peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/_locally_linear.py
| """Locally Linear Embedding""" | |
| # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> | |
| # Jake Vanderplas -- <vanderplas@astro.washington.edu> | |
| # License: BSD 3 clause (C) INRIA 2011 | |
| from numbers import Integral, Real | |
| import numpy as np | |
| from scipy.linalg import eigh, qr, solve, svd | |
| from scipy.sparse import csr_matrix, eye | |
| from scipy.sparse.linalg import eigsh | |
| from ..base import ( | |
| BaseEstimator, | |
| ClassNamePrefixFeaturesOutMixin, | |
| TransformerMixin, | |
| _fit_context, | |
| _UnstableArchMixin, | |
| ) | |
| from ..neighbors import NearestNeighbors | |
| from ..utils import check_array, check_random_state | |
| from ..utils._arpack import _init_arpack_v0 | |
| from ..utils._param_validation import Interval, StrOptions | |
| from ..utils.extmath import stable_cumsum | |
| from ..utils.validation import FLOAT_DTYPES, check_is_fitted | |
| def barycenter_weights(X, Y, indices, reg=1e-3): | |
| """Compute barycenter weights of X from Y along the first axis | |
| We estimate the weights to assign to each point in Y[indices] to recover | |
| the point X[i]. The barycenter weights sum to 1. | |
| Parameters | |
| ---------- | |
| X : array-like, shape (n_samples, n_dim) | |
| Y : array-like, shape (n_samples, n_dim) | |
| indices : array-like, shape (n_samples, n_dim) | |
| Indices of the points in Y used to compute the barycenter | |
| reg : float, default=1e-3 | |
| Amount of regularization to add for the problem to be | |
| well-posed in the case of n_neighbors > n_dim | |
| Returns | |
| ------- | |
| B : array-like, shape (n_samples, n_neighbors) | |
| Notes | |
| ----- | |
| See developers note for more information. | |
| """ | |
| X = check_array(X, dtype=FLOAT_DTYPES) | |
| Y = check_array(Y, dtype=FLOAT_DTYPES) | |
| indices = check_array(indices, dtype=int) | |
| n_samples, n_neighbors = indices.shape | |
| assert X.shape[0] == n_samples | |
| B = np.empty((n_samples, n_neighbors), dtype=X.dtype) | |
| v = np.ones(n_neighbors, dtype=X.dtype) | |
| # this might raise a LinalgError if G is singular and has trace | |
| # zero | |
| for i, ind in enumerate(indices): | |
| A = Y[ind] | |
| C = A - X[i] # broadcasting | |
| G = np.dot(C, C.T) | |
| trace = np.trace(G) | |
| if trace > 0: | |
| R = reg * trace | |
| else: | |
| R = reg | |
| G.flat[:: n_neighbors + 1] += R | |
| w = solve(G, v, assume_a="pos") | |
| B[i, :] = w / np.sum(w) | |
| return B | |
| def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=None): | |
| """Computes the barycenter weighted graph of k-Neighbors for points in X | |
| Parameters | |
| ---------- | |
| X : {array-like, NearestNeighbors} | |
| Sample data, shape = (n_samples, n_features), in the form of a | |
| numpy array or a NearestNeighbors object. | |
| n_neighbors : int | |
| Number of neighbors for each sample. | |
| reg : float, default=1e-3 | |
| Amount of regularization when solving the least-squares | |
| problem. Only relevant if mode='barycenter'. If None, use the | |
| default. | |
| n_jobs : int or None, default=None | |
| The number of parallel jobs to run for neighbors search. | |
| ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
| ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
| for more details. | |
| Returns | |
| ------- | |
| A : sparse matrix in CSR format, shape = [n_samples, n_samples] | |
| A[i, j] is assigned the weight of edge that connects i to j. | |
| See Also | |
| -------- | |
| sklearn.neighbors.kneighbors_graph | |
| sklearn.neighbors.radius_neighbors_graph | |
| """ | |
| knn = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs).fit(X) | |
| X = knn._fit_X | |
| n_samples = knn.n_samples_fit_ | |
| ind = knn.kneighbors(X, return_distance=False)[:, 1:] | |
| data = barycenter_weights(X, X, ind, reg=reg) | |
| indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) | |
| return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) | |
| def null_space( | |
| M, k, k_skip=1, eigen_solver="arpack", tol=1e-6, max_iter=100, random_state=None | |
| ): | |
| """ | |
| Find the null space of a matrix M. | |
| Parameters | |
| ---------- | |
| M : {array, matrix, sparse matrix, LinearOperator} | |
| Input covariance matrix: should be symmetric positive semi-definite | |
| k : int | |
| Number of eigenvalues/vectors to return | |
| k_skip : int, default=1 | |
| Number of low eigenvalues to skip. | |
| eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack' | |
| auto : algorithm will attempt to choose the best method for input data | |
| arpack : use arnoldi iteration in shift-invert mode. | |
| For this method, M may be a dense matrix, sparse matrix, | |
| or general linear operator. | |
| Warning: ARPACK can be unstable for some problems. It is | |
| best to try several random seeds in order to check results. | |
| dense : use standard dense matrix operations for the eigenvalue | |
| decomposition. For this method, M must be an array | |
| or matrix type. This method should be avoided for | |
| large problems. | |
| tol : float, default=1e-6 | |
| Tolerance for 'arpack' method. | |
| Not used if eigen_solver=='dense'. | |
| max_iter : int, default=100 | |
| Maximum number of iterations for 'arpack' method. | |
| Not used if eigen_solver=='dense' | |
| random_state : int, RandomState instance, default=None | |
| Determines the random number generator when ``solver`` == 'arpack'. | |
| Pass an int for reproducible results across multiple function calls. | |
| See :term:`Glossary <random_state>`. | |
| """ | |
| if eigen_solver == "auto": | |
| if M.shape[0] > 200 and k + k_skip < 10: | |
| eigen_solver = "arpack" | |
| else: | |
| eigen_solver = "dense" | |
| if eigen_solver == "arpack": | |
| v0 = _init_arpack_v0(M.shape[0], random_state) | |
| try: | |
| eigen_values, eigen_vectors = eigsh( | |
| M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0 | |
| ) | |
| except RuntimeError as e: | |
| raise ValueError( | |
| "Error in determining null-space with ARPACK. Error message: " | |
| "'%s'. Note that eigen_solver='arpack' can fail when the " | |
| "weight matrix is singular or otherwise ill-behaved. In that " | |
| "case, eigen_solver='dense' is recommended. See online " | |
| "documentation for more information." % e | |
| ) from e | |
| return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) | |
| elif eigen_solver == "dense": | |
| if hasattr(M, "toarray"): | |
| M = M.toarray() | |
| eigen_values, eigen_vectors = eigh( | |
| M, subset_by_index=(k_skip, k + k_skip - 1), overwrite_a=True | |
| ) | |
| index = np.argsort(np.abs(eigen_values)) | |
| return eigen_vectors[:, index], np.sum(eigen_values) | |
| else: | |
| raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) | |
| def locally_linear_embedding( | |
| X, | |
| *, | |
| n_neighbors, | |
| n_components, | |
| reg=1e-3, | |
| eigen_solver="auto", | |
| tol=1e-6, | |
| max_iter=100, | |
| method="standard", | |
| hessian_tol=1e-4, | |
| modified_tol=1e-12, | |
| random_state=None, | |
| n_jobs=None, | |
| ): | |
| """Perform a Locally Linear Embedding analysis on the data. | |
| Read more in the :ref:`User Guide <locally_linear_embedding>`. | |
| Parameters | |
| ---------- | |
| X : {array-like, NearestNeighbors} | |
| Sample data, shape = (n_samples, n_features), in the form of a | |
| numpy array or a NearestNeighbors object. | |
| n_neighbors : int | |
| Number of neighbors to consider for each point. | |
| n_components : int | |
| Number of coordinates for the manifold. | |
| reg : float, default=1e-3 | |
| Regularization constant, multiplies the trace of the local covariance | |
| matrix of the distances. | |
| eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
| auto : algorithm will attempt to choose the best method for input data | |
| arpack : use arnoldi iteration in shift-invert mode. | |
| For this method, M may be a dense matrix, sparse matrix, | |
| or general linear operator. | |
| Warning: ARPACK can be unstable for some problems. It is | |
| best to try several random seeds in order to check results. | |
| dense : use standard dense matrix operations for the eigenvalue | |
| decomposition. For this method, M must be an array | |
| or matrix type. This method should be avoided for | |
| large problems. | |
| tol : float, default=1e-6 | |
| Tolerance for 'arpack' method | |
| Not used if eigen_solver=='dense'. | |
| max_iter : int, default=100 | |
| Maximum number of iterations for the arpack solver. | |
| method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' | |
| standard : use the standard locally linear embedding algorithm. | |
| see reference [1]_ | |
| hessian : use the Hessian eigenmap method. This method requires | |
| n_neighbors > n_components * (1 + (n_components + 1) / 2. | |
| see reference [2]_ | |
| modified : use the modified locally linear embedding algorithm. | |
| see reference [3]_ | |
| ltsa : use local tangent space alignment algorithm | |
| see reference [4]_ | |
| hessian_tol : float, default=1e-4 | |
| Tolerance for Hessian eigenmapping method. | |
| Only used if method == 'hessian'. | |
| modified_tol : float, default=1e-12 | |
| Tolerance for modified LLE method. | |
| Only used if method == 'modified'. | |
| random_state : int, RandomState instance, default=None | |
| Determines the random number generator when ``solver`` == 'arpack'. | |
| Pass an int for reproducible results across multiple function calls. | |
| See :term:`Glossary <random_state>`. | |
| n_jobs : int or None, default=None | |
| The number of parallel jobs to run for neighbors search. | |
| ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
| ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
| for more details. | |
| Returns | |
| ------- | |
| Y : array-like, shape [n_samples, n_components] | |
| Embedding vectors. | |
| squared_error : float | |
| Reconstruction error for the embedding vectors. Equivalent to | |
| ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. | |
| References | |
| ---------- | |
| .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction | |
| by locally linear embedding. Science 290:2323 (2000). | |
| .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally | |
| linear embedding techniques for high-dimensional data. | |
| Proc Natl Acad Sci U S A. 100:5591 (2003). | |
| .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear | |
| Embedding Using Multiple Weights. | |
| <https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ | |
| .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear | |
| dimensionality reduction via tangent space alignment. | |
| Journal of Shanghai Univ. 8:406 (2004) | |
| Examples | |
| -------- | |
| >>> from sklearn.datasets import load_digits | |
| >>> from sklearn.manifold import locally_linear_embedding | |
| >>> X, _ = load_digits(return_X_y=True) | |
| >>> X.shape | |
| (1797, 64) | |
| >>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2) | |
| >>> embedding.shape | |
| (100, 2) | |
| """ | |
| if eigen_solver not in ("auto", "arpack", "dense"): | |
| raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) | |
| if method not in ("standard", "hessian", "modified", "ltsa"): | |
| raise ValueError("unrecognized method '%s'" % method) | |
| nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) | |
| nbrs.fit(X) | |
| X = nbrs._fit_X | |
| N, d_in = X.shape | |
| if n_components > d_in: | |
| raise ValueError( | |
| "output dimension must be less than or equal to input dimension" | |
| ) | |
| if n_neighbors >= N: | |
| raise ValueError( | |
| "Expected n_neighbors <= n_samples, but n_samples = %d, n_neighbors = %d" | |
| % (N, n_neighbors) | |
| ) | |
| if n_neighbors <= 0: | |
| raise ValueError("n_neighbors must be positive") | |
| M_sparse = eigen_solver != "dense" | |
| if method == "standard": | |
| W = barycenter_kneighbors_graph( | |
| nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs | |
| ) | |
| # we'll compute M = (I-W)'(I-W) | |
| # depending on the solver, we'll do this differently | |
| if M_sparse: | |
| M = eye(*W.shape, format=W.format) - W | |
| M = (M.T * M).tocsr() | |
| else: | |
| M = (W.T * W - W.T - W).toarray() | |
| M.flat[:: M.shape[0] + 1] += 1 # W = W - I = W - I | |
| elif method == "hessian": | |
| dp = n_components * (n_components + 1) // 2 | |
| if n_neighbors <= n_components + dp: | |
| raise ValueError( | |
| "for method='hessian', n_neighbors must be " | |
| "greater than " | |
| "[n_components * (n_components + 3) / 2]" | |
| ) | |
| neighbors = nbrs.kneighbors( | |
| X, n_neighbors=n_neighbors + 1, return_distance=False | |
| ) | |
| neighbors = neighbors[:, 1:] | |
| Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) | |
| Yi[:, 0] = 1 | |
| M = np.zeros((N, N), dtype=np.float64) | |
| use_svd = n_neighbors > d_in | |
| for i in range(N): | |
| Gi = X[neighbors[i]] | |
| Gi -= Gi.mean(0) | |
| # build Hessian estimator | |
| if use_svd: | |
| U = svd(Gi, full_matrices=0)[0] | |
| else: | |
| Ci = np.dot(Gi, Gi.T) | |
| U = eigh(Ci)[1][:, ::-1] | |
| Yi[:, 1 : 1 + n_components] = U[:, :n_components] | |
| j = 1 + n_components | |
| for k in range(n_components): | |
| Yi[:, j : j + n_components - k] = U[:, k : k + 1] * U[:, k:n_components] | |
| j += n_components - k | |
| Q, R = qr(Yi) | |
| w = Q[:, n_components + 1 :] | |
| S = w.sum(0) | |
| S[np.where(abs(S) < hessian_tol)] = 1 | |
| w /= S | |
| nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
| M[nbrs_x, nbrs_y] += np.dot(w, w.T) | |
| if M_sparse: | |
| M = csr_matrix(M) | |
| elif method == "modified": | |
| if n_neighbors < n_components: | |
| raise ValueError("modified LLE requires n_neighbors >= n_components") | |
| neighbors = nbrs.kneighbors( | |
| X, n_neighbors=n_neighbors + 1, return_distance=False | |
| ) | |
| neighbors = neighbors[:, 1:] | |
| # find the eigenvectors and eigenvalues of each local covariance | |
| # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, | |
| # where the columns are eigenvectors | |
| V = np.zeros((N, n_neighbors, n_neighbors)) | |
| nev = min(d_in, n_neighbors) | |
| evals = np.zeros([N, nev]) | |
| # choose the most efficient way to find the eigenvectors | |
| use_svd = n_neighbors > d_in | |
| if use_svd: | |
| for i in range(N): | |
| X_nbrs = X[neighbors[i]] - X[i] | |
| V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) | |
| evals **= 2 | |
| else: | |
| for i in range(N): | |
| X_nbrs = X[neighbors[i]] - X[i] | |
| C_nbrs = np.dot(X_nbrs, X_nbrs.T) | |
| evi, vi = eigh(C_nbrs) | |
| evals[i] = evi[::-1] | |
| V[i] = vi[:, ::-1] | |
| # find regularized weights: this is like normal LLE. | |
| # because we've already computed the SVD of each covariance matrix, | |
| # it's faster to use this rather than np.linalg.solve | |
| reg = 1e-3 * evals.sum(1) | |
| tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) | |
| tmp[:, :nev] /= evals + reg[:, None] | |
| tmp[:, nev:] /= reg[:, None] | |
| w_reg = np.zeros((N, n_neighbors)) | |
| for i in range(N): | |
| w_reg[i] = np.dot(V[i], tmp[i]) | |
| w_reg /= w_reg.sum(1)[:, None] | |
| # calculate eta: the median of the ratio of small to large eigenvalues | |
| # across the points. This is used to determine s_i, below | |
| rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) | |
| eta = np.median(rho) | |
| # find s_i, the size of the "almost null space" for each point: | |
| # this is the size of the largest set of eigenvalues | |
| # such that Sum[v; v in set]/Sum[v; v not in set] < eta | |
| s_range = np.zeros(N, dtype=int) | |
| evals_cumsum = stable_cumsum(evals, 1) | |
| eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 | |
| for i in range(N): | |
| s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) | |
| s_range += n_neighbors - nev # number of zero eigenvalues | |
| # Now calculate M. | |
| # This is the [N x N] matrix whose null space is the desired embedding | |
| M = np.zeros((N, N), dtype=np.float64) | |
| for i in range(N): | |
| s_i = s_range[i] | |
| # select bottom s_i eigenvectors and calculate alpha | |
| Vi = V[i, :, n_neighbors - s_i :] | |
| alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) | |
| # compute Householder matrix which satisfies | |
| # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) | |
| # using prescription from paper | |
| h = np.full(s_i, alpha_i) - np.dot(Vi.T, np.ones(n_neighbors)) | |
| norm_h = np.linalg.norm(h) | |
| if norm_h < modified_tol: | |
| h *= 0 | |
| else: | |
| h /= norm_h | |
| # Householder matrix is | |
| # >> Hi = np.identity(s_i) - 2*np.outer(h,h) | |
| # Then the weight matrix is | |
| # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] | |
| # We do this much more efficiently: | |
| Wi = Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None] | |
| # Update M as follows: | |
| # >> W_hat = np.zeros( (N,s_i) ) | |
| # >> W_hat[neighbors[i],:] = Wi | |
| # >> W_hat[i] -= 1 | |
| # >> M += np.dot(W_hat,W_hat.T) | |
| # We can do this much more efficiently: | |
| nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
| M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) | |
| Wi_sum1 = Wi.sum(1) | |
| M[i, neighbors[i]] -= Wi_sum1 | |
| M[neighbors[i], i] -= Wi_sum1 | |
| M[i, i] += s_i | |
| if M_sparse: | |
| M = csr_matrix(M) | |
| elif method == "ltsa": | |
| neighbors = nbrs.kneighbors( | |
| X, n_neighbors=n_neighbors + 1, return_distance=False | |
| ) | |
| neighbors = neighbors[:, 1:] | |
| M = np.zeros((N, N)) | |
| use_svd = n_neighbors > d_in | |
| for i in range(N): | |
| Xi = X[neighbors[i]] | |
| Xi -= Xi.mean(0) | |
| # compute n_components largest eigenvalues of Xi * Xi^T | |
| if use_svd: | |
| v = svd(Xi, full_matrices=True)[0] | |
| else: | |
| Ci = np.dot(Xi, Xi.T) | |
| v = eigh(Ci)[1][:, ::-1] | |
| Gi = np.zeros((n_neighbors, n_components + 1)) | |
| Gi[:, 1:] = v[:, :n_components] | |
| Gi[:, 0] = 1.0 / np.sqrt(n_neighbors) | |
| GiGiT = np.dot(Gi, Gi.T) | |
| nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
| M[nbrs_x, nbrs_y] -= GiGiT | |
| M[neighbors[i], neighbors[i]] += 1 | |
| return null_space( | |
| M, | |
| n_components, | |
| k_skip=1, | |
| eigen_solver=eigen_solver, | |
| tol=tol, | |
| max_iter=max_iter, | |
| random_state=random_state, | |
| ) | |
| class LocallyLinearEmbedding( | |
| ClassNamePrefixFeaturesOutMixin, | |
| TransformerMixin, | |
| _UnstableArchMixin, | |
| BaseEstimator, | |
| ): | |
| """Locally Linear Embedding. | |
| Read more in the :ref:`User Guide <locally_linear_embedding>`. | |
| Parameters | |
| ---------- | |
| n_neighbors : int, default=5 | |
| Number of neighbors to consider for each point. | |
| n_components : int, default=2 | |
| Number of coordinates for the manifold. | |
| reg : float, default=1e-3 | |
| Regularization constant, multiplies the trace of the local covariance | |
| matrix of the distances. | |
| eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
| The solver used to compute the eigenvectors. The available options are: | |
| - `'auto'` : algorithm will attempt to choose the best method for input | |
| data. | |
| - `'arpack'` : use arnoldi iteration in shift-invert mode. For this | |
| method, M may be a dense matrix, sparse matrix, or general linear | |
| operator. | |
| - `'dense'` : use standard dense matrix operations for the eigenvalue | |
| decomposition. For this method, M must be an array or matrix type. | |
| This method should be avoided for large problems. | |
| .. warning:: | |
| ARPACK can be unstable for some problems. It is best to try several | |
| random seeds in order to check results. | |
| tol : float, default=1e-6 | |
| Tolerance for 'arpack' method | |
| Not used if eigen_solver=='dense'. | |
| max_iter : int, default=100 | |
| Maximum number of iterations for the arpack solver. | |
| Not used if eigen_solver=='dense'. | |
| method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' | |
| - `standard`: use the standard locally linear embedding algorithm. see | |
| reference [1]_ | |
| - `hessian`: use the Hessian eigenmap method. This method requires | |
| ``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see | |
| reference [2]_ | |
| - `modified`: use the modified locally linear embedding algorithm. | |
| see reference [3]_ | |
| - `ltsa`: use local tangent space alignment algorithm. see | |
| reference [4]_ | |
| hessian_tol : float, default=1e-4 | |
| Tolerance for Hessian eigenmapping method. | |
| Only used if ``method == 'hessian'``. | |
| modified_tol : float, default=1e-12 | |
| Tolerance for modified LLE method. | |
| Only used if ``method == 'modified'``. | |
| neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ | |
| default='auto' | |
| Algorithm to use for nearest neighbors search, passed to | |
| :class:`~sklearn.neighbors.NearestNeighbors` instance. | |
| random_state : int, RandomState instance, default=None | |
| Determines the random number generator when | |
| ``eigen_solver`` == 'arpack'. Pass an int for reproducible results | |
| across multiple function calls. See :term:`Glossary <random_state>`. | |
| n_jobs : int or None, default=None | |
| The number of parallel jobs to run. | |
| ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
| ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
| for more details. | |
| Attributes | |
| ---------- | |
| embedding_ : array-like, shape [n_samples, n_components] | |
| Stores the embedding vectors | |
| reconstruction_error_ : float | |
| Reconstruction error associated with `embedding_` | |
| n_features_in_ : int | |
| Number of features seen during :term:`fit`. | |
| .. versionadded:: 0.24 | |
| feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
| Names of features seen during :term:`fit`. Defined only when `X` | |
| has feature names that are all strings. | |
| .. versionadded:: 1.0 | |
| nbrs_ : NearestNeighbors object | |
| Stores nearest neighbors instance, including BallTree or KDtree | |
| if applicable. | |
| See Also | |
| -------- | |
| SpectralEmbedding : Spectral embedding for non-linear dimensionality | |
| reduction. | |
| TSNE : Distributed Stochastic Neighbor Embedding. | |
| References | |
| ---------- | |
| .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction | |
| by locally linear embedding. Science 290:2323 (2000). | |
| .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally | |
| linear embedding techniques for high-dimensional data. | |
| Proc Natl Acad Sci U S A. 100:5591 (2003). | |
| .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear | |
| Embedding Using Multiple Weights. | |
| <https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ | |
| .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear | |
| dimensionality reduction via tangent space alignment. | |
| Journal of Shanghai Univ. 8:406 (2004) | |
| Examples | |
| -------- | |
| >>> from sklearn.datasets import load_digits | |
| >>> from sklearn.manifold import LocallyLinearEmbedding | |
| >>> X, _ = load_digits(return_X_y=True) | |
| >>> X.shape | |
| (1797, 64) | |
| >>> embedding = LocallyLinearEmbedding(n_components=2) | |
| >>> X_transformed = embedding.fit_transform(X[:100]) | |
| >>> X_transformed.shape | |
| (100, 2) | |
| """ | |
| _parameter_constraints: dict = { | |
| "n_neighbors": [Interval(Integral, 1, None, closed="left")], | |
| "n_components": [Interval(Integral, 1, None, closed="left")], | |
| "reg": [Interval(Real, 0, None, closed="left")], | |
| "eigen_solver": [StrOptions({"auto", "arpack", "dense"})], | |
| "tol": [Interval(Real, 0, None, closed="left")], | |
| "max_iter": [Interval(Integral, 1, None, closed="left")], | |
| "method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], | |
| "hessian_tol": [Interval(Real, 0, None, closed="left")], | |
| "modified_tol": [Interval(Real, 0, None, closed="left")], | |
| "neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], | |
| "random_state": ["random_state"], | |
| "n_jobs": [None, Integral], | |
| } | |
| def __init__( | |
| self, | |
| *, | |
| n_neighbors=5, | |
| n_components=2, | |
| reg=1e-3, | |
| eigen_solver="auto", | |
| tol=1e-6, | |
| max_iter=100, | |
| method="standard", | |
| hessian_tol=1e-4, | |
| modified_tol=1e-12, | |
| neighbors_algorithm="auto", | |
| random_state=None, | |
| n_jobs=None, | |
| ): | |
| self.n_neighbors = n_neighbors | |
| self.n_components = n_components | |
| self.reg = reg | |
| self.eigen_solver = eigen_solver | |
| self.tol = tol | |
| self.max_iter = max_iter | |
| self.method = method | |
| self.hessian_tol = hessian_tol | |
| self.modified_tol = modified_tol | |
| self.random_state = random_state | |
| self.neighbors_algorithm = neighbors_algorithm | |
| self.n_jobs = n_jobs | |
| def _fit_transform(self, X): | |
| self.nbrs_ = NearestNeighbors( | |
| n_neighbors=self.n_neighbors, | |
| algorithm=self.neighbors_algorithm, | |
| n_jobs=self.n_jobs, | |
| ) | |
| random_state = check_random_state(self.random_state) | |
| X = self._validate_data(X, dtype=float) | |
| self.nbrs_.fit(X) | |
| self.embedding_, self.reconstruction_error_ = locally_linear_embedding( | |
| X=self.nbrs_, | |
| n_neighbors=self.n_neighbors, | |
| n_components=self.n_components, | |
| eigen_solver=self.eigen_solver, | |
| tol=self.tol, | |
| max_iter=self.max_iter, | |
| method=self.method, | |
| hessian_tol=self.hessian_tol, | |
| modified_tol=self.modified_tol, | |
| random_state=random_state, | |
| reg=self.reg, | |
| n_jobs=self.n_jobs, | |
| ) | |
| self._n_features_out = self.embedding_.shape[1] | |
| def fit(self, X, y=None): | |
| """Compute the embedding vectors for data X. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Training set. | |
| y : Ignored | |
| Not used, present here for API consistency by convention. | |
| Returns | |
| ------- | |
| self : object | |
| Fitted `LocallyLinearEmbedding` class instance. | |
| """ | |
| self._fit_transform(X) | |
| return self | |
| def fit_transform(self, X, y=None): | |
| """Compute the embedding vectors for data X and transform X. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Training set. | |
| y : Ignored | |
| Not used, present here for API consistency by convention. | |
| Returns | |
| ------- | |
| X_new : array-like, shape (n_samples, n_components) | |
| Returns the instance itself. | |
| """ | |
| self._fit_transform(X) | |
| return self.embedding_ | |
| def transform(self, X): | |
| """ | |
| Transform new points into embedding space. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Training set. | |
| Returns | |
| ------- | |
| X_new : ndarray of shape (n_samples, n_components) | |
| Returns the instance itself. | |
| Notes | |
| ----- | |
| Because of scaling performed by this method, it is discouraged to use | |
| it together with methods that are not scale-invariant (like SVMs). | |
| """ | |
| check_is_fitted(self) | |
| X = self._validate_data(X, reset=False) | |
| ind = self.nbrs_.kneighbors( | |
| X, n_neighbors=self.n_neighbors, return_distance=False | |
| ) | |
| weights = barycenter_weights(X, self.nbrs_._fit_X, ind, reg=self.reg) | |
| X_new = np.empty((X.shape[0], self.n_components)) | |
| for i in range(X.shape[0]): | |
| X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) | |
| return X_new | |