_cls): | |
dataset = DATASETS[dataset] | |
X, y = dataset["X"], dataset["y"] | |
est = tree_cls(max_leaf_nodes=20, random_state=0) | |
info = est.cost_complexity_pruning_path(X, y) | |
pruning_path = info.ccp_alphas | |
impurities = info.impurities | |
assert np.all(np.diff(pruning_path) >= 0) | |
assert np.all(np.diff(impurities) >= 0) | |
assert_pruning_creates_subtree(tree_cls, X, y, pruning_path) | |
def test_prune_single_node_tree(): | |
# single node tree | |
clf1 = DecisionTreeClassifier(random_state=0) | |
clf1.fit([[0], [1]], [0, 0]) | |
# pruned single node tree | |
clf2 = DecisionTreeClassifier(random_state=0, ccp_alpha=10) | |
clf2.fit([[0], [1]], [0, 0]) | |
assert_is_subtree(clf1.tree_, clf2.tree_) | |
def assert_pruning_creates_subtree(estimator_cls, X, y, pruning_path): | |
# generate trees with increasing alphas | |
estimators = [] | |
for ccp_alpha in pruning_path: | |
est = estimator_cls(max_leaf_nodes=20, ccp_alpha=ccp_alpha, random_state=0).fit( | |
X, y | |
) | |
estimators.append(est) | |
# A pruned tree must be a subtree of the previous tree (which had a | |
# smaller ccp_alpha) | |
for prev_est, next_est in zip(estimators, estimators[1:]): | |
assert_is_subtree(prev_est.tree_, next_est.tree_) | |
def assert_is_subtree(tree, subtree): | |
assert tree.node_count >= subtree.node_count | |
assert tree.max_depth >= subtree.max_depth | |
tree_c_left = tree.children_left | |
tree_c_right = tree.children_right | |
subtree_c_left = subtree.children_left | |
subtree_c_right = subtree.children_right | |
stack = [(0, 0)] | |
while stack: | |
tree_node_idx, subtree_node_idx = stack.pop() | |
assert_array_almost_equal( | |
tree.value[tree_node_idx], subtree.value[subtree_node_idx] | |
) | |
assert_almost_equal( | |
tree.impurity[tree_node_idx], subtree.impurity[subtree_node_idx] | |
) | |
assert_almost_equal( | |
tree.n_node_samples[tree_node_idx], subtree.n_node_samples[subtree_node_idx] | |
) | |
assert_almost_equal( | |
tree.weighted_n_node_samples[tree_node_idx], | |
subtree.weighted_n_node_samples[subtree_node_idx], | |
) | |
if subtree_c_left[subtree_node_idx] == subtree_c_right[subtree_node_idx]: | |
# is a leaf | |
assert_almost_equal(TREE_UNDEFINED, subtree.threshold[subtree_node_idx]) | |
else: | |
# not a leaf | |
assert_almost_equal( | |
tree.threshold[tree_node_idx], subtree.threshold[subtree_node_idx] | |
) | |
stack.append((tree_c_left[tree_node_idx], subtree_c_left[subtree_node_idx])) | |
stack.append( | |
(tree_c_right[tree_node_idx], subtree_c_right[subtree_node_idx]) | |
) | |
def test_apply_path_readonly_all_trees(name, splitter, sparse_container): | |
dataset = DATASETS["clf_small"] | |
X_small = dataset["X"].astype(tree._tree.DTYPE, copy=False) | |
if sparse_container is None: | |
X_readonly = create_memmap_backed_data(X_small) | |
else: | |
X_readonly = sparse_container(dataset["X"]) | |
X_readonly.data = np.array(X_readonly.data, dtype=tree._tree.DTYPE) | |
( | |
X_readonly.data, | |
X_readonly.indices, | |
X_readonly.indptr, | |
) = create_memmap_backed_data( | |
(X_readonly.data, X_readonly.indices, X_readonly.indptr) | |
) | |
y_readonly = create_memmap_backed_data(np.array(y_small, dtype=tree._tree.DTYPE)) | |
est = ALL_TREES[name](splitter=splitter) | |
est.fit(X_readonly, y_readonly) | |
assert_array_equal(est.predict(X_readonly), est.predict(X_small)) | |
assert_array_equal( | |
est.decision_path(X_readonly).todense(), est.decision_path(X_small).todense() | |
) | |
def test_balance_property(criterion, Tree): | |
# Test that sum(y_pred)=sum(y_true) on training set. | |
# This works if the mean is predicted (should even be true for each leaf). | |
# MAE predicts the median and is therefore excluded from this test. | |
# Choose a training set with non-negative targets (for poisson) | |
X, y = diabetes.data, diabetes.target | |
reg = Tree(criterion=criterion) | |
reg.fit(X, y) | |
assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y)) | |
def test_poisson_zero_nodes(seed): | |
# Test that sum(y)=0 and therefore y_pred=0 is forbidden on nodes. | |
X = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 2], [1, 3]] | |
y = [0, 0, 0, 0, 1, 2, 3, 4] | |
# Note that X[:, 0] == 0 is a 100% indicator for y == 0. The tree can | |
# easily learn that: | |
reg = DecisionTreeRegressor(criterion="squared_error", random_state=seed) | |
reg.fit(X, y) | |
assert np.amin(reg.predict(X)) == 0 | |
# whereas Poisson must predict strictly positive numbers | |
reg = DecisionTreeRegressor(criterion="poisson", random_state=seed) | |
reg.fit(X, y) | |
assert np.all(reg.predict(X) > 0) | |
# Test additional dataset where something could go wrong. | |
n_features = 10 | |
X, y = datasets.make_regression( | |
effective_rank=n_features * 2 // 3, | |
tail_strength=0.6, | |
n_samples=1_000, | |
n_features=n_features, | |
n_informative=n_features * 2 // 3, | |
random_state=seed, | |
) | |
# some excess zeros | |
y[(-1 < y) & (y < 0)] = 0 | |
# make sure the target is positive | |
y = np.abs(y) | |
reg = DecisionTreeRegressor(criterion="poisson", random_state=seed) | |
reg.fit(X, y) | |
assert np.all(reg.predict(X) > 0) | |
def test_poisson_vs_mse(): | |
# For a Poisson distributed target, Poisson loss should give better results | |
# than squared error measured in Poisson deviance as metric. | |
# We have a similar test, test_poisson(), in | |
# sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py | |
rng = np.random.RandomState(42) | |
n_train, n_test, n_features = 500, 500, 10 | |
X = datasets.make_low_rank_matrix( | |
n_samples=n_train + n_test, n_features=n_features, random_state=rng | |
) | |
# We create a log-linear Poisson model and downscale coef as it will get | |
# exponentiated. | |
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) | |
y = rng.poisson(lam=np.exp(X @ coef)) | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=n_test, random_state=rng | |
) | |
# We prevent some overfitting by setting min_samples_split=10. | |
tree_poi = DecisionTreeRegressor( | |
criterion="poisson", min_samples_split=10, random_state=rng | |
) | |
tree_mse = DecisionTreeRegressor( | |
criterion="squared_error", min_samples_split=10, random_state=rng | |
) | |
tree_poi.fit(X_train, y_train) | |
tree_mse.fit(X_train, y_train) | |
dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) | |
for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]: | |
metric_poi = mean_poisson_deviance(y, tree_poi.predict(X)) | |
# squared_error might produce non-positive predictions => clip | |
metric_mse = mean_poisson_deviance(y, np.clip(tree_mse.predict(X), 1e-15, None)) | |
metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) | |
# As squared_error might correctly predict 0 in train set, its train | |
# score can be better than Poisson. This is no longer the case for the | |
# test set. | |
if val == "test": | |
assert metric_poi < 0.5 * metric_mse | |
assert metric_poi < 0.75 * metric_dummy | |
def test_decision_tree_regressor_sample_weight_consistency(criterion): | |
"""Test that the impact of sample_weight is consistent.""" | |
tree_params = dict(criterion=criterion) | |
tree = DecisionTreeRegressor(**tree_params, random_state=42) | |
for kind in ["zeros", "ones"]: | |
check_sample_weights_invariance( | |
"DecisionTreeRegressor_" + criterion, tree, kind="zeros" | |
) | |
rng = np.random.RandomState(0) | |
n_samples, n_features = 10, 5 | |
X = rng.rand(n_samples, n_features) | |
y = np.mean(X, axis=1) + rng.rand(n_samples) | |
# make it positive in order to work also for poisson criterion | |
y += np.min(y) + 0.1 | |
# check that multiplying sample_weight by 2 is equivalent | |
# to repeating corresponding samples twice | |
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0) | |
y2 = np.concatenate([y, y[: n_samples // 2]]) | |
sample_weight_1 = np.ones(len(y)) | |
sample_weight_1[: n_samples // 2] = 2 | |
tree1 = DecisionTreeRegressor(**tree_params).fit( | |
X, y, sample_weight=sample_weight_1 | |
) | |
tree2 = DecisionTreeRegressor(**tree_params).fit(X2, y2, sample_weight=None) | |
assert tree1.tree_.node_count == tree2.tree_.node_count | |
# Thresholds, tree.tree_.threshold, and values, tree.tree_.value, are not | |
# exactly the same, but on the training set, those differences do not | |
# matter and thus predictions are the same. | |
assert_allclose(tree1.predict(X), tree2.predict(X)) | |
def test_criterion_entropy_same_as_log_loss(Tree, n_classes): | |
"""Test that criterion=entropy gives same as log_loss.""" | |
n_samples, n_features = 50, 5 | |
X, y = datasets.make_classification( | |
n_classes=n_classes, | |
n_samples=n_samples, | |
n_features=n_features, | |
n_informative=n_features, | |
n_redundant=0, | |
random_state=42, | |
) | |
tree_log_loss = Tree(criterion="log_loss", random_state=43).fit(X, y) | |
tree_entropy = Tree(criterion="entropy", random_state=43).fit(X, y) | |
assert_tree_equal( | |
tree_log_loss.tree_, | |
tree_entropy.tree_, | |
f"{Tree!r} with criterion 'entropy' and 'log_loss' gave different trees.", | |
) | |
assert_allclose(tree_log_loss.predict(X), tree_entropy.predict(X)) | |
def test_different_endianness_pickle(): | |
X, y = datasets.make_classification(random_state=0) | |
clf = DecisionTreeClassifier(random_state=0, max_depth=3) | |
clf.fit(X, y) | |
score = clf.score(X, y) | |
def reduce_ndarray(arr): | |
return arr.byteswap().view(arr.dtype.newbyteorder()).__reduce__() | |
def get_pickle_non_native_endianness(): | |
f = io.BytesIO() | |
p = pickle.Pickler(f) | |
p.dispatch_table = copyreg.dispatch_table.copy() | |
p.dispatch_table[np.ndarray] = reduce_ndarray | |
p.dump(clf) | |
f.seek(0) | |
return f | |
new_clf = pickle.load(get_pickle_non_native_endianness()) | |
new_score = new_clf.score(X, y) | |
assert np.isclose(score, new_score) | |
def test_different_endianness_joblib_pickle(): | |
X, y = datasets.make_classification(random_state=0) | |
clf = DecisionTreeClassifier(random_state=0, max_depth=3) | |
clf.fit(X, y) | |
score = clf.score(X, y) | |
class NonNativeEndiannessNumpyPickler(NumpyPickler): | |
def save(self, obj): | |
if isinstance(obj, np.ndarray): | |
obj = obj.byteswap().view(obj.dtype.newbyteorder()) | |
super().save(obj) | |
def get_joblib_pickle_non_native_endianness(): | |
f = io.BytesIO() | |
p = NonNativeEndiannessNumpyPickler(f) | |
p.dump(clf) | |
f.seek(0) | |
return f | |
new_clf = joblib.load(get_joblib_pickle_non_native_endianness()) | |
new_score = new_clf.score(X, y) | |
assert np.isclose(score, new_score) | |
def get_different_bitness_node_ndarray(node_ndarray): | |
new_dtype_for_indexing_fields = np.int64 if _IS_32BIT else np.int32 | |
# field names in Node struct with SIZE_t types (see sklearn/tree/_tree.pxd) | |
indexing_field_names = ["left_child", "right_child", "feature", "n_node_samples"] | |
new_dtype_dict = { | |
name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items() | |
} | |
for name in indexing_field_names: | |
new_dtype_dict[name] = new_dtype_for_indexing_fields | |
new_dtype = np.dtype( | |
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())} | |
) | |
return node_ndarray.astype(new_dtype, casting="same_kind") | |
def get_different_alignment_node_ndarray(node_ndarray): | |
new_dtype_dict = { | |
name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items() | |
} | |
offsets = [offset for dtype, offset in node_ndarray.dtype.fields.values()] | |
shifted_offsets = [8 + offset for offset in offsets] | |
new_dtype = np.dtype( | |
{ | |
"names": list(new_dtype_dict.keys()), | |
"formats": list(new_dtype_dict.values()), | |
"offsets": shifted_offsets, | |
} | |
) | |
return node_ndarray.astype(new_dtype, casting="same_kind") | |
def reduce_tree_with_different_bitness(tree): | |
new_dtype = np.int64 if _IS_32BIT else np.int32 | |
tree_cls, (n_features, n_classes, n_outputs), state = tree.__reduce__() | |
new_n_classes = n_classes.astype(new_dtype, casting="same_kind") | |
new_state = state.copy() | |
new_state["nodes"] = get_different_bitness_node_ndarray(new_state["nodes"]) | |
return (tree_cls, (n_features, new_n_classes, n_outputs), new_state) | |
def test_different_bitness_pickle(): | |
X, y = datasets.make_classification(random_state=0) | |
clf = DecisionTreeClassifier(random_state=0, max_depth=3) | |
clf.fit(X, y) | |
score = clf.score(X, y) | |
def pickle_dump_with_different_bitness(): | |
f = io.BytesIO() | |
p = pickle.Pickler(f) | |
p.dispatch_table = copyreg.dispatch_table.copy() | |
p.dispatch_table[CythonTree] = reduce_tree_with_different_bitness | |
p.dump(clf) | |
f.seek(0) | |
return f | |
new_clf = pickle.load(pickle_dump_with_different_bitness()) | |
new_score = new_clf.score(X, y) | |
assert score == pytest.approx(new_score) | |
def test_different_bitness_joblib_pickle(): | |
# Make sure that a platform specific pickle generated on a 64 bit | |
# platform can be converted at pickle load time into an estimator | |
# with Cython code that works with the host's native integer precision | |
# to index nodes in the tree data structure when the host is a 32 bit | |
# platform (and vice versa). | |
X, y = datasets.make_classification(random_state=0) | |
clf = DecisionTreeClassifier(random_state=0, max_depth=3) | |
clf.fit(X, y) | |
score = clf.score(X, y) | |
def joblib_dump_with_different_bitness(): | |
f = io.BytesIO() | |
p = NumpyPickler(f) | |
p.dispatch_table = copyreg.dispatch_table.copy() | |
p.dispatch_table[CythonTree] = reduce_tree_with_different_bitness | |
p.dump(clf) | |
f.seek(0) | |
return f | |
new_clf = joblib.load(joblib_dump_with_different_bitness()) | |
new_score = new_clf.score(X, y) | |
assert score == pytest.approx(new_score) | |
def test_check_n_classes(): | |
expected_dtype = np.dtype(np.int32) if _IS_32BIT else np.dtype(np.int64) | |
allowed_dtypes = [np.dtype(np.int32), np.dtype(np.int64)] | |
allowed_dtypes += [dt.newbyteorder() for dt in allowed_dtypes] | |
n_classes = np.array([0, 1], dtype=expected_dtype) | |
for dt in allowed_dtypes: | |
_check_n_classes(n_classes.astype(dt), expected_dtype) | |
with pytest.raises(ValueError, match="Wrong dimensions.+n_classes"): | |
wrong_dim_n_classes = np.array([[0, 1]], dtype=expected_dtype) | |
_check_n_classes(wrong_dim_n_classes, expected_dtype) | |
with pytest.raises(ValueError, match="n_classes.+incompatible dtype"): | |
wrong_dtype_n_classes = n_classes.astype(np.float64) | |
_check_n_classes(wrong_dtype_n_classes, expected_dtype) | |
def test_check_value_ndarray(): | |
expected_dtype = np.dtype(np.float64) | |
expected_shape = (5, 1, 2) | |
value_ndarray = np.zeros(expected_shape, dtype=expected_dtype) | |
allowed_dtypes = [expected_dtype, expected_dtype.newbyteorder()] | |
for dt in allowed_dtypes: | |
_check_value_ndarray( | |
value_ndarray, expected_dtype=dt, expected_shape=expected_shape | |
) | |
with pytest.raises(ValueError, match="Wrong shape.+value array"): | |
_check_value_ndarray( | |
value_ndarray, expected_dtype=expected_dtype, expected_shape=(1, 2) | |
) | |
for problematic_arr in [value_ndarray[:, :, :1], np.asfortranarray(value_ndarray)]: | |
with pytest.raises(ValueError, match="value array.+C-contiguous"): | |
_check_value_ndarray( | |
problematic_arr, | |
expected_dtype=expected_dtype, | |
expected_shape=problematic_arr.shape, | |
) | |
with pytest.raises(ValueError, match="value array.+incompatible dtype"): | |
_check_value_ndarray( | |
value_ndarray.astype(np.float32), | |
expected_dtype=expected_dtype, | |
expected_shape=expected_shape, | |
) | |
def test_check_node_ndarray(): | |
expected_dtype = NODE_DTYPE | |
node_ndarray = np.zeros((5,), dtype=expected_dtype) | |
valid_node_ndarrays = [ | |
node_ndarray, | |
get_different_bitness_node_ndarray(node_ndarray), | |
get_different_alignment_node_ndarray(node_ndarray), | |
] | |
valid_node_ndarrays += [ | |
arr.astype(arr.dtype.newbyteorder()) for arr in valid_node_ndarrays | |
] | |
for arr in valid_node_ndarrays: | |
_check_node_ndarray(node_ndarray, expected_dtype=expected_dtype) | |
with pytest.raises(ValueError, match="Wrong dimensions.+node array"): | |
problematic_node_ndarray = np.zeros((5, 2), dtype=expected_dtype) | |
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype) | |
with pytest.raises(ValueError, match="node array.+C-contiguous"): | |
problematic_node_ndarray = node_ndarray[::2] | |
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype) | |
dtype_dict = {name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items()} | |
# array with wrong 'threshold' field dtype (int64 rather than float64) | |
new_dtype_dict = dtype_dict.copy() | |
new_dtype_dict["threshold"] = np.int64 | |
new_dtype = np.dtype( | |
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())} | |
) | |
problematic_node_ndarray = node_ndarray.astype(new_dtype) | |
with pytest.raises(ValueError, match="node array.+incompatible dtype"): | |
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype) | |
# array with wrong 'left_child' field dtype (float64 rather than int64 or int32) | |
new_dtype_dict = dtype_dict.copy() | |
new_dtype_dict["left_child"] = np.float64 | |
new_dtype = np.dtype( | |
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())} | |
) | |
problematic_node_ndarray = node_ndarray.astype(new_dtype) | |
with pytest.raises(ValueError, match="node array.+incompatible dtype"): | |
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype) | |
def test_splitter_serializable(Splitter): | |
"""Check that splitters are serializable.""" | |
rng = np.random.RandomState(42) | |
max_features = 10 | |
n_outputs, n_classes = 2, np.array([3, 2], dtype=np.intp) | |
criterion = CRITERIA_CLF["gini"](n_outputs, n_classes) | |
splitter = Splitter(criterion, max_features, 5, 0.5, rng, monotonic_cst=None) | |
splitter_serialize = pickle.dumps(splitter) | |
splitter_back = pickle.loads(splitter_serialize) | |
assert splitter_back.max_features == max_features | |
assert isinstance(splitter_back, Splitter) | |
def test_tree_deserialization_from_read_only_buffer(tmpdir): | |
"""Check that Trees can be deserialized with read only buffers. | |
Non-regression test for gh-25584. | |
""" | |
pickle_path = str(tmpdir.join("clf.joblib")) | |
clf = DecisionTreeClassifier(random_state=0) | |
clf.fit(X_small, y_small) | |
joblib.dump(clf, pickle_path) | |
loaded_clf = joblib.load(pickle_path, mmap_mode="r") | |
assert_tree_equal( | |
loaded_clf.tree_, | |
clf.tree_, | |
"The trees of the original and loaded classifiers are not equal.", | |
) | |
def test_min_sample_split_1_error(Tree): | |
"""Check that an error is raised when min_sample_split=1. | |
non-regression test for issue gh-25481. | |
""" | |
X = np.array([[0, 0], [1, 1]]) | |
y = np.array([0, 1]) | |
# min_samples_split=1.0 is valid | |
Tree(min_samples_split=1.0).fit(X, y) | |
# min_samples_split=1 is invalid | |
tree = Tree(min_samples_split=1) | |
msg = ( | |
r"'min_samples_split' .* must be an int in the range \[2, inf\) " | |
r"or a float in the range \(0.0, 1.0\]" | |
) | |
with pytest.raises(ValueError, match=msg): | |
tree.fit(X, y) | |
def test_missing_values_on_equal_nodes_no_missing(criterion): | |
"""Check missing values goes to correct node during predictions""" | |
X = np.array([[0, 1, 2, 3, 8, 9, 11, 12, 15]]).T | |
y = np.array([0.1, 0.2, 0.3, 0.2, 1.4, 1.4, 1.5, 1.6, 2.6]) | |
dtc = DecisionTreeRegressor(random_state=42, max_depth=1, criterion=criterion) | |
dtc.fit(X, y) | |
# Goes to right node because it has the most data points | |
y_pred = dtc.predict([[np.nan]]) | |
assert_allclose(y_pred, [np.mean(y[-5:])]) | |
# equal number of elements in both nodes | |
X_equal = X[:-1] | |
y_equal = y[:-1] | |
dtc = DecisionTreeRegressor(random_state=42, max_depth=1, criterion=criterion) | |
dtc.fit(X_equal, y_equal) | |
# Goes to right node because the implementation sets: | |
# missing_go_to_left = n_left > n_right, which is False | |
y_pred = dtc.predict([[np.nan]]) | |
assert_allclose(y_pred, [np.mean(y_equal[-4:])]) | |
def test_missing_values_best_splitter_three_classes(criterion): | |
"""Test when missing values are uniquely present in a class among 3 classes.""" | |
missing_values_class = 0 | |
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 8, 9, 11, 12]]).T | |
y = np.array([missing_values_class] * 4 + [1] * 4 + [2] * 4) | |
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion) | |
dtc.fit(X, y) | |
X_test = np.array([[np.nan, 3, 12]]).T | |
y_nan_pred = dtc.predict(X_test) | |
# Missing values necessarily are associated to the observed class. | |
assert_array_equal(y_nan_pred, [missing_values_class, 1, 2]) | |
def test_missing_values_best_splitter_to_left(criterion): | |
"""Missing values spanning only one class at fit-time must make missing | |
values at predict-time be classified has belonging to this class.""" | |
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 4, 5]]).T | |
y = np.array([0] * 4 + [1] * 6) | |
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion) | |
dtc.fit(X, y) | |
X_test = np.array([[np.nan, 5, np.nan]]).T | |
y_pred = dtc.predict(X_test) | |
assert_array_equal(y_pred, [0, 1, 0]) | |
def test_missing_values_best_splitter_to_right(criterion): | |
"""Missing values and non-missing values sharing one class at fit-time | |
must make missing values at predict-time be classified has belonging | |
to this class.""" | |
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 4, 5]]).T | |
y = np.array([1] * 4 + [0] * 4 + [1] * 2) | |
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion) | |
dtc.fit(X, y) | |
X_test = np.array([[np.nan, 1.2, 4.8]]).T | |
y_pred = dtc.predict(X_test) | |
assert_array_equal(y_pred, [1, 0, 1]) | |
def test_missing_values_missing_both_classes_has_nan(criterion): | |
"""Check behavior of missing value when there is one missing value in each class.""" | |
X = np.array([[1, 2, 3, 5, np.nan, 10, 20, 30, 60, np.nan]]).T | |
y = np.array([0] * 5 + [1] * 5) | |
dtc = DecisionTreeClassifier(random_state=42, max_depth=1, criterion=criterion) | |
dtc.fit(X, y) | |
X_test = np.array([[np.nan, 2.3, 34.2]]).T | |
y_pred = dtc.predict(X_test) | |
# Missing value goes to the class at the right (here 1) because the implementation | |
# searches right first. | |
assert_array_equal(y_pred, [1, 0, 1]) | |
def test_missing_value_errors(sparse_container, tree): | |
"""Check unsupported configurations for missing values.""" | |
X = np.array([[1, 2, 3, 5, np.nan, 10, 20, 30, 60, np.nan]]).T | |
y = np.array([0] * 5 + [1] * 5) | |
if sparse_container is not None: | |
X = sparse_container(X) | |
with pytest.raises(ValueError, match="Input X contains NaN"): | |
tree.fit(X, y) | |
def test_missing_values_poisson(): | |
"""Smoke test for poisson regression and missing values.""" | |
X, y = diabetes.data.copy(), diabetes.target | |
# Set some values missing | |
X[::5, 0] = np.nan | |
X[::6, -1] = np.nan | |
reg = DecisionTreeRegressor(criterion="poisson", random_state=42) | |
reg.fit(X, y) | |
y_pred = reg.predict(X) | |
assert (y_pred >= 0.0).all() | |
def make_friedman1_classification(*args, **kwargs): | |
X, y = datasets.make_friedman1(*args, **kwargs) | |
y = y > 14 | |
return X, y | |
def test_missing_values_is_resilience( | |
make_data, Tree, sample_weight_train, global_random_seed | |
): | |
"""Check that trees can deal with missing values have decent performance.""" | |
n_samples, n_features = 5_000, 10 | |
X, y = make_data( | |
n_samples=n_samples, n_features=n_features, random_state=global_random_seed | |
) | |
X_missing = X.copy() | |
rng = np.random.RandomState(global_random_seed) | |
X_missing[rng.choice([False, True], size=X.shape, p=[0.9, 0.1])] = np.nan | |
X_missing_train, X_missing_test, y_train, y_test = train_test_split( | |
X_missing, y, random_state=global_random_seed | |
) | |
if sample_weight_train == "ones": | |
sample_weight = np.ones(X_missing_train.shape[0]) | |
else: | |
sample_weight = None | |
native_tree = Tree(max_depth=10, random_state=global_random_seed) | |
native_tree.fit(X_missing_train, y_train, sample_weight=sample_weight) | |
score_native_tree = native_tree.score(X_missing_test, y_test) | |
tree_with_imputer = make_pipeline( | |
SimpleImputer(), Tree(max_depth=10, random_state=global_random_seed) | |
) | |
tree_with_imputer.fit(X_missing_train, y_train) | |
score_tree_with_imputer = tree_with_imputer.score(X_missing_test, y_test) | |
assert ( | |
score_native_tree > score_tree_with_imputer | |
), f"{score_native_tree=} should be strictly greater than {score_tree_with_imputer}" | |
def test_missing_value_is_predictive(): | |
"""Check the tree learns when only the missing value is predictive.""" | |
rng = np.random.RandomState(0) | |
n_samples = 1000 | |
X = rng.standard_normal(size=(n_samples, 10)) | |
y = rng.randint(0, high=2, size=n_samples) | |
# Create a predictive feature using `y` and with some noise | |
X_random_mask = rng.choice([False, True], size=n_samples, p=[0.95, 0.05]) | |
y_mask = y.copy().astype(bool) | |
y_mask[X_random_mask] = ~y_mask[X_random_mask] | |
X_predictive = rng.standard_normal(size=n_samples) | |
X_predictive[y_mask] = np.nan | |
X[:, 5] = X_predictive | |
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng) | |
tree = DecisionTreeClassifier(random_state=rng).fit(X_train, y_train) | |
assert tree.score(X_train, y_train) >= 0.85 | |
assert tree.score(X_test, y_test) >= 0.85 | |
def test_sample_weight_non_uniform(make_data, Tree): | |
"""Check sample weight is correctly handled with missing values.""" | |
rng = np.random.RandomState(0) | |
n_samples, n_features = 1000, 10 | |
X, y = make_data(n_samples=n_samples, n_features=n_features, random_state=rng) | |
# Create dataset with missing values | |
X[rng.choice([False, True], size=X.shape, p=[0.9, 0.1])] = np.nan | |
# Zero sample weight is the same as removing the sample | |
sample_weight = np.ones(X.shape[0]) | |
sample_weight[::2] = 0.0 | |
tree_with_sw = Tree(random_state=0) | |
tree_with_sw.fit(X, y, sample_weight=sample_weight) | |
tree_samples_removed = Tree(random_state=0) | |
tree_samples_removed.fit(X[1::2, :], y[1::2]) | |
assert_allclose(tree_samples_removed.predict(X), tree_with_sw.predict(X)) | |
def test_deterministic_pickle(): | |
# Non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/27268 | |
# Uninitialised memory would lead to the two pickle strings being different. | |
tree1 = DecisionTreeClassifier(random_state=0).fit(iris.data, iris.target) | |
tree2 = DecisionTreeClassifier(random_state=0).fit(iris.data, iris.target) | |
pickle1 = pickle.dumps(tree1) | |
pickle2 = pickle.dumps(tree2) | |
assert pickle1 == pickle2 | |
def test_regression_tree_missing_values_toy(X, criterion): | |
"""Check that we properly handle missing values in regression trees using a toy | |
dataset. | |
The regression targeted by this test was that we were not reinitializing the | |
criterion when it comes to the number of missing values. Therefore, the value | |
of the critetion (i.e. MSE) was completely wrong. | |
This test check that the MSE is null when there is a single sample in the leaf. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/28254 | |
https://github.com/scikit-learn/scikit-learn/issues/28316 | |
""" | |
X = X.reshape(-1, 1) | |
y = np.arange(6) | |
tree = DecisionTreeRegressor(criterion=criterion, random_state=0).fit(X, y) | |
tree_ref = clone(tree).fit(y.reshape(-1, 1), y) | |
assert all(tree.tree_.impurity >= 0) # MSE should always be positive | |
# Check the impurity match after the first split | |
assert_allclose(tree.tree_.impurity[:2], tree_ref.tree_.impurity[:2]) | |
# Find the leaves with a single sample where the MSE should be 0 | |
leaves_idx = np.flatnonzero( | |
(tree.tree_.children_left == -1) & (tree.tree_.n_node_samples == 1) | |
) | |
assert_allclose(tree.tree_.impurity[leaves_idx], 0.0) | |
def test_classification_tree_missing_values_toy(): | |
"""Check that we properly handle missing values in clasification trees using a toy | |
dataset. | |
The test is more involved because we use a case where we detected a regression | |
in a random forest. We therefore define the seed and bootstrap indices to detect | |
one of the non-frequent regression. | |
Here, we check that the impurity is null or positive in the leaves. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/28254 | |
""" | |
X, y = datasets.load_iris(return_X_y=True) | |
rng = np.random.RandomState(42) | |
X_missing = X.copy() | |
mask = rng.binomial( | |
n=np.ones(shape=(1, 4), dtype=np.int32), p=X[:, [2]] / 8 | |
).astype(bool) | |
X_missing[mask] = np.nan | |
X_train, _, y_train, _ = train_test_split(X_missing, y, random_state=13) | |
# fmt: off | |
# no black reformatting for this specific array | |
indices = np.array([ | |
2, 81, 39, 97, 91, 38, 46, 31, 101, 13, 89, 82, 100, 42, 69, 27, 81, 16, 73, 74, | |
51, 47, 107, 17, 75, 110, 20, 15, 104, 57, 26, 15, 75, 79, 35, 77, 90, 51, 46, | |
13, 94, 91, 23, 8, 93, 93, 73, 77, 12, 13, 74, 109, 110, 24, 10, 23, 104, 27, | |
92, 52, 20, 109, 8, 8, 28, 27, 35, 12, 12, 7, 43, 0, 30, 31, 78, 12, 24, 105, | |
50, 0, 73, 12, 102, 105, 13, 31, 1, 69, 11, 32, 75, 90, 106, 94, 60, 56, 35, 17, | |
62, 85, 81, 39, 80, 16, 63, 6, 80, 84, 3, 3, 76, 78 | |
], dtype=np.int32) | |
# fmt: on | |
tree = DecisionTreeClassifier( | |
max_depth=3, max_features="sqrt", random_state=1857819720 | |
) | |
tree.fit(X_train[indices], y_train[indices]) | |
assert all(tree.tree_.impurity >= 0) | |
leaves_idx = np.flatnonzero( | |
(tree.tree_.children_left == -1) & (tree.tree_.n_node_samples == 1) | |
) | |
assert_allclose(tree.tree_.impurity[leaves_idx], 0.0) | |